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We propose a numerical method for computing transport and diffusion on a moving surface. The approach
is based on a diffuse interface model in which a bulk diffusion—advection equation is solved on a layer
of thicknesse containing the surface. The conserved quantity in the bulk domain is the concentration
weighted by a density which vanishes on the boundary of the thin domain. Such a density arises naturally
in double obstacle phase field models. The discrete equations are then formulated on a moving narrow
band consisting of grid points on a fixed mesh. We show that the discrete equations are solvable subject
to a natural constraint on the evolution of the discrete narrow band. Mass is conserved and the discrete
solution satisfies stability bounds. Numerical experiments indicate that the method is second-order accu-
rate in space.

Keywords advection diffusion equation; surface partial differential equation; phase field; diffuse
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1. Introduction

Increasingly in applications, models feature partial differential equations (PDESs) on surfaces. In par-
ticular, conserved surface quantities subject to advection—diffusion equations on moving hypersur-
faces may arise in areas ranging from fluid dynamics (surfactants on fluid—fluid interfatzdsteins-
son & Sethian2003;James & Lowengrub2004) over biological systems (lipids on biomembranes;
Lowengrubet al,, 2007; Elliott & Stinner, 2009b) to materials science (species diffusion along grain
boundariesMayer & Simonett 1999;Deckelnicket al, 2001;Fife et al, 2001). Thus, developing nu-
merical methods for surface PDEs is an important topic in computational mathematics. In this article we
present a computational approach for an advection—diffusion equation on a given moving hypersurface
that is based on a diffuse interface representation of the surface.

Denoting by{I"(t)}; anevolving hypersurface the PDE
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modelsadvection and diffusion of a surface conserved quantityseeDziuk & Elliott, 2010). The
given vector fieldos is the velocity that splits in the forms = Vsvs + vs ¢ into a normal partVsvs
describinghe geometric motion of and a tangential pavts , associateavith the transport of material
along the surface. The operaféy is the surface gradient, andl = V - V isthe Laplace Beltrami
operator. The functiorfs on the right-hand side is a source term @g > 0 is a constant diffusivity
parameter.

The approach presented in this paper is based on representing the moving hypersurface in the form

of an evolving thin interfacial layef7%(t)}; involving a small parameter related to its thickness. For
this purpose we consider a family of non-negative differentiable funcpgns) that, when scaled with

l , approximate the delta distribution of the moving surface as 0. The evolving diffuse interface

F (t) is then defined to be the spatial support of jhe, -). Our goal is now to solve the parabolic
equation for a bulk quantity

which involves degenerating coefficients singevanishes ord I',. The conserved bulk quantityu is
transported with an appropriate extensionf the velocity fieldos, and also the source terifa is ex-
tended to a suitable functiofi away from the moving surfac&. As analysed irElliott & Stinner
(2009a) for curves and sketched for hypersurfaces in higher dimension, equa#ipimdeed approxi-
mates the surface equation (1.1kas> O.

The diffuse interface approach is motivated by both modelling and numerics. We have in mind the
following two situations:

(a) Inmany applications the evolving surface is unknown. The phase field methodology is a powerful

(b)

a(pu) + V- (puv) = V- (DcpVu) = pf onrl, 1.2)

tool to model free boundary problems. In this approach the surface is a thin diffuse interfacial
layer of widthO(¢) across which a phase field varialplehas a steep transition from the bulk
values~ +1 on either side of the interface (e.g., $é@ginalp,1989;Blowey & Elliott, 1993).
Diffuse interface approximations with compact support naturally occur when the diffuse interface
motion is given by the double obstacle phase field moB&wey & Elliott, 1991, 1993) for
which the bulk values ob are identically+1. This leads to a sharp diffuse interface front-
tracking method (Elliott & Styles2003; Deckelnicket al.,2005). In this context it is natural to
formulate a diffuse interface equation of the form (1.2) with

p=0c(p), wheres(r)=1-r2 (1.3)

Defining p in terms of this phase field variable in our approach enables the solution of equations
on the surface in such a model. We remark that a degenerate equation of the form (1.2) appeared
in a phase field model of diffusion-induced grain boundary motioeckelnicket al.,2001;Fife

et al.,2001).

On the other hand, the use of diffuse interfaces without compact support for the numerical so-
lution of PDEs on stationary surfaces was propose®étz & Voigt (2006). InSchwartzet al.

(2005) a narrow-band approximation analogous to our method but only for stationary interfaces
is proposed, based on choosingo be the characteristic function &f. In this context we sup-

pose that each surfadé(t) is known as the zero level set of some given functior, t) (which

may be the signed distance function) and we choose to take

ple, X, 1) :=o(d(X,t)/e) (1.4)

in (1.2), wheres (r) > 0if |r| < a, ando (r) =0 if |r| > a, with a constant;,, > 0.
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Let us briefly discuss other methods to solve surface PDEs:

One may use finite elements on triangulated hypersurfaces as proposed and analysed for the Laplace—
Beltrami equation bypziuk (1988). This surface finite-element method is a powerful approach that

has been extended to parabolic equations on stationary surfaces, including nonlinear and higher-
order equations, ifDziuk & Elliott (2007b). In order to treat diffusion and transport on moving
surfacesDziuk & Elliott (2007a) proposed the evolving surface finite-element method. The basis

for this was the use of a transport equation which in the variational setting avoided the calculation

of surface quantities such as the normal, mean curvature and normal velocity. The method simply §
requires the velocity of the vertices of the triangulation. An application to a complex physical model
may be found inEilks & Elliott (2008). In contrast, the bulk equation (1.2) may be solved on a
bulk mesh, independent @f(t), where it is sufficient to perform calculations belonging to the thin
interfacial layer.

Another approach involving bulk equations is to solve the surface PDE on all level sets of a
prescribed function. This is inherently an Eulerian method and yields degenerate equations (for sta-
tionary surfaces, segertalnio et al.,2001;Greer,2006;Greeret al.,2006;Dziuk & Elliott, 2008).
Eulerian approaches to transport and diffusion on evolving surfaces were gideialsteinsson &
Sethian(2003) andXu & Zhao (2003) where level set approximations to surface quantities were
required. On the other hand, an elegant formulation avoiding the need to do this was provided in
Dziuk & Elliott (2010) using an implicit surface version of the transport equation. This is a partic-
ularly appealing approach when the surface is computed using a level set m8#tbiif,1999;
Osher & Fedkiw 2003). In which case it is natural to exploit the implicit formulation and use a
bulk triangulation rather than generating a surface triangulation approximating the interface from
the level set function. In the stationary case the calculations in this approach can be restricted to
narrow band around the zero level set defining the interface. For surface elliptic eqidaakagnick

et al.(2010) gave a discretization error analysis for a narrow-band level set method using the unfitted
finite-element methodBarrett & Elliott, 1984,1988), yielding ar®(h) error in theH(7")-norm.
Computations for physical models using this approach may be foustbaker & Voigt (2008a,b).
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An interesting development of the implicit surface approach is to solve the equation on the zero level &
set of a discrete level set function on a bulk mesh which is independent of the surface (Olshanskii 95,
et al.,2009;Olshanskii & Reusker2010).

The closest point method (Macdonald & Ruuf®08,2009; Ruuth & Merriman,2008) is based

on consideringu(a(x)), wherea(x) € I is the point closest t&x and which is unique fok in

a sufficiently small neighbourhodd of the surfacel’. The surface PDE is then embedded and
discretized iri/ usingu(a(x)). Implementation requires the knowledge or calculation of the closest
pointa(x). In the cited references this approach has been used to solve a wide variety of equations
on stationary surfaces.
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Our approach is to approximate weak solutionslt®) using linear finite elements in space and a

backward Euler scheme for the discretization in time. The given functiarsdo are projected to the
finite-element space for this purpose, and the mass matrix is lumped. We observe the following about
our scheme:

1. The solvability of the discrete linear system of equations is not straightforward because of the
degeneracy of the coefficients. The idea is to restrict the set of equations to the vertices that lie
in or are connected to the diffuse interfacial layer. On the vertices at the boundary of the diffuse
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interface the weight functiop still vanishes so that there is no contribution to theveighted
mass matrix. However, thanks to the positivitylef thereis a contribution to the stiffness matrix
which allows the computation af in such boundary vertices.

2. Itturns out that the degeneracyobn the boundary of , together with a restriction on the time
step for the solvability, keeps the mass on the surface during the evolution, ensuring that the total
mass is preserved.

3. We computationally investigate the convergence behaviour for a prescribed moving surface in the
situation (a) as specified above. For a fixethe numerical tests indicate a quadratic convergence
in L2 and L anda linear convergence ikl asthe grid parameteh tends to zero, which is
what one would expect when using linear finite elements. Of further interest is the convergence
behaviour ins. When keeping the ratig/ h fixed we observed quadratic convergencé frand
L°° andlinear convergence ikl ase — 0.Our convergence results for stationary surfaces with
respect ta: andh agree with the results iBichwartzet al. (2005) in spite of the different.

The structure of the article is as follows. In Sectiwe introduce the numerical scheme. In Section
3 we present numerical results for situation (b). Finally, in Secfiare present some simulation results
in situation (a) for applications where the movement of the interface is not given but subject to equations
of phase field type. For the numerical simulations the finite-element toolbox ALBEBTANjidt &
Siebert,2005) has been used.

2. Finite-element approximation
2.1 Weak formulation

Let | := [0,ts) with tf > O be a time interval and le@ c RY, whered = 2,3, denote an appro-
priate domain into which the evolving closed hypersurface) is embedded at all times. The function
p:(0,5) x Q) > R (whereQ, := Q x |) is such that its suppoif; (t) contains/” andconverges
to I ase — 0 with respect to the Hausdorff distance. We assumeghatontinuously differentiable
with respect to time and space so that, in particylds, X,t) — 0 andVp(e, X,t) — 0 as(x,t)
approaches the boundary 8f(t). Initial values for (1.1), denoted n;g are extended constantly in the
normal direction away frond” to obtain initial valuesi© for (1.2) on7,(0) (we assume here thap is
smallenough to ensure that this extension is well defined) < (0) we setu® = 0.

DEFINITION 2.1. (Weak solution) For a given € (0, ¢p), a functionu: Q x[0,ts) —» Rwithu(x,t) =
0if x ¢ I (t) is a weak solution toX.2) if it fulfils

/ @Gt(pu)y —puov - Vy +DcpVu -V y)dx =/ pfydx aetel (2.2)
Q Q
for all test functions: 2 — R and ifu(-, 0) = u%(-) on Q.

2.2 Discrete set-up

Let 4t = ﬁ,—ff for an integerNs € N bea time step and defing := n4t, wheren = 0, ..., Ns.
Functionevaluations or approximations of functions at titpevill be denoted with an upper index
The discrete time derivative is defined by

fn+1_ fn
e ————
% At
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Let 7r, be a triangulation of the domai® c RY, whered = 2,3, consisting of simplices with
maximal diameteh := max.7; diam@). Let N be the number and/ be the set of vertex indices. The
vertex coordinates are denoted {@y, ..., ayn}. For an index e A let wj denotethe neighbouring
vertices connected to vertéxia an edge and I6F := {e € Tn | @ € €} bethe set of elements that have
i as a vertex. Furthermore, 18f := {j € NV | a; € e} bethe set of vertices belonging to an element
ee Tn.

DEFINITION 2.2 The ‘discrete interface’ at timig is defined by
I} = {ee TalNe C M,
where
N = {i € N|thereisj € w; suchthatp"(aj) > 0}.
We also split the index set as follows:
h=MpUNgp Myi={i e MIp @) >0}, Ngp:=1{i e \jlp"(@) =0},

AssumMPTION2.3. (Discrete interface assumption)
It holds for alln = 0, ..., N; — 1thatif an index e A} doesnot belong to/\/rr,1+1 thenp"(aj) = 0
(i.e.i e N3 ).

This assumption implies that the discrete narrow bafdnever loses a whole element of the fixed

mesh in a single time step. To guarantee the above restriction one may apply an adaptive time-steppin

strategy or apply a condition of the foraft < Ch/(||v|c0,0,)-
Thediscrete finite-element space is defined by

Shi= {on € C%(Q)|vp isa linear polynomial on eache T}
Theinterpolation operatofZ": C(Q2) — S is defined by
N
") = n@i)x.
i=1

By x1, ..., xN Wedenote the standard basis functionssHf i.e.xi € co%(Q) andyile € Pi(e) for all
e € Ty satisfyingyi (aj) = dgij foralli, j =1,...,N.

2.3 Numerical scheme
In order to formulate an implicit scheme for (2.1) we introduce the following forms for funcfipns
Sh:

ME = /Q (", (2.2)
AE = /Q 1" " ") - Vi dx, (2.3)

DE ) = /Q Del1"(p") V& - Vi dlx, (2.4)
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Fh:= [ 1" "o (2.5)

We denote by " theapproximation tau(-, tn) andimpose the discrete initial condition

0 uwa@j), ieN?,
U%@a) = (2.6)
0, otherwise.
DEFINITION 2.4. (Scheme I) For each = 0, ..., Ns — 1 we seek a functiot)"+1 ¢ S suchthat
U™l@) = 0if i ¢ A" andsatisfying
SMU, D = AU it DU it = A ) Ve SN (2.7)

PROPOSITION2.5. The valued)"*t1(a;) fori e j\/r’,‘+1 aredetermined from
1
Z (‘/Q{Hh(pn-l-lu n+1Xj) _ Hh(pnu n){])}dx) _ /;) Hh(pn-‘rlu n+l)Hh(Dn+1) . VX] dX

+/ DM (p™h VUM vy dx:/ (™™l pdx forall j e MM, (2.8)
Q Q

while
Ul =0, k¢ N

Proof. Equation (2.7) is equivalent t®{8) for all j € N. First observe that i ¢ Nﬁ‘*l then by
definition p"*1 vanishes on the support gfi. Similarly if j ¢ A" thenp" vanishes on the support
of xj. It remains to considej € A \/\/}?*1. By the ‘discrete interface assumption’ it follows that
11"(p"U"yj) = 0. This proves 2.8). By definition we impose thal"** vanishes on vertices lying
outsideN. 0

2.4 Uniquesolvability |

In order to show that the above system (2.8) indeed is solvable we will need the following estimate.

LEMMA 2.6. Forn=1,...,N¢,d > 0and{, n € S, we have that

lo"1%,
A Rl < 0D0n )y + 5SS ME O (2.9)

Proof. We infer the desired estimate from

LA, il = ‘ /Q 1" (" " ") - Vi dx

</ 10" s0.0
Q N

N
Zpinfi Xi
i=1

N
IValdx < D /Q (M) 1V 110" oo, 2 (o i) 21 Ll
i=1
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27115, 0 nI| o ”IIOO
<Z / (Dcép. xilVnl? + P ifiz)dx = 0D, My + —=5 QM(& hs
wherewe used the abbrewatlc;ztf1 =p(@@,tp). O

PROPOSITION2.7. (Unique solvability) IfAt < 4D¢/||v||2
has a unique solution.

thenScheme | with the initial dat&(6)

00,2

Proof. Given a functionU" e S" suchthatU"(ax) = 0if k ¢ N[ we have to show that the scheme
yields a unique functiob) "1 € S" with U"*1(a;) = 0if i g!N““ andsatisfying (2.7).

Taking Wt to be the difference of two possible solutions, it is sufficient to show\at! = 0
is the only solution of

MWt — AL AWNE it 4 atDWM, it =0 vy e SN
Takingn = W™ andusing @.9) give

n+1
(1_ At || 452|;ooQ)M(Wn+l Wn+1)n+l+ (1 5)D(Wn+1 Wn+1)n+1 < 0’
C

which upon takingd arbitrarily close to 1 yields fort < 4D¢/||o“+1||OO o
MWL whott — o (2.10)

D(Wn-l—l’ Wn+1)n+l =0. (211)

It follows from (2.10) thatW"*1(a;) = Oforalli e ./\/ln+l By (2.11) we have thaVW"*! = Q/in
every elemene e 77", whence we also conclude that™(aj) = Ofori e N“+1 a

Recallthatp”+1(ai) = O0fori e /\/”Jrl so that we cannot conclude dlrectly fron2.10) that
W"t1 = 0in the above proof.

PrOPOSITION2.8. (Mass conservation) If = 0 then it holds that for eaal > 1
MU, DI = MU, 1)0.
Proof. Takingn = Zj xi =1in(2.7) yields in view of 2.8)

= > / p"ra@pu™ti@)yjdx— > /p @ju"(@;)y;j dx. (2.12)
]eNn+l Nn+l

Thefirst term is [, 71" (p"* U™ dx = M(U™L, 1)PTL. Concerning the second term, with the dis-
crete interface assumption (AssumptidB) we have thap"(aj) = 0if j € N,?*l\/\/,ﬁ‘ sothat we can
replace the index se‘t/”Jrl in the sum byV. Hence, it gives/,, " (p"UMdx = M(U", 1)p from
whichwe infer the assertlon. |

REMARK 2.9. The above proposition can be extended to nontrivial source tériigtal mass conser-
vation is true foru subject to (1.1) provided thqfro(t) f(-,t) = Oat all timest < I. In the discrete
setting this requirement ofi naturally become$ ; AT F(xi)p = Ofor all n. We then see tha2(12)
still holds true and we can conclude as before.
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2.5 Edge smoothing

From the asymptotic analysiglfiott & Stinner, 2009a, Theorem 3.1) we expect an almost constant
profile since a weighted.2-norm of the derivative in the normal direction scales withFormally,
equation (1.2) is closed with the boundary conditipio — pDcVu) - v = 0on o7,(t), wherev is
the external unit normal. In the continuous setting this condition is trivial begauarishes 0@ I’ (t).
However, in the discrete setting we are dealing with a nontrivial condition ging@approximated there
on a finite-element grid.

This problem occurs already in the one-dimensional problemi I:—:e]Z\/”Jrl be a boundary vertex

suchthat — 1€ ./\/lnarl Inserting the basis functiog associatedvith the verte><| into (2.8) yields the

equation folU"**. Sincep/"** = p" = Oit reads

1
- (/Q X dx) oY — (/Q K- 1" (0" oy xi dx) i Uiy
+ (/Q 11" (p" 1 dx) ok xi Izdx) UMt 4 (/Q 1" ("o xi—10x xi dX) Ut =o.

Denotingby e the common support of; and xi_1, let us write 15" 1 = [oxi—1/1" (") and
AL = [, 11" (p"1). We then obtain

1., 1 n+1 n+l , ~n+1 Uin—i_1 B Uin—+11
——p Ui = 5” P U +pij1,i —hn  ° 0. (2.13)
Hence,in generaIUin+l will be different fromUi”_Jrll. In numerical simulations we observed peaks
associated with slopes enforceddcclose to the boundary of the interfacial layer (cf. F2y.
In the case thap andV p vanish ond 7 (t) we may estimate the size of these peaks. We have that
AL = O(h?) andp/'! = O(h?) ash — 0,and we even have thaf' = O(4t?) asAt — 0.As a
conclusion

UMt —uMl = o) ash— o0, (2.14)

and in Fig.2 we see that the height of the peaks indeed is lineér in

Nevertheless, in some complex applications where the surface quantity enters other equations, per-
haps in a phase field model for the surface evolution, one may desire profiles that are also flat at the
edges to avoid edge effects. To achieve this goal we propose to add a kind of streamline diffusion term
to Scheme | of the form
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for functionss, 7 € S". A normal velocity fieldv,, (X, t) is obtained by projecting(x, t) into a direction
v(X, t), approximately normal to the boundary &f(t). How this fieldv is obtained depends on the
application. For example, if the signed distance functioi’ts known one may choose= Vd. The
approximatiorw,, h to v, is constant on each elemeate 7, andcoincides ore with the value ofv,

in the barycentre oé. The functiongy is constant on each element, too, and is of otudt serves to
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add a small diffusion close to the boundaries of the interfacial layer. The above edge smoothing term
furnishes an additional term of the form

n+1 n+1
U -Ui0

n+l|~n+1 |2
h

gh v,i—1,i

in (2.13). The value;§|“+11I andp”+1 scalewith h?, and sincegp only scales witth this is a comparably
large contribution resuiting in

UMt —uMt = 0om? ash - 0. (2.16)

In the numerical experiments this procedure effectively smoothed out the profileaabss the diffuse
interfacial layer (see Fi@).

Clearly, also the surface equation may be advection dominated in the sense that the tangential portio
of the velocity is large compared with the (appropriately scaled) diffusivity. Streamline diffusion in the
tangential direction then may be used to stabilize the problem. But we leave this discussion for future
research and concentrate on diffusion-dominated problems in this paper.

DEFINITION 2.10. (Scheme II) For each =0, ..., Nt — 1 we seek a functiot n+l ¢ §h suchthat
Ul(ay) = 0if k ¢ A{"* andsatisfying

SMU, D — AUt L DU I 4 LUt =0 vyesSt. (217)

2.6 Uniquesolvability Il

Since (2.15) is a hon-negative term whieg:= 5 the arguments used for proving Propositiidstill can
be applied. And thanks to the fact that only the gradient appears Propositian.8is also true so that
we may state the following theorem.

THEOREM2.11 If 4t < 4Dc/||o||§o,gI thenScheme Il with the initial date2(6) has a unique solution.
Moreover, if f = 0 then it holds that(U", 1)} = MU, 1)% foralln € {0, ..., N¢}.

O

2.7 Discrete equations

Letky bethe number of nodes iV]['. We can decompodé" as

=2 Uni= 2 G+ 2

jeM! jenp+t je NI
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wherewe note that
@ ==uf for j e \{TT N A and @) :=0 for j e M{TT\ A

FP | I n k n+l n+1 k
Let us furthermore write" := {u" }JeN““ e R* andd {uj }je/\/g“l € Rn+1,
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We now define the matricad "1, K"+1 "1 MM e Rkn+1xknt1 with the entries
MY = MG, R,
KM = DO, 2™ — AGas xidp ™
Lt = L0, 2R,
M| = MGa, 2i)hs
n+l_

wherethe indices, j belong to the set}]
At each time step + 1 the solutiorld "1 is obtained by solving the system

1 -
+1 +1 1) 1 _ A g
(A_tMn + KM 4" )g” = xM"a" (2.18)

of kn+1 linear equations that have a unique solution (Proposior). These equations were solved
using a stabilized bi-conjugate gradient method. Becaliseero at the boundary points Mﬁ‘*l this
systemhas some equations with small diagonal elements which leads to ill-conditioning. We remedy
this by preconditioning using the inverse diagonatM™? + K+1 4 | n+1,

2.8 Narrow-band implementation

The numerical solution from time stepto time stepn + 1 involves7}' c 7, and Fh”+1 C 7h. But

these discrete interfaces do not differ very much. In fact, a time step restriction of theforsa
Ch/(llvlle,@,) ensuresiot only that the discrete interface assumption is fulfilled but also that these
sets differ at most by a single layer of elements. To take advantage of this in computations we define a
narrow band of elemen#§ c 7r suchthat 7} U 7™ < BY. This subset of elements is used to step
from time leveln to time leveln 4 1. It does not necessarily change from time level to time level because

of the accuracy requirement to resolve the movement of the surface as well as the solution of the surface
equation. We take advantage of the fact that the other elemefigsas€&not required in the calculation

by dynamically adapting the triangulation. Each triangulation is a refinement of a coarse triangulation
7. Our assumption is the following.

ASSUMPTION2.12 Narrow-band assumption

e Each narrow ban#]} canbe obtained as a local refinemefgt of 7,°.
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e Eachnarrow band3] is a subset offy.

At each time step we work on a triangulati@fl thatis dynamically locally refined and coarsened
whenever the narrow band changes by the removal or addition of layers of elements. As an example we
show in Fig.1 two triangulations for the problem described in Subsec8dinvolving an expanding
circle.

LEMMA 2.13 If the narrow-band assumptich12is fulfilled then the values)"*1(a;), wherei e
N,?*l, computed or17}1n arethe same as if they are computedBnwheren € {0, ..., N; — 1}.
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FIG. 1. Triangulations at timets= 0.0 andt = 0.1 for the problem in Subsectidh2 for the datac = 0.1 andh = 2745,

3. Numerical tests

uinolpiojxo-eufewl//:dny wolj papeojumoq

In this section we describe experiments to test the accuracy of the numerical method for prescribed2
stationary and evolving surfaces for which a distance function is known. We here have situation (b) (as o
specified in Sectiod) in mind and prescribg by setting

o() = co8() ifIrl <ay =7

in (1.4) and by choosing the distance function to defirnéhe diffuse interfacial layer at tintee | then
is I'(e,t) = {x € Q]]d(X, )| < aye}and has a thickness afc.
Whenever edge smoothing is performed we use the function
Ow or |d(X,t)| >

0 ¢ 1A, D) <M > ay.
g(x, t) == ¢ ¢ (3.2)
hi (_|d(x,t)| - ﬂ) else

Oy e 2

(3.1)

and obtaingy, by evaluatingg in the barycentres of the elements. In the subsequent tests the diffusivity
along the surface was always set to dhe= 1.

0T0Z ‘22 KeN uo aImrepA Jo Alsiaaiun 1e b1

3.1 Moving circle

We first present results on an example involving both advection along the surface and motion in the
normal direction by prescribindg” to be the circle of radius one iR? moving at a constant speed

vs = (2,0)". Parameterizing the circle in the forp(s, t) = m(t) + (cos6), sin())", wherem(t) =
(—=05+ 2t,0)" is its centre, the functiong(y (s, t), t) := e *' cosE) sin(s) is a solution to {.1) with

initial dataug(y (s, 0),0) = cos6) sin(s).
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The distance function required far in (3.1), g or, respectivelyg in (3.2) and the streamline
diffusion term (2.15) id(x,t) = |[x — m(t)|| — 1 and the (constant) velocity field was constantly
extended to the simulation ba® = [—2,2]2. The simulations were terminated &t = 0.1. For
the triangulation7y, the domain Q is split into four rectangular triangleg—2, —2), (2, —2), (0, 0)),
(2,-2),(2,2),(0,0)), ((2,2), (-2,2),(0,0)) and ((—2,2), (—2,-2), (0,0)) that are subsequently
bisected until a desired maximal edge lengtls achieved (for the refinement procedure, we refer to
Schmidt & Siebert2005).

The simulation results presented below were obtained with the timeteph?/20. We observed
that the approximation error due to the discretiation in time is negligible compared to the spatial dis-
cretization error for4t in this range.

To measure the error we computed the values

L_12 1/2
L% L?)(e, h) := ZUnx) — ux, th)?
e[L™, L](e, h) n=T‘??(Nf(|§ V) — Ui, t) ,
Nt |_—127T ) 172
efL? Hie by i= | D04t Y = [VU"00) = Vrgouxi, i) )
n=1 1=0
N¢ L—127T 12
e[ L2 HL] el = [ 20 4t > VUm0 s )
n=1 1=0
N¢ L_127r ) 1/2
oL HiGe 0 = D At D 5= [Vray UM on) = Vrguxi, to)* ) (3.3)
n=1 1=0

wherex; := m(t) + (cos§), sin@))" with § = 2zl /L for someL e N (in practice,L = 200 turned
out to be sufficient for that the error from the quadrature formula was negligible compared to the dis-
cretization errors). With respect to th&!-normwe distinguish normal and tangential portions because
we expect a different convergence behaviour. Clearly, the exact solution never involves a derivative in
the normal directiomws sothate[LZ, Hvls] measurean error of the finite-element approximation only.
Table 1 displays errors and convergence orders for the simulations without the edge smoothing
term and fore fixed. The experimental orders of convergence are obtained from the formule: eoc
log |e(~/2h) — e(h)|/le(h) — e(h/~/2)|/ log~/2. We used this formula because the errors will not con-
verge to zero aB — O but to the error emerging from the approximatioreinNVe observe (at least)
quadratic convergence efL>°, L?] ande[L?, H,. ] andlinear convergence af{L?, H}] ash — 0.
Thate[ L2, H1] also seems to converge much better than linear lies in the fact that the error is dominated
by its normal portion, but one will expect that for smhlthe tangential portion dominates because of
its linear convergence.
Taking the streamline diffusion term into account by defirgr@sin (3.2) has almost no impact on
the size of the errors indicating that the approximatibis only affected close to the boundary of the
interfacial layer/” (¢) but not in its centre or".
Keeping the ratia:/ h or, equivalently, the number of grid poinks across the interface fixed we
observe a surprisingly good convergence behaviour-as0, namely quadratic af{L>°, L2] and linear
of g[L2, H,l] (see Table2). The asymptotic analysis iBlliott & Stinner (2009a) suggests quadratic
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TABLE 1 Test problem on a moving circular interface described in SecH8dn simulations without
streamline diffusion term (g= 0 in (2.15)). For a fixed value ~ +/2/10 the errors measured for

different mesh sizes are displayed. We also show the experimental orders of convergence obtained from

the formulaeoc = log |e(~/2h) — e(h)|/|e(h) — e(h/~/2)|/ log+/2. We did not use the same formula
as in Table2 because the errors will not converge to zero as>h0 but to the error emerging from the
approximation ing

o 2 g1 2 1
h dL*tl eoc LM eoc % eoc  HBd eoc
2740 15628  — 1.8017 — 1.5629 — 0.8963 —

2745 15107 2.0167 1.5366 2.0538 1.3956 2.7323 0.6430  0.9098
2750 1.4848  3.2490 1.4065 2.0022 1.3307 2.2652 0.4582 0.9818
2755 1.4764  2.7846 1.3415 2.0268 1.3011 2.3742 0.3267 0.9290
2760 1.4723 — 1.3093 — 1.2881 — 0.2314 —

TABLE 2 Test problem on a moving circular interface described in Sec3idn errors for simulations
without streamline diffusion term {g= 0 in (2.15)). For a fixed ratice/ h the errors and experimental
orders of convergence (eoc) are shown. The latter ones are computed in the usual wwag(¢ip=

log (%f)‘))/ log(+/2), where e stands for the error under consideéon

~ 2yl 2 gt
e h  dL=Lld "ur’é'z eoc dH1] 'ﬁ’r';'l eoc —e[Ll(’er”s eoc —e[to;"z"] eoc
V2/10 2745 15107 — 1.5366 — 1.3956 — 0.6430 —

1/10 250  0.7685 1.9502 0.9147 1.4967 0.7916 1.6361 0.4582 0.9777
V220 2755 0.3852 1.9929 0.5902 1.2642 0.4907 1.8010 0.3279 0.9654
1/20 260 (0.1930 1.9940 0.4272 0.9326 0.3587 0.9041 0.2319.9995

corvergence of[ L2, Hvls]. We observed that the larger is the numBeof points across the interfacial
layer the better is the experimental order of convergeneenine[ L2, H. .

3.2 Expandinggircle

In this test example we consider an expanding circle centred at O and rgthius 0.75 + 5t. The
velocity field is given byps(X,t) = 5x/|X| and,hence, purely in the normal direction. The function

us(X,t) = exp (aim)% is a solution to {.1). To see this we parameterize the moving circle in

the formy (s, t) = r (t)(cos6), sin@s))", wheret e [0, co) ands € (0, 2x), and then use the formula
Vi = (—sin(@), cos@))Tmas. The above formula foos hasbeen extended to the interfacial layer
for definingo and the distance function is given byx, t) = ||x||2 — r(t). The triangulatiorn7, was
obtained as in sectioh. 1, and the time stegt = h?/20was small enough again so that approximation
errors due to the time discretization are negligible.

Figure 2 displays concentration profiles across the interface at time 0.5 at the pointx =

(cos(gn), sin(gn)). As predicted in Sectio.5, the computation without edge smoothing involves

layers close to the boundary of the diffuse interface. We observe a peak in the direction of the

motion, i.e., to the right, and the other way around to the left. Recallh& set to zero in grid
points not belonging taVy, which explains the sharp drops at the boundary of the layer. As the grid
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cross profile in dependence of the grid parameter h
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FIG. 2. Test problem on an expanding circle. The profiles of the computed solutecross the interfacial layer are displayed

for several values oh and fixede = +/2/10. For comparison, a profile computed with edge smoothing is displayed. Out-
side the interfacial layer the value bf has always been set to zero which explains the sharp drops of the profiles on the left
and right.

is refined the peaks become less pronounced, and from the figure we see that their height is pro-
portional toh. This is in agreement with the analysis in Sectib (see equation (2.14)). The edge
smoothing term, added by computigg from (3.2), makes these boundary layers much smaller as
desired.

We evaluated the error8.3) choosing the quadrature poixis=r (t,)(cos§), sin(g)), whereg =
2zl /L attimet, (again,L = 200 turned out to yield a sufficient accuracy). As in the previous example
in Section3.1,e[L>, L?] converges quadratically arefH}] linearly ase — 0 while keeping the ratio
&/h constant. Furthermore, as in the previous example the errors with edge diffusion quantitatively
almost are the same as the errors without.

The dependence of the cross-section profiles with edge smoothing on the thickness parasneter
shown in Fig.3 (timet = 0.5 and pointx = (cos(gn), sin(gn)) again. The figure reveals that the
profile becomes flatter as the interface thickness becomes smaller (in comparison wtthEigeader
should be aware of the different scalings of fraxes; in fact, the dashed line in Fgcorresponds to
the dotted line in Fig2). Yet there are still some minor boundary layers that affect, in particular, the
slope of the profile in the interface centre, i.e., the gradierl oh the normal direction or”. The
errore[Lz, Hvls] measuring this effect decays if the number of grid points across the diffuse interface is
increased.
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3.3 Three-dimensional example
In order to test the method in three space dimensions we consider Example 7.BZrakn& Elliott
(2007a) concerning an oscillating ellipsoid of the form

Xt

r(t) = {x = (X1, X2, X3)" € R® a0

+x§+X§=1],
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interfacial cross profiles in dependence of the thickness parameter
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FiG. 3. Test problem on an expanding circle. The profiles of the computed fundtammoss the interfacial layer are displayed for
several values of, keeping the ratia/ h constant (we ensured at ledt= 16 grid points across the interface). The distance to
the limiting interfacel” is scaled with 1e which allows a better comparison of the profiles for different values bif comparison
with Fig. 2 the reader should be aware of the different scalings oktlendy-axes.

wherea(t) := 1+ sin(t)/4. As associated velocity field we choose
aat) (X
a() 0

Ds(x, t) =

obtained from prescribing the trajectories of mass points on the initial surface{b)oe= (/a(t)x1(0),
x2(0), x3(0))" with X(0) e I"(0). Thus, both advection along the surface and deformation by motion in
the normal direction are involved.

On the stationary two-dimensional unit sph&ethe functionus(x, t) := e 8'x; x5 is a solution to
the surface heat equatiéfus — 45 us = 0. SettingD. = 1 the functionus also is a solution to (1.1)
for the above datél", vs) provided that

2 2
fs(X, 1) ;= us(X, t) [—6 4 aa® (1 _ ﬁ) " 14 5a(t) + 2a(t)

at) 2N N

- %(xi +at)306E + x§>)] :

whereN := X2 + a(t)?(x2 + X3).

For the simulations the velocity fielgsk and the right-hand sidé; have been extended constantly in
the normal direction away fron’ in order to define and f, respectively. The computational domain
was Q2 = [—2,2]2 and the final timg; = 4. The triangulatior/;, was obtained by starting with six
tetrahedra with vertices coinciding with the cornersgdfand subsequent refinement by bisection (for
the algorithms, se8chmidt & Siebert2005) until the desired maximal edge lendtlwas achieved.
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Theresults are presented for the time stéfp= h?/2.0. Edge smoothing witly, computedrom (3.2)
has been taken into account.

To measure the error we have to integrate functions defined on the elligs@igs Parameterizing
in the form

Ja(t) cos(d sin(@)
X(¢,0) =

sin(¢)sin(®) , (¢,0)€]0,27) x [0, x],
cos(0)

we applied the following integration formula (for a functiénon " (t)):

T 2r
/ F()dH2 = / / F(X(. 0))v/Taiy @, 0) dpd0
I'(t) o Jo

L-12L-1

~ DD FX(@), )y Gata) (85, 0)0° =: 1n[F,

k=1 j=0
where
Gact) (¢, 0) = a(t) sin(@)?(cos()? + sin(¥)? sin(B)?) + cos(p? sin(9)*

and¢j = jo, 6 = ko with ¢ = = /L. In practice,L = 400 turned out to yield sufficiently accurate
values. To measure the error we computed the values

00 |2 . ney —
L= LG ) = max InflU"0) — Ut )P

NG 1/2
(Zmln[wun(-)'vs(~,tn)I2]> )

2 1 .
e[L , Hvs] (e, h) : >

e[L? H(e, hy:

N 1/2
(Z Atln [|Vf(tn>U"(') = Vrmu(, tn)|2]> .

n=1

Tables3-5 display the errors for gridsh(fixed in each row) and several interfacial thicknesses (e
fixed in each column). The values support the convergence ratesind ¢ as obtained in the two-
dimensional case. We remark that the influence of the time step is not negligible in the chosen range
(recall that heredt = h2/2 while in the previous two-dimensional examples we h#td= h?/20).
Simulationdor different time steps at fixedandh reveal linear convergence as one would expect since
a backward Euler time-stepping procedure is applied.

TaBLE 3 Datafor an advection—diffusion equation with source term on an
oscillating ellipsoid in three dimensions described in Sec8@h

e[L*®, L?](¢, h)/1072
h\e 2/10 V2/10 1/10 V2/20 1/20
~0.1088 1.6019
~0.0628 0.9062 0.6621
~0.0544 0.7633 0.5148 0.4056
~0.0314 0.5879 0.3372 0.2224 0.1716
~0.0272 0.5536 0.3029 0.1849 0.1287 0.1047
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TABLE 4 Data for an advection—diffusion equation with source term on an
oscillating ellipsoid in three dimensions described in Seclén

e[L? H}.](e, h)/1072
h\e 2/10 V/2/10 1/10 V/2/20 1/20
~0.1088 5.2990
~0.0628 4.7355 3.0320
~0.0544 4.4975 2.7484 1.9132

~0.0314 4.2993 2.4456 1.5070 1.1016
~0.0272 4.2333 2.3526 1.3828 0.9499 0.7901

TABLE 5 Data for an advection—diffusion equation with source term on an
oscillating ellipsoid in three dimensions described in SecBén

e[L?, Hl(s, h)/1072
h\e 2/10 V2/10 1/10 V2/20 1/20
~0.1088 5.0222
~0.0628 3.4891 3.4363
~0.0544 2.6220 2.5583 2.5417
~0.0314 1.8222 1.7362 1.7187 1.7103
~0.0272 1.4208 1.3021 1.2768 1.2695 1.2632

4. Phase field surfaces

610 sjeulnolpiojxo-eulewl//:dny woly papeojumoq

In this section we describe how the proposed method may be applied to diffuse interfaces arising from &
computation of phase field equations. Typically, in applications the evolution of the surface will be 3
linked to the solution of the equation on the surface and possibly also to equations holding in a bulk §

un

domain (Eilks & Elliott,2008;Lai et al.,2008). The purpose of the numerical examples in this section g
is to indicate how our approach may be used in the context of the surface being computed by a phases
field method. s
Q
=
4.1 Diffusion on a geometrically evolving interface <
o
In these examples the evolution of the surface does not depend on the solution of the surface equation;
2
4.1.1 Allen—Cahn variational inequality We consider the diffusion of a scalar function a surface I\
I (t) that is evolving with a velocity = Vv given by the curvature-dependent flows N
(=Y
o

V=-H+p, 4.1)

1
V=-H+— [ H, (4.2)
I\l Jr

where H denotesthe mean curvature of the surfa¢gt). Equation 4.1) is forced mean curvature
flow with a prescribed forcingy, whereas 4.2) is volume-conserving mean curvature flow in which
the volume bounded by'(t) is constant. We set the velocibg = Vvsin (1.1) and do not consider
advection on the surface.
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Theevolving surface is approximated by an evolving diffuse interfBag) given by the zero level
set of a phase field variabg-, t). Following Blowey and Elliott, we employ a double-well potential of
double obstacle type

@—r?) ifry <,

(4.3)
) else

W(r) =[

(Blowey & Elliott, 1991,1993;Chen & Elliott, 1994).
The appropriate space foris

o) e K:={ne HYQ): |5l <1a.eQ).

This yields the following Allen—Cahn variational inequality:
(P)Findg e K such that

/Q(5¢t(ﬂ_¢)+gv¢‘(vﬂ—v¢)_%(W‘?’)_pr(ﬂ_(ﬂ))dx20 Vnek, (4.4)

9(-,0) = po(). (4.5)
Combining (P) with the volume constrain]%| fg ¢ = M for a givenM e (—1,1) we obtain the
volume-conserving Allen—Cahn type problem:
(Pam) Findg € Kaq = {n € K| 7 [ 7 = M} andLagrange multiplier. () such that
| (o=0+ev0-@n=o - Lu—p) x> [ sn—pix vnex,  @s)
9(-,0) = po(). (4.7)

We consider the situation wheré(t) evolves smoothly with no change in topology andagft)
to be the signed distance function&t). The initial condition is taken to be

d(,0
vty =u (F22). @9)

An asymptotic analysis (cBlowey & Elliott, 1993) withCw = 7 yieldsthat the transition profile of
the phase variable is given by

-1 ifr <=5,
w(r)=qsint) iffr] <5, (4.9)
1 ifr>73,

andfor smalle, solutions to(P) and(P ) areof the form
p(X, 1) = w(d(x,t)/e) + Oe), X e {lp(, )] <1}, (4.10)

whered(x, t) is the signed distance function to an evolving hypersurfaceRkmeey & Elliott, 1993).
The zero level set af is an approximation to this hypersurface with an e®e?) in the Hausdorff
distance (Chen & Elliott1994;Nochettoet al.,1994;Deckelnicket al.,2005).
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The phase field equations are discretized using the finite-element method described earlier. In par-

ticular, we employed the time discrete approximations
1
/Q (sétwﬂ(n —on D+ eVoRt (Vi = Vot — Zopton - ¢>R+l)) dx

> / p"(n — o ™dx  Vy e KN, (4.11)
Q
on(-, 0) = pno(). (4.12)
Here p” = Cwg(,, t""1) andp)™ e K" to define(P") or p" = A"*! e R (which needs to be
computed in order to impose the mean value constraigf{di) andg ™ e K%, to define(P, ) with

1
Kh = S <1, kKh, = /ch:—/ - )
neSn <1, Ky [ne 21 /" M

4.1.2 Couplingto the diffuse surface equationThe phase field models provide the data for the sur-
face to be used inl(2) in the following way. In the continuous problem the diffuse interfacial layer is
defined bylp| < 1 and we set

pi=1—¢? (4.13)

anddefine a diffuse interface velocity field by

0=y (4.14)
Vol
wherev = % is the normal to the level sets of
In (2.17) we then use the solution of the double obstacle problem by setting

pMi=1- (o))
andreplacel/7"(»™) by a computed discrete diffuse interface velocity given by

n._ 5”0{11 n n._ V(”Q
Oh = fymVhe YhiT gonr
| €0h| | (”hl

Note that on an element in the computational interfagewill not be identically 1 or-1 and|Vg{|
doesnot vanish.

4.1.3 Narrow-band implementation. The interfacial region has a thickness that is proportional to
and so in order to resolve this interfacial layer it is necessary to choase . However, the solution of a
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discrete double obstacle phase field problem is only required in a narrow band consisting of the elements

in which |¢ﬂ_1| < 1 and neighbouring elements. This can be taken advantage of in several ways (for

details, se®eckelnicket al.,2005;Elliott & Styles,2003). In particular, away from the interfacial layer
of elements in the bulk domain the mesh dizean be chosen larger since the solution is known there.

A guard layer of elements is maintained around the interfacial region. The mesh is dynamically locally

refined and coarsened in order to maintain the Narrow band assurgptidiseeElliott & Styles, 2003;
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Barrettetal., 2004). Thissharp diffuse interface front-tracking approaahtomatically yields the sets
B} and I} to be used for solving the surface PDE.

The discrete variational inequalitig®") and (P')\A) were solved using the semismooth Newton
algorithms presented Blanket al. (2009). Alternative methods are projected successive over relaxation
or the direct multi-grid approact@faser & Kornhuber2009).

4.1.4 Computations

ExamPLE 4.1. Convergence study. In this test example we consider the expanding circular interface
problem defined in Sectio®2. In particular, we sgb = 5+ ﬁ in (4.4) and took? = [—1.1,1.1]%,

At = h?, L = 200andN¢ 4t = 0.05. The errorse[L>°, L?] ande[L2, H1] are shown in Table§—10
where we see, as in Secti8r2, that the errog[L>°, L2] converges quadratically and the erepic 2, H1]
converges linearly for resolved computations.

ExAMPLE 4.2. Forced mean curvature flow in three dimensions. This is an example of diffusion on
an expanding sphere evolving by forced mean curvature flow. IndRige consider the domai® =
[—1,1]° c R® andsets = %. In the initial thin diffuse interface we set

U(X, 0) = 1 + 20x1X2X3.

TABLE 6 Errors for simulations without streamline diffusion term g 0
in (2.15)) for the expanding circular interface described in Exantple

. h T I (LTS B (S, R (ENGE)
102 101 101 10-2
x/6  ~5288.10°% 45102 09706 09506  1.9614
7/9  ~3525.100% 10368 0.6490  0.6428  0.8925
n/12  ~2644.10°3 09848 04883 04855 05241
7/18 ~1763.10% 03366 03287  0.3250  0.4337

TABLE 7 Datafor the expanding circular interface described in Exanvple

e[L>®, L?](e, h)/1072

h\e /6 /9 /12 r/18
~5288.1073 4.5102

~3525.-1073 4.5896 1.9368

~2.644.-10°3 4.6192 1.9995 0.9848

~1.763- 1073 4.6472 2.0642 1.0978 0.3366

TAaBLE 8 Datafor the expanding circular interface described in Examgple

e[L2, HY](e, hy/1071

h\e /6 /9 /12 /18
~5.288-1073 0.9706

~3525.10°3 0.9848 0.6490

~2.644.103 0.9888 0.6547 0.4883

~1.763-1073 0.9918 0.6598 0.4929 0.3287
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TABLE 9 Data for the expanding circular interface described in Exambple

e[L?, H7](s, h)/10°2

h\e /6 /9 /12 /18
~5.288.-1073 1.9614

~3525.10°3 1.9394 0.8925

~2.644.10°3 1.9359 0.8682 0.5241

~1.763- 103 1.9335 0.8614 0.4840 0.4337

TaBLE 10 Data for the expanding circular interface described in Example

e[L? Hl](, hy/1071

h\e /6 /9 /12 /18
~5.288.1073 0.9506

~3525.-10°3 0.9655 0.6428

~2.644.10°3 0.9697 0.6489 0.4855

~1.763- 103 0.9728 0.6542 0.4905 0.3259

0586 0679 0772 0865 0958 0.296 0.307 0.318 0329 0339 0.229 0.233  0.237 0.241 0.245

0.174  0.176 0.177 0.179  0.181 0.132 0.133 0134 0135 0.13% 0.102 0.102 0.103 0.103 0.104

FIG. 4. Diffusion on a surface evolving with forced mean curvature flow.

Furthermore, we set the diffusion coefficient to Bg = 1 and the forcing function in4(4) to be
p=6.

We had a minimal edge length bfnin = 27 ~ 0.00781 in the narrow bandsy, while hypax =
2725~ 0.177 in the bulk. The time stegt = 5- 10~°. The six subplots in Fig4 display the scalar
functionU"™ on the zero isosurfaces gz)f: at timest = 0,0.02,0.04,0.06,0.08 and 01.
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=0 G @b

00897 0581 1.07 156 2.06 0533 07 1.20 1.33 145 0878 119 1.49
.34 b4 9. 2 22 Al 4 152

FiG. 5. Diffusion on a surface evolving with conserved mean curvature flow.

ExampLE 4.3. Volume conserved mean curvature flow in three dimensions. This is an example of
diffusion on a surface evolving by mean curvature flow forced so that the volume inside the surface
is conserved, which in the long term leads to a stationary sphere. IrbRig. consider the domain

Q =[-12,12] x [-1,-1] x [-1,1] c R3, the diffusion coefficient i, = 0.1, ¢ = % and

U(X, 0) =1+ 20x1X2X3.

We again had a minimal edge lengthlofin = 2=/ ~ 0.00781 in the narrow bandsy, while
hmax = 272° & 0.177 in the bulk. The time stegt = 5- 10~°. The six subplots in Fig5 display the
scalar functiord " on the zero isosurfaces ¢ﬂ attimest = 0,0.05,0.1,0.2,0.35 and 05.

4.2 Diffusion on an interface in two-phase flow

In this second application example our aim is to compute the advection and diffusion of an insoluble
surfactant on the interface between two immiscible fluids. The model for the two-phase flow consists
of an incompressible Navier—Stokes system coupled to an advective Cahn—Hilliard equation derived in
Boyer(2002) but we consider a double-well potential of obstacle typd.&3 (Blowey & Elliott, 1993)

and assume equal mass densities and viscosities in both fluid phases. In dimensionless and weak form,
the Navier—Stokes system consisting of mass and momentum balance reads as
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whered is the dimension and the unknown fields are the velaciyd the pressurp. The force arising

from the interfacial tension is encoded in the last term of the momentum equation. It is given in terms of
an order parameter and a corresponding chemical potengiathat are subject to the following weak
advected Blowey—Elliott Cahn—Hilliard variational inequality:

_ M(p) ) 1
0—/{2((8t(/)+0-Vq))l,u+—Pep Vu Vz//)dx Vy e H(Q), (4.17)

0< /Q (—u(é‘ —¢)tey(WVe - (VS = Vo) + @W/(Cﬂ)(f - (0)) dx V¢eK. (4.18)

The constants appearing in the above systems are the Reynolds number Re, the capillary number C
the Peclet number Reof the order parameter and a numerical conskant 0 of order 1 required for
calibration reasons and depending only on the choice of the double-well potential (for our e¢h8jce (

we have thatk = 2/x). The mobility M (p) vanishes in the pure fluids in order to avoid diffusion
from small fluid blobs to larger ones, i.eM(4+1) = 0. The surface tensiop(u) depends on the
concentratioru of the surfactant which is the essential difference to the governing equati®oyer
(2002).

In addition to the above systems the surfactant concentratisnsubject to an equation of the
form (2.1) where the velocity field emerging from the Navier—Stokes system enters and where we set
p = W(p). We remark that, in contrast to the previous application, in general, there will be advection
of the surface quantity along the interface, namely, the velocity fiefyolves tangential components.

Using formal methods (cElliott et al., 2009) the limiting system obtained as\ 0 can be derived.

It is characterized by two fluid phasgs™ and 2~ onwhich the Navier—Stokes system

V.o=0,

1
v+ (- -V)o=-Vp+ R—eAv

holds. The phases are separated by a moving hypersuifatransported with the flow such that the
conditions

] =0, v-vs=v0r,

2 + 1
[—pl +R—eD(o)}_vS:—@a(y (UWHvs+ Vry(u) (4.19)

are satisfied wheres is the unit normal pointing inta2*, H is the mean curvature aof, v is the
normal velocity of/" in this direction and (v) = %(Vv + (Vo)T). We remark that for obtaining}(19)
the correct choice oK is necessary, and it is essential that the mobility funcfidity) is degenerate
(cf. Abels & Roger,2008;Elliott et al.,2009). Finally, the limiting equation for the surfactant indeed is
(1.12).

To numerically approximate and solv& 1{5)—(4.18) we applied the methods describeBlowey &
Elliott (1992),Barrettet al. (1999) andKay et al. (2008). In particular, the saddle point problem arising
from the Navier—Stokes system has been solved with a preconditioned general minimal residual method.
The discrete Blowey—Elliott Cahn—Hilliard variational inequaliyl8) was solved with a Gauss—Seidel
type iteration in which the phase field variable and chemical potential at a grid point are solved for si-
multaneously (Elliott & Gardiner]994;Barrettet al.,1999,2004). Because of the degenerate mobility
the solution is restricted to a narrow band outside of which the phase field variable is
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On the domain? = [-5,5] x [—2,2] c R? the velocity was initialized at = 0 with the shear
flow o(x1, X2) = (X2/2,0) that are also the boundary values at later time$ @n We further defined
9(X,0) = w(|Ix|l2/¢) with w as in @.9) ande =~ 2+/2/100 which yields a circular diffuse interface of
radius 1 and centrm = (0, 0). On the thin layer we initialized homogeneously with one. The other
parameter values were Pe= 1, Re= 10, Ca= 0.7 andD. = 10. We will report on two simulations
differing in the choice of . In one simulation it is constant and set to one so that the surface quantity
does not influence the two-phase flow. In another simulation we@gt= 1 — u/4.

Starting from a uniform triangulation the grid was adaptively refined to ensure at least eight nodes
across the diffuse interface but keeping it quite coarse in the pure phases. We had a minimal edge length
of hmin = 278% ~ 0.01105 in the narrow band, whilenax = 273 = 0.125 in the bulk. The time
step for the phase field and surface quantity wass = hmin/(25|v|lmax) =~ 0.000441, while the
Navier—Stokes system was solved with time step = hmax/(125]jv ||max) = 0.01.

Figure6 displays the diffuse interface in terms of the surfactaintthe range 0 (white) to 3 (black).

For constany = 1 (first line) we observe a behaviour adiai et al. (2008, Section 4.2, Fig. 1). In the

casey (u) = 1 — u/4 (second line in Fig6) the elongation of the droplet is enhanced as expected. The
surfactant reveals an aggregation phenomenon at the tips of the droplet as can be seen Bilkig.

the surfactant lowers the surface tension the high curvature in the tips is less able to prevent the droplet
from further extending by following the flow.

The dependence of the droplet shape on the thickness paranasigthe choice of (u) will be the
subject of future studieg(liott et al.,2009).

) ) )

\ ( (
FiG. 6. Diffuse interface with surfactant in two-phase flow at tinhes 0, 2,6, 14. In the upper line the (dimensionless) sur-

face tension iy = 1, in the lower line we have (u) = 1 — u/4. The grey scales linearly with the density ranging from
0.0to 30.

FiG. 7. Diffuse interface with surfactant in two-phase flow at time 14, simulation fory (u) = 1 — u/4. The height and the
grey scales linearly with the density ranging frord @ 30.
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Additional note

In revision we learnt of the pap@eigenet al. (2009) which considers a similar approach to that of this
paper using a phase field function which does not have compact support.
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