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We propose a numerical method for computing transport and diffusion on a moving surface. The approach
is based on a diffuse interface model in which a bulk diffusion–advection equation is solved on a layer
of thicknessε containing the surface. The conserved quantity in the bulk domain is the concentration
weighted by a density which vanishes on the boundary of the thin domain. Such a density arises naturally
in double obstacle phase field models. The discrete equations are then formulated on a moving narrow
band consisting of grid points on a fixed mesh. We show that the discrete equations are solvable subject
to a natural constraint on the evolution of the discrete narrow band. Mass is conserved and the discrete
solution satisfies stability bounds. Numerical experiments indicate that the method is second-order accu-
rate in space.

Keywords: advection diffusion equation; surface partial differential equation; phase field; diffuse
interfaces; finite element; double obstacle; surfactant; mean curvature.

1. Introduction

Increasingly in applications, models feature partial differential equations (PDEs) on surfaces. In par-
ticular, conserved surface quantities subject to advection–diffusion equations on moving hypersur-
faces may arise in areas ranging from fluid dynamics (surfactants on fluid–fluid interfaces;Adalsteins-
son & Sethian, 2003;James & Lowengrub,2004) over biological systems (lipids on biomembranes;
Lowengrubet al., 2007;Elliott & Stinner, 2009b) to materials science (species diffusion along grain
boundaries;Mayer & Simonett, 1999;Deckelnicket al., 2001;Fife et al., 2001). Thus, developing nu-
merical methods for surface PDEs is an important topic in computational mathematics. In this article we
present a computational approach for an advection–diffusion equation on a given moving hypersurface
that is based on a diffuse interface representation of the surface.

Denoting by{Γ (t)}t anevolving hypersurface the PDE

∂t us + vvvs ∙ ∇us + us∇Γ ∙ vvvs −DcΔΓ us = fs onΓ (1.1)
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modelsadvection and diffusion of a surface conserved quantityus (seeDziuk & Elliott, 2010). The
given vector fieldvvvs is the velocity that splits in the formvvvs = Vsνννs + vvvs,τττ into a normal partVsνννs
describingthe geometric motion ofΓ and a tangential partvvvs,τττ associatedwith the transport of material
along the surface. The operator∇Γ is the surface gradient, andΔΓ = ∇Γ ∙ ∇Γ is the Laplace Beltrami
operator. The functionfs on the right-hand side is a source term andDc > 0 is a constant diffusivity
parameter.

The approach presented in this paper is based on representing the moving hypersurface in the form
of an evolving thin interfacial layer{Γε(t)}t involving a small parameterε related to its thickness. For
this purpose we consider a family of non-negative differentiable functionsρ(ε, ∙) that, when scaled with
1
ε , approximate the delta distribution of the moving surface asε → 0. The evolving diffuse interface
Γε(t) is then defined to be the spatial support of theρ(ε, ∙). Our goal is now to solve the parabolic
equation for a bulk quantityu

∂t (ρu)+ ∇ ∙ (ρuvvv)− ∇ ∙ (Dcρ∇u) = ρ f onΓε, (1.2)

which involves degenerating coefficients sinceρ vanishes on∂Γε. The conserved bulk quantityρu is
transported with an appropriate extensionvvv of the velocity fieldvvvs, and also the source termfs is ex-
tended to a suitable functionf away from the moving surfaceΓ . As analysed inElliott & Stinner
(2009a) for curves and sketched for hypersurfaces in higher dimension, equation (1.2) indeed approxi-
mates the surface equation (1.1) asε → 0.

The diffuse interface approach is motivated by both modelling and numerics. We have in mind the
following two situations:

(a) In many applications the evolving surface is unknown. The phase field methodology is a powerful
tool to model free boundary problems. In this approach the surface is a thin diffuse interfacial
layer of widthO(ε) across which a phase field variableϕ has a steep transition from the bulk
values≈ ±1 on either side of the interface (e.g., seeCaginalp,1989;Blowey & Elliott, 1993).
Diffuse interface approximations with compact support naturally occur when the diffuse interface
motion is given by the double obstacle phase field model (Blowey & Elliott, 1991,1993) for
which the bulk values ofϕ are identically±1. This leads to a sharp diffuse interface front-
tracking method (Elliott & Styles, 2003;Deckelnicket al.,2005). In this context it is natural to
formulate a diffuse interface equation of the form (1.2) with

ρ := σ(ϕ), whereσ(r ) = 1 − r 2. (1.3)

Definingρ in terms of this phase field variable in our approach enables the solution of equations
on the surface in such a model. We remark that a degenerate equation of the form (1.2) appeared
in a phase field model of diffusion-induced grain boundary motion (Deckelnicket al.,2001;Fife
et al.,2001).

(b) On the other hand, the use of diffuse interfaces without compact support for the numerical so-
lution of PDEs on stationary surfaces was proposed byRätz & Voigt (2006). InSchwartzet al.
(2005) a narrow-band approximation analogous to our method but only for stationary interfaces
is proposed, based on choosingρ to be the characteristic function ofΓε. In this context we sup-
pose that each surfaceΓ (t) is known as the zero level set of some given functiond(xxx, t) (which
may be the signed distance function) and we choose to take

ρ(ε, xxx, t) := σ(d(xxx, t)/ε) (1.4)

in (1.2), whereσ(r ) > 0 if |r | < αw andσ(r ) = 0 if |r | > αw with a constantαw > 0.
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Let us briefly discuss other methods to solve surface PDEs:

• One may use finite elements on triangulated hypersurfaces as proposed and analysed for the Laplace–
Beltrami equation byDziuk (1988). This surface finite-element method is a powerful approach that
has been extended to parabolic equations on stationary surfaces, including nonlinear and higher-
order equations, inDziuk & Elliott (2007b). In order to treat diffusion and transport on moving
surfaces,Dziuk & Elliott (2007a) proposed the evolving surface finite-element method. The basis
for this was the use of a transport equation which in the variational setting avoided the calculation
of surface quantities such as the normal, mean curvature and normal velocity. The method simply
requires the velocity of the vertices of the triangulation. An application to a complex physical model
may be found inEilks & Elliott (2008). In contrast, the bulk equation (1.2) may be solved on a
bulk mesh, independent ofΓ (t), where it is sufficient to perform calculations belonging to the thin
interfacial layer.

• Another approach involving bulk equations is to solve the surface PDE on all level sets of a
prescribed function. This is inherently an Eulerian method and yields degenerate equations (for sta-
tionary surfaces, seeBertalḿıo et al.,2001;Greer,2006;Greeret al.,2006;Dziuk & Elliott , 2008).
Eulerian approaches to transport and diffusion on evolving surfaces were given inAdalsteinsson &
Sethian(2003) andXu & Zhao (2003) where level set approximations to surface quantities were
required. On the other hand, an elegant formulation avoiding the need to do this was provided in
Dziuk & Elliott (2010) using an implicit surface version of the transport equation. This is a partic-
ularly appealing approach when the surface is computed using a level set method (Sethian,1999;
Osher & Fedkiw, 2003). In which case it is natural to exploit the implicit formulation and use a
bulk triangulation rather than generating a surface triangulation approximating the interface from
the level set function. In the stationary case the calculations in this approach can be restricted to a
narrow band around the zero level set defining the interface. For surface elliptic equationsDeckelnick
et al.(2010) gave a discretization error analysis for a narrow-band level set method using the unfitted
finite-element method (Barrett & Elliott, 1984,1988), yielding anO(h) error in theH1(Γ )-norm.
Computations for physical models using this approach may be found inStöcker & Voigt (2008a,b).

• An interesting development of the implicit surface approach is to solve the equation on the zero level
set of a discrete level set function on a bulk mesh which is independent of the surface (Olshanskii
et al.,2009;Olshanskii & Reusken,2010).

• The closest point method (Macdonald & Ruuth,2008,2009;Ruuth & Merriman,2008) is based
on consideringu(aaa(xxx)), whereaaa(xxx) ∈ Γ is the point closest toxxx and which is unique forxxx in
a sufficiently small neighbourhoodU of the surfaceΓ . The surface PDE is then embedded and
discretized inU usingu(aaa(xxx)). Implementation requires the knowledge or calculation of the closest
point aaa(xxx). In the cited references this approach has been used to solve a wide variety of equations
on stationary surfaces.

Our approach is to approximate weak solutions to (1.2) using linear finite elements in space and a
backward Euler scheme for the discretization in time. The given functionsρ andvvv are projected to the
finite-element space for this purpose, and the mass matrix is lumped. We observe the following about
our scheme:

1. The solvability of the discrete linear system of equations is not straightforward because of the
degeneracy of the coefficients. The idea is to restrict the set of equations to the vertices that lie
in or are connected to the diffuse interfacial layer. On the vertices at the boundary of the diffuse
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interface the weight functionρ still vanishes so that there is no contribution to theρ weighted
mass matrix. However, thanks to the positivity ofDc thereis a contribution to the stiffness matrix
which allows the computation ofu in such boundary vertices.

2. It turns out that the degeneracy ofρ on the boundary ofΓε, together with a restriction on the time
step for the solvability, keeps the mass on the surface during the evolution, ensuring that the total
mass is preserved.

3. We computationally investigate the convergence behaviour for a prescribed moving surface in the
situation (a) as specified above. For a fixedε, the numerical tests indicate a quadratic convergence
in L2 and L∞ anda linear convergence inH1 asthe grid parameterh tends to zero, which is
what one would expect when using linear finite elements. Of further interest is the convergence
behaviour inε. When keeping the ratioε/h fixed we observed quadratic convergence inL2 and
L∞ andlinear convergence inH1 asε → 0.Our convergence results for stationary surfaces with
respect toε andh agree with the results inSchwartzet al. (2005) in spite of the differentρ.

The structure of the article is as follows. In Section2 we introduce the numerical scheme. In Section
3 we present numerical results for situation (b). Finally, in Section4 we present some simulation results
in situation (a) for applications where the movement of the interface is not given but subject to equations
of phase field type. For the numerical simulations the finite-element toolbox ALBERTA (Schmidt &
Siebert,2005) has been used.

2. Finite-element approximation

2.1 Weak formulation

Let I := [0, t f ) with t f > 0 be a time interval and letΩ ⊂ Rd, whered = 2,3, denote an appro-
priate domain into which the evolving closed hypersurfaceΓ (t) is embedded at all times. The function
ρ: (0, ε0) × ΩI → R (whereΩI := Ω × I ) is such that its supportΓε(t) containsΓ andconverges
to Γ asε → 0 with respect to the Hausdorff distance. We assume thatρ is continuously differentiable
with respect to time and space so that, in particular,ρ(ε, xxx, t) → 0 and∇ρ(ε, xxx, t) → 0 as(xxx, t)
approaches the boundary ofΓε(t). Initial values for (1.1), denoted byu0

s, are extended constantly in the
normal direction away fromΓ to obtain initial valuesu0 for (1.2) onΓε(0) (we assume here thatε0 is
smallenough to ensure that this extension is well defined). OnΩ\Γε(0)wesetu0 = 0.

DEFINITION 2.1. (Weak solution) For a givenε ∈ (0, ε0), a functionu:Ω×[0, t f ) → Rwith u(xxx, t) =
0 if xxx 6∈ Γε(t) is a weak solution to (1.2) if it fulfils

∫

Ω
(∂t (ρu)χ − ρu vvv ∙ ∇χ +Dcρ∇u ∙ ∇χ)dx =

∫

Ω
ρ f χ dx a.e.t ∈ I (2.1)

for all test functionsχ :Ω → R and ifu(∙, 0)= u0(∙) onΩ.

2.2 Discrete set-up

Let Δt :=
t f
N f

for an integerN f ∈ N be a time step and definetn := nΔt , wheren = 0, . . . ,N f .
Functionevaluations or approximations of functions at timetn will be denoted with an upper indexn.
The discrete time derivative is defined by

δt f n :=
f n+1 − f n

Δt
.
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Let Th be a triangulation of the domainΩ ⊂ Rd, whered = 2,3, consisting of simplices with
maximal diameterh := maxe∈Th diam(e). Let N be the number andN be the set of vertex indices. The
vertex coordinates are denoted by{aaa1, . . . , aaaN}. For an indexi ∈ N let ωi denotethe neighbouring
vertices connected to vertexi via an edge and letTi := {e ∈ Th | aaai ∈ e} bethe set of elements that have
i as a vertex. Furthermore, letNe := { j ∈ N | aaa j ∈ e} bethe set of vertices belonging to an element
e ∈ Th.

DEFINITION 2.2. The ‘discrete interface’ at timetn is defined by

Γ n
h := {e ∈ Th|Ne ⊂ N n

h },

where

N n
h := {i ∈ N | there is j ∈ ωi suchthatρn(aaa j ) > 0}.

We also split the index set as follows:

N n
h = N n

I ,h ∪N n
B,h, N n

I ,h := {i ∈ N n
h |ρn(aaai ) > 0}, N n

B,h := {i ∈ N n
h |ρn(aaai ) = 0}.

ASSUMPTION 2.3. (Discrete interface assumption)
It holds for alln = 0, . . . ,N f − 1 that if an indexi ∈ N n

h doesnot belong toN n+1
h thenρn(aaai ) = 0

(i.e., i ∈ N n
B,h).

This assumption implies that the discrete narrow bandΓ n
h never loses a whole element of the fixed

mesh in a single time step. To guarantee the above restriction one may apply an adaptive time-stepping
strategy or apply a condition of the formΔt 6 Ch/(‖vvv‖∞,ΩI ).

Thediscrete finite-element space is defined by

Sh := {vh ∈ C0(Ω̄)|vh is a linear polynomial on eache ∈ Th}.

Theinterpolation operatorΠh: C(Ω̄) → Sh is defined by

Πh(η) :=
N∑

i =1

η(aaai )χi .

By χ1, . . . , χN we denote the standard basis functions ofSh, i.e.,χi ∈ C0(Ω̄) andχi |e ∈ P1(e) for all
e ∈ Th satisfyingχi (aaa j ) = δi j for all i, j = 1, . . . ,N.

2.3 Numerical scheme

In order to formulate an implicit scheme for (2.1) we introduce the following forms for functionsξ, η ∈
Sh:

M(ξ, η)nh :=
∫

Ω
Πh(ρnξη)dx, (2.2)

A(ξ, η)nh :=
∫

Ω
Πh(ρnξ)Πh(vvvn) ∙ ∇η dx, (2.3)

D(ξ, η)nh :=
∫

Ω
DcΠ

h(ρn)∇ξ ∙ ∇η dx, (2.4)
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F(η)nh :=
∫

Ω
Πh(ρn f nη)dx. (2.5)

We denote byUn theapproximation tou(∙, tn) andimpose the discrete initial condition

U0(aaai ) :=






u0(aaai ), i ∈ N 0
h ,

0, otherwise.
(2.6)

DEFINITION 2.4. (Scheme I) For eachn = 0, . . . ,N f − 1 we seek a functionUn+1 ∈ Sh suchthat
Un+1(aaai ) = 0 if i 6∈ N n+1

h andsatisfying

δtM(Un, η)nh −A(Un+1, η)n+1
h +D(Un+1, η)n+1

h = Fn+1
h (η) ∀ η ∈ Sh. (2.7)

PROPOSITION2.5. The valuesUn+1(aaai ) for i ∈ N n+1
h aredetermined from

1

Δt

(∫

Ω
{Πh(ρn+1Un+1χ j )−Πh(ρnUnχ j )}dx

)
−
∫

Ω
Πh(ρn+1Un+1)Πh(vvvn+1) ∙ ∇χ j dx

+
∫

Ω
DcΠ

h(ρn+1)∇Un+1 ∙ ∇χ j dx =
∫

Ω
Πh(ρn+1 f n+1χ j )dx for all j ∈ N n+1

h , (2.8)

while

Un+1(aaak) = 0, k /∈ N n+1
h .

Proof. Equation (2.7) is equivalent to (2.8) for all j ∈ N . First observe that ifj /∈ N n+1
h thenby

definition ρn+1 vanishes on the support ofχ j . Similarly if j /∈ N n
h thenρn vanishes on the support

of χ j . It remains to considerj ∈ N n
h \ N n+1

h . By the ‘discrete interface assumption’ it follows that
Πh(ρnUnχ j ) = 0. This proves (2.8). By definition we impose thatUn+1 vanishes on vertices lying
outsideN n+1

h . �

2.4 Uniquesolvability I

In order to show that the above system (2.8) indeed is solvable we will need the following estimate.

LEMMA 2.6. Forn = 1, . . . ,N f , δ > 0 andξ, η ∈ Sh wehave that

|A(ξ, η)nh| 6 δD(η, η)nh +
‖vvvn‖2

∞,Ω

4δDc
M(ξ, ξ)nh. (2.9)

Proof. We infer the desired estimate from

|A(ξ, η)nh| =

∣
∣
∣
∣

∫

Ω
Πh(ρnξ)Πh(vvvn) ∙ ∇η dx

∣
∣
∣
∣

6
∫

Ω
‖vvvn‖∞,Ω

∣
∣
∣
∣
∣

N∑

i =1

ρn
i ξiχi

∣
∣
∣
∣
∣
|∇η|dx 6

N∑

i =1

∫

Ω
(ρn

i χi )
1/2|∇η|‖vvvn‖∞,Ω(ρ

n
i χi )

1/2|ξi |dx
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6
N∑

i =1

∫

Ω

(

Dcδρ
n
i χi |∇η|

2 +
‖vvvn‖2

∞,Ω

4δDc
ρn

i χi ξ
2
i

)

dx = δD(η, η)nh +
‖vvvn‖2

∞,Ω

4δDc
M(ξ, ξ)nh,

wherewe used the abbreviationρn
i = ρ(aaai , tn). �

PROPOSITION2.7. (Unique solvability) IfΔt < 4Dc/‖vvv‖2
∞,ΩI

thenScheme I with the initial data (2.6)
has a unique solution.

Proof. Given a functionUn ∈ Sh suchthatUn(aaak) = 0 if k 6∈ N n
h we have to show that the scheme

yields a unique functionUn+1 ∈ Sh with Un+1(aaai ) = 0 if i 6∈ N n+1
h andsatisfying (2.7).

TakingWn+1 to be the difference of two possible solutions, it is sufficient to show thatWn+1 = 0
is the only solution of

M(Wn+1, η)n+1
h −ΔtA(Wn+1, η)n+1

h +ΔtD(Wn+1, η)n+1
h = 0 ∀ η ∈ Sh.

Takingη = Wn+1 andusing (2.9) give
(

1 −Δt
‖vvvn+1‖2

∞,Ω

4δDc

)

M(Wn+1,Wn+1)n+1
h + (1 − δ)D(Wn+1,Wn+1)n+1

h 6 0,

whichupon takingδ arbitrarily close to 1 yields forΔt < 4Dc/‖vvvn+1‖2
∞,Ω ,

M(Wn+1,Wn+1)n+1
h = 0, (2.10)

D(Wn+1,Wn+1)n+1
h = 0. (2.11)

It follows from (2.10) thatWn+1(aaai ) = 0 for all i ∈ N n+1
I ,h . By (2.11) we have that∇Wn+1 = 0 in

every elemente ∈ Γ n+1
h , whence we also conclude thatWn+1(aaai ) = 0 for i ∈ N n+1

B,h . �

Recall that ρn+1(aaai ) = 0 for i ∈ N n+1
B,h so that we cannot conclude directly from (2.10) that

Wn+1 ≡ 0 in the above proof.

PROPOSITION2.8. (Mass conservation) Iff ≡ 0 then it holds that for eachn > 1

M(Un, 1)nh =M(U0, 1)0h.

Proof. Takingη =
∑

j χ j = 1 in (2.7) yields in view of (2.8)

0 =
∑

j ∈N n+1
h

∫

Ω
ρn+1(aaa j )U

n+1(aaa j )χ j dx −
∑

j ∈N n+1
h

∫

Ω
ρn(aaa j )U

n(aaa j )χ j dx. (2.12)

Thefirst term is
∫
Ω Π

h(ρn+1Un+1)dx = M(Un+1, 1)n+1
h . Concerning the second term, with the dis-

crete interface assumption (Assumption2.3) we have thatρn(aaa j ) = 0 if j ∈ N n+1
h \N n

h sothat we can
replace the index setN n+1

h in the sum byN n
h . Hence, it gives

∫
Ω Π

h(ρnUn)dx = M(Un, 1)nh from
whichwe infer the assertion. �

REMARK 2.9. The above proposition can be extended to nontrivial source termsf . Total mass conser-
vation is true foru subject to (1.1) provided that

∫
Γ0(t)

f (∙, t) = 0 at all timest ∈ I . In the discrete
setting this requirement onf naturally becomes

∑
i ∈N n

h
F(χi )

n
h = 0 for all n. We then see that (2.12)

still holds true and we can conclude as before.
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2.5 Edge smoothing

From the asymptotic analysis (Elliott & Stinner, 2009a, Theorem 3.1) we expect an almost constant
profile since a weightedL2-norm of the derivative in the normal direction scales withε. Formally,
equation (1.2) is closed with the boundary condition(ρuvvv − ρDc∇u) ∙ ννν = 0 on ∂Γε(t), whereννν is
the external unit normal. In the continuous setting this condition is trivial becauseρ vanishes on∂Γε(t).
However, in the discrete setting we are dealing with a nontrivial condition sinceρ is approximated there
on a finite-element grid.

This problem occurs already in the one-dimensional problem. Leti ∈ N n+1
B,h bea boundary vertex

such thati − 1 ∈ N n+1
I ,h . Inserting the basis functionχi associatedwith the vertexi into (2.8) yields the

equation forUn+1
i . Sinceρn+1

i = ρn+1
i +1 = 0 it reads

−
1

Δt

(∫

Ω
χi dx

)
ρn

i Un
i −

(∫

Ω
χi −1Π

h(vvvn+1)∂xχi dx

)
ρn+1

i −1 Un+1
i −1

+
(∫

Ω
Πh(ρn+1 dx)|∂xχi |

2 dx

)
Un+1

i +
(∫

Ω
Πh(ρn+1)∂xχi −1∂xχi dx

)
Un+1

i −1 = 0.

Denotingby e the common support ofχi andχi −1, let us write h
2 ṽvv

n+1
i −1,i :=

∫
eχi −1Π

h(vvvn+1) and

ρ̃n+1
i −1,i :=

∫
eΠ

h(ρn+1). We then obtain

−
h

Δt
ρn

i Un
i −

1

2
ṽvvn+1

i −1,i ρ
n+1
i −1 Un+1

i −1 + ρ̃n+1
i −1,i

Un+1
i − Un+1

i −1

h
= 0. (2.13)

Hence,in generalUn+1
i will be different fromUn+1

i −1 . In numerical simulations we observed peaks
associated with slopes enforced toU close to the boundary of the interfacial layer (cf. Fig.2).

In the case thatρ and∇ρ vanish on∂Γε(t) we may estimate the size of these peaks. We have that
ρ̃n+1

i −1,i = O(h2) andρn+1
i −1 = O(h2) ash → 0, and we even have thatρn

i = O(Δt2) asΔt → 0. As a
conclusion

|Un+1
i − Un+1

i −1 | = O(h) ash → 0, (2.14)

and in Fig.2 we see that the height of the peaks indeed is linear inh.
Nevertheless, in some complex applications where the surface quantity enters other equations, per-

haps in a phase field model for the surface evolution, one may desire profiles that are also flat at the
edges to avoid edge effects. To achieve this goal we propose to add a kind of streamline diffusion term
to Scheme I of the form

L(ξ, η)n+1
h :=

∫

Ω
gn+1

h (vvvn+1
ννν,h ∙ ∇ξ) (vvvn+1

ννν,h ∙ ∇η)dx (2.15)

for functionsξ, η ∈ Sh. A normal velocity fieldvvvννν(xxx, t) is obtained by projectingvvv(xxx, t) into a direction
ν̃νν(xxx, t), approximately normal to the boundary ofΓε(t). How this field ν̃νν is obtained depends on the
application. For example, if the signed distance function toΓ is known one may choosẽννν = ∇d. The
approximationvvvννν,h to vvvννν is constant on each elemente ∈ Th andcoincides one with the value ofvvvννν
in the barycentre ofe. The functiongh is constant on each element, too, and is of orderh. It serves to
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NUMERICAL COMPUTATION OF ADVECTION AND DIFFUSION ON EVOLVING DIFFUSE INTERFACES9 of 27

add a small diffusion close to the boundaries of the interfacial layer. The above edge smoothing term
furnishes an additional term of the form

g̃n+1
h |ṽvvn+1

ννν,i −1,i |
2Un+1

i − Un+1
i −1

h

in (2.13). The values̃ρn+1
i −1,i andρn+1

i −1 scalewith h2, and sincegh only scales withh this is a comparably
large contribution resulting in

|Un+1
i − Un+1

i −1 | = O(h2) ash → 0. (2.16)

In the numerical experiments this procedure effectively smoothed out the profiles ofU across the diffuse
interfacial layer (see Fig.2).

Clearly, also the surface equation may be advection dominated in the sense that the tangential portion
of the velocity is large compared with the (appropriately scaled) diffusivity. Streamline diffusion in the
tangential direction then may be used to stabilize the problem. But we leave this discussion for future
research and concentrate on diffusion-dominated problems in this paper.

DEFINITION 2.10. (Scheme II) For eachn = 0, . . . ,N f − 1 we seek a functionUn+1 ∈ Sh suchthat
Un+1(aaak) = 0 if k 6∈ N n+1

h andsatisfying

δtM(Un, η)nh −A(Un+1, η)n+1
h +D(Un+1, η)n+1

h + L(Un+1, η)n+1
h = 0 ∀ η ∈ Sh. (2.17)

2.6 Uniquesolvability II

Since (2.15) is a non-negative term whenξ = η the arguments used for proving Proposition2.7still can
be applied. And thanks to the fact that only the gradient ofη appears Proposition2.8 is also true so that
we may state the following theorem.

THEOREM2.11. If Δt < 4Dc/‖vvv‖2
∞,ΩI

thenScheme II with the initial data (2.6) has a unique solution.

Moreover, if f ≡ 0 then it holds thatM(Un, 1)nh =M(U0, 1)0h for all n ∈ {0, . . . ,N f }.

�

2.7 Discrete equations

Let kn bethe number of nodes inN n
h . We can decomposeUn as

Un =
∑

j ∈N n
h

un
jχ j =

∑

j ∈N n+1
h

ũn
jχ j +

∑

j ∈N n
h \N n+1

h

un
jχ j ,

wherewe note that

ũn
j := un

j for j ∈ N n+1
h ∩N n

h and ũn
j := 0 for j ∈ N n+1

h \N n
h .

Let us furthermore writeun := {un
j } j ∈N n+1

h
∈ Rkn andũn+1 := {ũn+1

j } j ∈N n+1
h

∈ Rkn+1.
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10of 27 C. M. ELLIOTT ET AL.

We now define the matricesMn+1, K n+1, Ln+1, M̃n ∈ Rkn+1×kn+1 with the entries

Mn+1
i, j :=M(χi , χ j )

n+1
h ,

K n+1
i, j := D(χi , χ j )

n+1
h −A(χi , χ j )

n+1
h ,

Ln+1
i, j := L(χi , χ j )

n+1
h ,

M̃n
i, j :=M(χi , χ j )

n
h,

wherethe indicesi, j belong to the setN n+1
h .

At each time stepn + 1 the solutionUn+1 is obtained by solving the system

(
1

Δt
Mn+1 + K n+1 + Ln+1

)
un+1 = 1

Δt M̃nũn (2.18)

of kn+1 linear equations that have a unique solution (Proposition2.7). These equations were solved
using a stabilized bi-conjugate gradient method. Becauseρ is zero at the boundary points ofN n+1

h this
systemhas some equations with small diagonal elements which leads to ill-conditioning. We remedy
this by preconditioning using the inverse diagonal of1

Δt Mn+1 + K n+1 + Ln+1.

2.8 Narrow-band implementation

The numerical solution from time stepn to time stepn + 1 involvesΓ n
h ⊂ Th andΓ n+1

h ⊂ Th. But
these discrete interfaces do not differ very much. In fact, a time step restriction of the formΔt 6
Ch/(‖vvv‖∞,ΩI ) ensuresnot only that the discrete interface assumption is fulfilled but also that these
sets differ at most by a single layer of elements. To take advantage of this in computations we define a
narrow band of elementsBn

h ⊂ Th suchthatΓ n
h ∪ Γ n+1

h ⊂ Bn
h. This subset of elements is used to step

from time leveln to time leveln+1. It does not necessarily change from time level to time level because
of the accuracy requirement to resolve the movement of the surface as well as the solution of the surface
equation. We take advantage of the fact that the other elements ofTh arenot required in the calculation
by dynamically adapting the triangulation. Each triangulation is a refinement of a coarse triangulation
T c

h . Our assumption is the following.

ASSUMPTION 2.12. Narrow-band assumption

• Each narrow bandBn
h canbe obtained as a local refinementT n

h of T c
h .

• Eachnarrow bandBn
h is a subset ofTh.

At each time step we work on a triangulationT n
h that is dynamically locally refined and coarsened

whenever the narrow band changes by the removal or addition of layers of elements. As an example we
show in Fig.1 two triangulations for the problem described in Subsection3.2 involving an expanding
circle.

LEMMA 2.13. If the narrow-band assumption2.12 is fulfilled then the valuesUn+1(aaai ), wherei ∈
N n+1

h , computed onT n
h arethe same as if they are computed onTh, wheren ∈ {0, . . . ,N f − 1}.
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NUMERICAL COMPUTATION OF ADVECTION AND DIFFUSION ON EVOLVING DIFFUSE INTERFACES11 of 27

FIG. 1. Triangulations at timest = 0.0 andt = 0.1 for the problem in Subsection3.2for the dataε = 0.1 andh = 2−4.5.

3. Numerical tests

In this section we describe experiments to test the accuracy of the numerical method for prescribed
stationary and evolving surfaces for which a distance function is known. We here have situation (b) (as
specified in Section1) in mind and prescribeρ by setting

σ(r ) := cos2(r ) if |r | < αw :=
π

2
(3.1)

in (1.4) and by choosing the distance function to definer . The diffuse interfacial layer at timet ∈ I then
is Γ (ε, t) = {xxx ∈ Ω | |d(xxx, t)| 6 αwε} and has a thickness ofπε.

Whenever edge smoothing is performed we use the function

g(xxx, t) :=






0 if
|d(xxx, t)|

ε
6
αw

2
or

|d(xxx, t)|

ε
> αw,

h
2

αw

(
|d(xxx, t)|

ε
−
αw

2

)
else

(3.2)

and obtaingh by evaluatingg in the barycentres of the elements. In the subsequent tests the diffusivity
along the surface was always set to one,Dc = 1.

3.1 Moving circle

We first present results on an example involving both advection along the surface and motion in the
normal direction by prescribingΓ to be the circle of radius one inR2 moving at a constant speed
vvvs = (2,0)T. Parameterizing the circle in the formγγγ (s, t) = mmm(t) + (cos(s), sin(s))T, wheremmm(t) =
(−0.5 + 2t, 0)T is its centre, the functionu0(γγγ (s, t), t) := e−4t cos(s) sin(s) is a solution to (1.1) with
initial datau0(γγγ (s, 0),0)= cos(s) sin(s).
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12of 27 C. M. ELLIOTT ET AL.

The distance function required forσ in (3.1), g or, respectively,gh in (3.2) and the streamline
diffusion term (2.15) isd(xxx, t) = ‖xxx − mmm(t)‖ − 1 and the (constant) velocity field was constantly
extended to the simulation boxΩ = [−2,2]2. The simulations were terminated att f = 0.1. For
the triangulationTh the domainΩ is split into four rectangular triangles((−2,−2), (2,−2), (0,0)),
((2,−2), (2,2), (0,0)), ((2,2), (−2,2), (0,0)) and ((−2,2), (−2,−2), (0,0)) that are subsequently
bisected until a desired maximal edge lengthh is achieved (for the refinement procedure, we refer to
Schmidt & Siebert,2005).

The simulation results presented below were obtained with the time stepΔt = h2/20.We observed
that the approximation error due to the discretiation in time is negligible compared to the spatial dis-
cretization error forΔt in this range.

To measure the error we computed the values

e[L∞, L2](ε, h) := max
n=1,...,N f

(
L−1∑

l=0

2π

L
|Un(xxxl )− u(xxxl , tn)|

2

)1/2

,

e[L2, H1](ε, h) :=




N f∑

n=1

Δt
L−1∑

l=0

2π

L

∣
∣∇Un(xxxl )− ∇Γ (tn)u(xxxl , tn)

∣
∣2





1/2

,

e
[
L2, H1

νννs

]
(ε, h) :=




N f∑

n=1

Δt
L−1∑

l=0

2π

L
|∇Un(xxxl ) ∙ νννs(xxxl , tn)|

2





1/2

,

e[L2, H1
τττ ](ε, h) :=




N f∑

n=1

Δt
L−1∑

l=0

2π

L

∣
∣∇Γ (tn)U

n(xxxl )− ∇Γ (tn)u(xxxl , tn)
∣
∣2





1/2

, (3.3)

wherexxxl := mmm(t) + (cos(sl ), sin(sl ))
T with sl = 2πl/L for someL ∈ N (in practice,L = 200 turned

out to be sufficient for that the error from the quadrature formula was negligible compared to the dis-
cretization errors). With respect to theH1-normwe distinguish normal and tangential portions because
we expect a different convergence behaviour. Clearly, the exact solution never involves a derivative in
the normal directionνννs sothate

[
L2, H1

νννs

]
measuresan error of the finite-element approximation only.

Table 1 displays errors and convergence orders for the simulations without the edge smoothing
term and forε fixed. The experimental orders of convergence are obtained from the formula eoc=
log |e(

√
2h)− e(h)|/|e(h)− e(h/

√
2)|/ log

√
2. We used this formula because the errors will not con-

verge to zero ash → 0 but to the error emerging from the approximation inε. We observe (at least)
quadratic convergence ofe[L∞, L2] ande

[
L2, H1

νννs

]
andlinear convergence ofe[L2, H1

τττ ] ash → 0.
Thate[L2, H1] also seems to converge much better than linear lies in the fact that the error is dominated
by its normal portion, but one will expect that for smallh the tangential portion dominates because of
its linear convergence.

Taking the streamline diffusion term into account by defininggh asin (3.2) has almost no impact on
the size of the errors indicating that the approximationU is only affected close to the boundary of the
interfacial layerΓ (ε) but not in its centre onΓ .

Keeping the ratioε/h or, equivalently, the number of grid pointsK across the interface fixed we
observe a surprisingly good convergence behaviour asε → 0, namely quadratic ofe[L∞, L2] and linear
of e[L2, H1

τττ ] (see Table2). The asymptotic analysis inElliott & Stinner (2009a) suggests quadratic
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NUMERICAL COMPUTATION OF ADVECTION AND DIFFUSION ON EVOLVING DIFFUSE INTERFACES13of 27

TABLE 1 Test problem on a moving circular interface described in Section3.1, simulations without
streamline diffusion term (gh ≡ 0 in (2.15)). For a fixed valueε ≈

√
2/10 the errors measured for

different mesh sizes are displayed. We also show the experimental orders of convergence obtained from
the formulaeoc = log |e(

√
2h)− e(h)|/|e(h)− e(h/

√
2)|/ log

√
2. We did not use the same formula

as in Table2 because the errors will not converge to zero as h→ 0 but to the error emerging from the
approximation inε

h e[L∞,L2]
10−3 eoc e[L2,H1]

10−2 eoc
e
[

L2,H1
νννs

]

10−2 eoc e[L2,H1
τττ ]

10−2 eoc

2−4.0 1.5628 — 1.8017 — 1.5629 — 0.8963 —
2−4.5 1.5107 2.0167 1.5366 2.0538 1.3956 2.7323 0.6430 0.9098
2−5.0 1.4848 3.2490 1.4065 2.0022 1.3307 2.2652 0.4582 0.9818
2−5.5 1.4764 2.7846 1.3415 2.0268 1.3011 2.3742 0.3267 0.9290
2−6.0 1.4723 — 1.3093 — 1.2881 — 0.2314 —

TABLE 2 Test problem on a moving circular interface described in Section3.1, errors for simulations
without streamline diffusion term (gh ≡ 0 in (2.15)). For a fixed ratioε/h the errors and experimental
orders of convergence (eoc) are shown. The latter ones are computed in the usual way viaeoc(ε)=

log
(e(

√
2ε)

e(ε)

)/
log(

√
2), where e stands for the error under consideration

ε h e[L∞,L2]
10−3 eoc e[L2,H1]

10−2 eoc
e
[

L2,H1
νννs

]

10−2 eoc e[L2,H1
τττ ]

10−2 eoc
√

2/10 2−4.5 1.5107 — 1.5366 — 1.3956 — 0.6430 —
1/10 2−5.0 0.7685 1.9502 0.9147 1.4967 0.7916 1.6361 0.4582 0.9777√

2/20 2−5.5 0.3852 1.9929 0.5902 1.2642 0.4907 1.8010 0.3279 0.9654
1/20 2−6.0 0.1930 1.9940 0.4272 0.9326 0.3587 0.9041 0.23190.9995

convergence ofe[L2, H1
νννs

]. We observed that the larger is the numberK of points across the interfacial
layer the better is the experimental order of convergence inε of e

[
L2, H1

νννs

]
.

3.2 Expandingcircle

In this test example we consider an expanding circle centred at 0 and radiusr (t) = 0.75 + 5t. The
velocity field is given byvvvs(xxx, t) = 5xxx/|xxx| and,hence, purely in the normal direction. The function
us(xxx, t) := exp

( 4
5r (t)

) x1x2
r (t)|xxx|2

is a solution to (1.1). To see this we parameterize the moving circle in

the formγγγ (s, t) = r (t)(cos(s), sin(s))T, wheret ∈ [0,∞) ands ∈ (0,2π), and then use the formula
∇Γ = (− sin(s), cos(s))T 1

|γγγ (t,s)|∂s. The above formula forvvvs hasbeen extended to the interfacial layer
for definingvvv and the distance function is given byd(xxx, t) = ‖xxx‖2 − r (t). The triangulationTh was
obtained as in section3.1, and the time stepΔt = h2/20was small enough again so that approximation
errors due to the time discretization are negligible.

Figure 2 displays concentration profiles across the interface at timet = 0.5 at the pointxxx =(
cos

(3
8π
)
, sin

(3
8π
))

. As predicted in Section2.5, the computation without edge smoothing involves
layers close to the boundary of the diffuse interface. We observe a peak in the direction of the
motion, i.e., to the right, and the other way around to the left. Recall thatU is set to zero in grid
points not belonging toNh which explains the sharp drops at the boundary of the layer. As the grid
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14 of 27 C. M. ELLIOTT ET AL.

FIG. 2. Test problem on an expanding circle. The profiles of the computed solutionU across the interfacial layer are displayed
for several values ofh and fixedε =

√
2/10. For comparison, a profile computed with edge smoothing is displayed. Out-

side the interfacial layer the value ofU has always been set to zero which explains the sharp drops of the profiles on the left
and right.

is refined the peaks become less pronounced, and from the figure we see that their height is pro-
portional toh. This is in agreement with the analysis in Section2.5 (see equation (2.14)). The edge
smoothing term, added by computinggh from (3.2), makes these boundary layers much smaller as
desired.

We evaluated the errors (3.3) choosing the quadrature pointsxxxl = r (tn)(cos(sl ), sin(sl )), wheresl =
2πl/L at timetn (again,L = 200 turned out to yield a sufficient accuracy). As in the previous example
in Section3.1,e[L∞, L2] converges quadratically ande[H1

τττ ] linearly asε → 0 while keeping the ratio
ε/h constant. Furthermore, as in the previous example the errors with edge diffusion quantitatively
almost are the same as the errors without.

The dependence of the cross-section profiles with edge smoothing on the thickness parameterε is
shown in Fig.3

(
time t = 0.5 and pointxxx =

(
cos

(3
8π
)
, sin

(3
8π
))

again
)
. The figure reveals that the

profile becomes flatter as the interface thickness becomes smaller (in comparison with Fig.2 the reader
should be aware of the different scalings of they-axes; in fact, the dashed line in Fig.3 corresponds to
the dotted line in Fig.2). Yet there are still some minor boundary layers that affect, in particular, the
slope of the profile in the interface centre, i.e., the gradient ofU in the normal direction onΓ . The
errore

[
L2, H1

νννs

]
measuring this effect decays if the number of grid points across the diffuse interface is

increased.

3.3 Three-dimensional example

In order to test the method in three space dimensions we consider Example 7.3 fromDziuk & Elliott
(2007a) concerning an oscillating ellipsoid of the form

Γ (t) :=

{

xxx = (x1, x2, x3)
T ∈ R3

∣
∣
∣
∣
∣

x2
1

a(t)
+ x2

2 + x2
3 = 1

}

,
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NUMERICAL COMPUTATION OF ADVECTION AND DIFFUSION ON EVOLVING DIFFUSE INTERFACES15 of 27

FIG. 3. Test problem on an expanding circle. The profiles of the computed functionU across the interfacial layer are displayed for
several values ofε, keeping the ratioε/h constant (we ensured at leastK = 16 grid points across the interface). The distance to
the limiting interfaceΓ is scaled with 1/ε which allows a better comparison of the profiles for different values ofε. In comparison
with Fig. 2 the reader should be aware of the different scalings of thex- andy-axes.

wherea(t) := 1 + sin(t)/4. As associated velocity field we choose

vvvs(xxx, t) :=
∂t a(t)

a(t)




x1
0
0





obtained from prescribing the trajectories of mass points on the initial surface to bexxx(t) := (
√

a(t)x1(0),
x2(0),x3(0))T with xxx(0) ∈ Γ (0). Thus, both advection along the surface and deformation by motion in
the normal direction are involved.

On the stationary two-dimensional unit sphereS2 the functionus(xxx, t) := e−6tx1x2 is a solution to
the surface heat equation∂t us − ΔS2us = 0. SettingDc = 1 the functionus also is a solution to (1.1)
for the above data(Γ, vvvs) provided that

fs(xxx, t) := us(xxx, t)

{

−6 +
∂t a(t)

a(t)

(

1 −
x2

1

2N

)

+
1 + 5a(t)+ 2a(t)2

N

−
1 + a(t)

N2
(x2

1 + a(t)3(x2
2 + x2

3))

}

,

whereN := x2
1 + a(t)2(x2

2 + x2
3).

For the simulations the velocity fieldvvvs and the right-hand sidefs have been extended constantly in
the normal direction away fromΓ in order to definevvv and f , respectively. The computational domain
wasΩ = [−2,2]3 and the final timet f = 4. The triangulationTh was obtained by starting with six
tetrahedra with vertices coinciding with the corners ofΩ and subsequent refinement by bisection (for
the algorithms, seeSchmidt & Siebert,2005) until the desired maximal edge lengthh was achieved.
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Theresults are presented for the time stepΔt = h2/2.0. Edge smoothing withgh computedfrom (3.2)
has been taken into account.

To measure the error we have to integrate functions defined on the ellipsoidsΓ (tn). Parameterizing
in the form

xxx(φ, θ) =





√
a(t) cos(φ) sin(θ)

sin(φ)sin(θ)
cos(θ)



 , (φ, θ) ∈ [0, 2π)× [0, π ],

we applied the following integration formula (for a functionF onΓ (tn)):
∫

Γ (tn)
F(xxx)dH2 =

∫ π

0

∫ 2π

0
F(xxx(φ, θ))

√
ga(tn)(φ, θ) dφdθ

≈
L−1∑

k=1

2L−1∑

j =0

F(xxx(φ j , θk))
√

ga(tn)(φ j , θk)δ
2 =: In[F ],

where

ga(t)(φ, θ) = a(t) sin(θ)2(cos(θ)2 + sin(φ)2 sin(θ)2)+ cos(φ)2 sin(θ)4

andφ j = j δ, θk = kδ with δ = π/L. In practice,L = 400 turned out to yield sufficiently accurate
values. To measure the error we computed the values

e[L∞, L2](ε, h) := max
n=1,...,N f

√
In[|Un(∙)− u(∙, tn)|2],

e
[
L2, H1

νννs

]
(ε, h) :=




N f∑

n=1

Δt In[|∇Un(∙) ∙ νννs(∙, tn)|
2]





1/2

,

e[L2, H1
τττ ](ε, h) :=




N f∑

n=1

Δt In

[∣
∣∇Γ (tn)U

n(∙)− ∇Γ (tn)u(∙, tn)
∣
∣2
]




1/2

.

Tables3–5 display the errors for grids (h fixed in each row) and several interfacial thicknesses (ε
fixed in each column). The values support the convergence rates inh and ε as obtained in the two-
dimensional case. We remark that the influence of the time step is not negligible in the chosen range
(recall that hereΔt = h2/2 while in the previous two-dimensional examples we hadΔt = h2/20).
Simulationsfor different time steps at fixedε andh reveal linear convergence as one would expect since
a backward Euler time-stepping procedure is applied.

TABLE 3 Data for an advection–diffusion equation with source term on an
oscillating ellipsoid in three dimensions described in Section3.3

e[L∞, L2](ε, h)/10−2

h \ ε 2/10
√

2/10 1/10
√

2/20 1/20
≈0.1088 1.6019
≈0.0628 0.9062 0.6621
≈0.0544 0.7633 0.5148 0.4056
≈0.0314 0.5879 0.3372 0.2224 0.1716
≈0.0272 0.5536 0.3029 0.1849 0.1287 0.1047
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TABLE 4 Data for an advection–diffusion equation with source term on an
oscillating ellipsoid in three dimensions described in Section3.3

e
[
L2, H1

νννs

]
(ε, h)/10−2

h \ ε 2/10
√

2/10 1/10
√

2/20 1/20
≈0.1088 5.2990
≈0.0628 4.7355 3.0320
≈0.0544 4.4975 2.7484 1.9132
≈0.0314 4.2993 2.4456 1.5070 1.1016
≈0.0272 4.2333 2.3526 1.3828 0.9499 0.7901

TABLE 5 Data for an advection–diffusion equation with source term on an
oscillating ellipsoid in three dimensions described in Section3.3

e[L2, H1
τττ ](ε, h)/10−2

h \ ε 2/10
√

2/10 1/10
√

2/20 1/20
≈0.1088 5.0222
≈0.0628 3.4891 3.4363
≈0.0544 2.6220 2.5583 2.5417
≈0.0314 1.8222 1.7362 1.7187 1.7103
≈0.0272 1.4208 1.3021 1.2768 1.2695 1.2632

4. Phase field surfaces

In this section we describe how the proposed method may be applied to diffuse interfaces arising from
computation of phase field equations. Typically, in applications the evolution of the surface will be
linked to the solution of the equation on the surface and possibly also to equations holding in a bulk
domain (Eilks & Elliott,2008;Lai et al.,2008). The purpose of the numerical examples in this section
is to indicate how our approach may be used in the context of the surface being computed by a phase
field method.

4.1 Diffusion on a geometrically evolving interface

In these examples the evolution of the surface does not depend on the solution of the surface equation.

4.1.1 Allen–Cahn variational inequality We consider the diffusion of a scalar functionu on a surface
Γ (t) that is evolving with a velocityvvv = Vνννs given by the curvature-dependent flows

V = −H + p, (4.1)

V = −H +
1

|Γ |

∫

Γ
H, (4.2)

where H denotesthe mean curvature of the surfaceΓ (t). Equation (4.1) is forced mean curvature
flow with a prescribed forcingp, whereas (4.2) is volume-conserving mean curvature flow in which
the volume bounded byΓ (t) is constant. We set the velocityvvvs = Vνννs in (1.1) and do not consider
advection on the surface.
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Theevolving surface is approximated by an evolving diffuse interfaceΓε(t) given by the zero level
set of a phase field variableϕ(∙, t). Following Blowey and Elliott, we employ a double-well potential of
double obstacle type

W(r ) =

{
1
2(1 − r 2) if |r | 6 1,

∞ else
(4.3)

(Blowey & Elliott, 1991,1993;Chen & Elliott,1994).
The appropriate space forϕ is

ϕ(∙, t) ∈ K := {η ∈ H1(Ω): |η| 6 1 a.e.Ω}.

This yields the following Allen–Cahn variational inequality:
(P) Findϕ ∈ K such that

∫

Ω

(
εϕt (η − ϕ)+ ε∇ϕ ∙ (∇η − ∇ϕ)−

ϕ

ε
(η − ϕ)− CW p(η − ϕ)

)
dx > 0 ∀ η ∈ K, (4.4)

ϕ(∙, 0)= ϕ0(∙). (4.5)

Combining(P) with the volume constraint1
|Ω|

∫
Ω ϕ = M for a givenM ∈ (−1,1) we obtain the

volume-conserving Allen–Cahn type problem:
(PM) Findϕ ∈ KM :=

{
η ∈ K| 1

|Ω|

∫
Ω η =M

}
andLagrange multiplierλ(t) such that

∫

Ω

(
εϕt (η − ϕ)+ ε∇ϕ ∙ (∇η − ∇ϕ)−

ϕ

ε
(η − ϕ)

)
dx >

∫

Ω
λ(η − ϕ)dx ∀ η ∈ K, (4.6)

ϕ(∙, 0)= ϕ0(∙). (4.7)

We consider the situation whereΓ (t) evolves smoothly with no change in topology and setd(∙, t)
to be the signed distance function toΓ (t). The initial condition is taken to be

ϕ0(∙) = ψ

(
d(∙, 0)

ε

)
. (4.8)

An asymptotic analysis (cf.Blowey & Elliott, 1993) withCW = π
4 yields that the transition profile of

the phase variable is given by

ψ(r ) =






−1 if r 6 −π
2 ,

sin(r ) if |r | < π
2 ,

1 if r > π
2 ,

(4.9)

andfor smallε, solutions to(P) and(PM) areof the form

ϕ(xxx, t) = ψ(d(xxx, t)/ε)+O(ε), xxx ∈ {|ϕ(∙, t)| < 1}, (4.10)

whered(x, t) is the signed distance function to an evolving hypersurface (seeBlowey & Elliott, 1993).
The zero level set ofϕ is an approximation to this hypersurface with an errorO(ε2) in the Hausdorff
distance (Chen & Elliott,1994;Nochettoet al.,1994;Deckelnicket al.,2005).
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The phase field equations are discretized using the finite-element method described earlier. In par-
ticular, we employed the time discrete approximations

∫

Ω

(
εδtϕ

n
h(η − ϕn+1

h )+ ε∇ϕn+1
h ∙ (∇η − ∇ϕn+1

h )−
1

ε
ϕn+1

h (η − ϕn+1
h )

)
dx

>
∫

Ω
pn(η − ϕn+1

h )dx ∀ η ∈ Kh, (4.11)

ϕh(∙, 0)= ϕh,0(∙). (4.12)

Here pn = CWg(∙, tn+1) andϕn+1
h ∈ Kh to define(PPPh) or pn = λn+1 ∈ R (which needs to be

computed in order to impose the mean value constraint onϕn+1
h ) andϕn+1

h ∈ Kh
M to define(PPPh

M) with

Kh = {η ∈ Sh: |η| 6 1}, Kh
M =

{
η ∈ Kh:

1

|Ω|

∫

Ω
η =M

}
.

4.1.2 Couplingto the diffuse surface equation.The phase field models provide the data for the sur-
face to be used in (1.2) in the following way. In the continuous problem the diffuse interfacial layer is
defined by|ϕ| < 1 and we set

ρ := 1 − ϕ2 (4.13)

anddefine a diffuse interface velocity field by

vvv :=
ϕt

|∇ϕ|
ννν, (4.14)

whereννν := ∇ϕ
|∇ϕ| is the normal to the level sets ofϕ.

In (2.17) we then use the solution of the double obstacle problem by setting

ρn := 1 − (ϕn
h)

2

andreplaceΠh(vvvn) by a computed discrete diffuse interface velocity given by

vvvnnn
hhh :=

δtϕ
n
h

|∇ϕn
h |
νννn

h, νννn
h :=

∇ϕn
h

|∇ϕn
h |
.

Note that on an element in the computational interfaceϕn
h will not be identically 1 or−1 and|∇ϕn

h |
doesnot vanish.

4.1.3 Narrow-band implementation.The interfacial region has a thickness that is proportional toε
and so in order to resolve this interfacial layer it is necessary to chooseh � ε. However, the solution of a
discrete double obstacle phase field problem is only required in a narrow band consisting of the elements
in which |ϕn−1

h | < 1 and neighbouring elements. This can be taken advantage of in several ways (for
details, seeDeckelnicket al.,2005;Elliott & Styles,2003). In particular, away from the interfacial layer
of elements in the bulk domain the mesh sizeh can be chosen larger since the solution is known there.
A guard layer of elements is maintained around the interfacial region. The mesh is dynamically locally
refined and coarsened in order to maintain the Narrow band assumption2.12(seeElliott & Styles, 2003;
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Barrettet al., 2004). Thissharp diffuse interface front-tracking approachautomatically yields the sets
Bn

h andΓ n
h to be used for solving the surface PDE.

The discrete variational inequalities(Ph) and (Ph
M) were solved using the semismooth Newton

algorithms presented inBlanket al.(2009). Alternative methods are projected successive over relaxation
or the direct multi-grid approach (Gräser & Kornhuber,2009).

4.1.4 Computations

EXAMPLE 4.1. Convergence study. In this test example we consider the expanding circular interface
problem defined in Section3.2. In particular, we setp = 5+ 1

0.75−5t in (4.4) and tookΩ = [−1.1,1.1]2,

Δt = h2, L = 200andN fΔt = 0.05.The errorse[L∞, L2] ande[L2, H1] are shown in Tables6–10
where we see, as in Section3.2, that the errore[L∞, L2] converges quadratically and the errore[L2, H1]
converges linearly for resolvedε computations.

EXAMPLE 4.2. Forced mean curvature flow in three dimensions. This is an example of diffusion on
an expanding sphere evolving by forced mean curvature flow. In Fig.4 we consider the domainΩ =
[−1,1]3 ⊂ R3 andsetε = 1

8π . In the initial thin diffuse interface we set

u(xxx, 0)= 1 + 20x1x2x3.

TABLE 6 Errors for simulations without streamline diffusion term (gh ≡ 0
in (2.15)) for the expanding circular interface described in Example4.1

ε h e[L∞,L2]
10−2

e[L2,H1]
10−1

e
[

L2,H1
νννs

]

10−1
e[L2,H1

τττ ]
10−2

π/6 ≈5.288∙ 10−3 4.5102 0.9706 0.9506 1.9614
π/9 ≈3.525∙ 10−3 1.9368 0.6490 0.6428 0.8925
π/12 ≈2.644∙ 10−3 0.9848 0.4883 0.4855 0.5241
π/18 ≈1.763∙ 10−3 0.3366 0.3287 0.3259 0.4337

TABLE 7 Data for the expanding circular interface described in Example4.1

e[L∞, L2](ε, h)/10−2

h \ ε π/6 π/9 π/12 π/18

≈5.288∙ 10−3 4.5102
≈3.525∙ 10−3 4.5896 1.9368
≈2.644∙ 10−3 4.6192 1.9995 0.9848
≈1.763∙ 10−3 4.6472 2.0642 1.0978 0.3366

TABLE 8 Data for the expanding circular interface described in Example4.1

e[L2, H1](ε, h)/10−1

h \ ε π/6 π/9 π/12 π/18

≈5.288∙ 10−3 0.9706
≈3.525∙ 10−3 0.9848 0.6490
≈2.644∙ 10−3 0.9888 0.6547 0.4883
≈1.763∙ 10−3 0.9918 0.6598 0.4929 0.3287
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TABLE 9 Data for the expanding circular interface described in Example4.1

e[L2, H1
τττ ](ε, h)/10−2

h \ ε π/6 π/9 π/12 π/18

≈5.288∙ 10−3 1.9614
≈3.525∙ 10−3 1.9394 0.8925
≈2.644∙ 10−3 1.9359 0.8682 0.5241
≈1.763∙ 10−3 1.9335 0.8614 0.4840 0.4337

TABLE 10 Data for the expanding circular interface described in Example4.1

e[L2, H1
νννs

](ε, h)/10−1

h \ ε π/6 π/9 π/12 π/18

≈5.288∙ 10−3 0.9506
≈3.525∙ 10−3 0.9655 0.6428
≈2.644∙ 10−3 0.9697 0.6489 0.4855
≈1.763∙ 10−3 0.9728 0.6542 0.4905 0.3259

FIG. 4. Diffusion on a surface evolving with forced mean curvature flow.

Furthermore, we set the diffusion coefficient to beDc = 1 and the forcing function in (4.4) to be
p = 6.

We had a minimal edge length ofhmin = 2−7 ≈ 0.00781 in the narrow bandsBn
h, while hmax =

2−2.5 ≈ 0.177 in the bulk. The time stepΔt = 5 ∙ 10−5. The six subplots in Fig.4 display the scalar
functionUn on the zero isosurfaces ofϕn

h at timest = 0,0.02,0.04,0.06,0.08 and 0.1.
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FIG. 5. Diffusion on a surface evolving with conserved mean curvature flow.

EXAMPLE 4.3. Volume conserved mean curvature flow in three dimensions. This is an example of
diffusion on a surface evolving by mean curvature flow forced so that the volume inside the surface
is conserved, which in the long term leads to a stationary sphere. In Fig.5 we consider the domain
Ω = [−1.2,1.2] × [−1,−1] × [−1,1] ⊂ R3, the diffusion coefficient isDc = 0.1, ε = 1

8π and

u(xxx, 0)= 1 + 20x1x2x3.

We again had a minimal edge length ofhmin = 2−7 ≈ 0.00781 in the narrow bandsBn
h, while

hmax = 2−2.5 ≈ 0.177 in the bulk. The time stepΔt = 5 ∙ 10−5. The six subplots in Fig.5 display the
scalar functionUn on the zero isosurfaces ofϕn

h at timest = 0,0.05,0.1,0.2,0.35 and 0.5.

4.2 Diffusion on an interface in two-phase flow

In this second application example our aim is to compute the advection and diffusion of an insoluble
surfactant on the interface between two immiscible fluids. The model for the two-phase flow consists
of an incompressible Navier–Stokes system coupled to an advective Cahn–Hilliard equation derived in
Boyer(2002) but we consider a double-well potential of obstacle type as (4.3) (Blowey & Elliott, 1993)
and assume equal mass densities and viscosities in both fluid phases. In dimensionless and weak form,
the Navier–Stokes system consisting of mass and momentum balance reads as

0=
∫

Ω
ζ∇ ∙ vvv dx ∀ ζ ∈ L2(Ω), (4.15)

0=
∫

Ω

(
∂tvvv ∙ ηηη + ∇vvv : ηηη ⊗ vvv − p∇ ∙ ηηη +

1

Re
∇vvv : ∇ηηη

)
dx

−
∫

Ω

K

ReCa

(
μ∇ϕ +

2

ε
W(ϕ)∇γ (u)

)
∙ ηηη dx ∀ ηηη ∈ H1(Ω)d, (4.16)
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whered is the dimension and the unknown fields are the velocityvvv and the pressurep. The force arising
from the interfacial tension is encoded in the last term of the momentum equation. It is given in terms of
an order parameterϕ and a corresponding chemical potentialμ that are subject to the following weak
advected Blowey–Elliott Cahn–Hilliard variational inequality:

0=
∫

Ω

(
(∂tϕ + vvv ∙ ∇ϕ)ψ +

M(ϕ)

Peϕ
∇μ ∙ ∇ψ

)
dx ∀ψ ∈ H1(Ω), (4.17)

06
∫

Ω

(
−μ(ξ − ϕ)+ εγ (u)∇ϕ ∙ (∇ξ − ∇ϕ)+

γ (u)

ε
W′(ϕ)(ξ − ϕ)

)
dx ∀ ξ ∈ K. (4.18)

The constants appearing in the above systems are the Reynolds number Re, the capillary number Ca,
the Peclet number Peϕ of the order parameter and a numerical constantK > 0 of order 1 required for
calibration reasons and depending only on the choice of the double-well potential (for our choice (4.3)
we have thatK = 2/π). The mobilityM(ϕ) vanishes in the pure fluids in order to avoid diffusion
from small fluid blobs to larger ones, i.e.,M(±1) = 0. The surface tensionγ (u) depends on the
concentrationu of the surfactant which is the essential difference to the governing equations inBoyer
(2002).

In addition to the above systems the surfactant concentrationu is subject to an equation of the
form (2.1) where the velocity fieldvvv emerging from the Navier–Stokes system enters and where we set
ρ = W(ϕ). We remark that, in contrast to the previous application, in general, there will be advection
of the surface quantity along the interface, namely, the velocity fieldvvv involves tangential components.

Using formal methods (cf.Elliott et al., 2009) the limiting system obtained asε ↘ 0 can be derived.
It is characterized by two fluid phasesΩ+ andΩ− onwhich the Navier–Stokes system

∇ ∙ vvv = 0,

∂tvvv + (vvv ∙ ∇)vvv = −∇ p +
1

Re
Δvvv

holds.The phases are separated by a moving hypersurfaceΓ transported with the flow such that the
conditions

[vvv]+− = 0, vvv ∙ νννs = vΓ ,

[
−pIII +

2

Re
D(vvv)

]+

−
νννs = −

1

ReCa
(γ (u)Hνννs + ∇Γ γ (u)) (4.19)

are satisfied whereνννs is the unit normal pointing intoΩ+, H is the mean curvature ofΓ , vΓ is the
normal velocity ofΓ in this direction andD(vvv) = 1

2(∇vvv+ (∇vvv)T). We remark that for obtaining (4.19)
the correct choice ofK is necessary, and it is essential that the mobility functionM(ϕ) is degenerate
(cf. Abels & Röger,2008;Elliott et al.,2009). Finally, the limiting equation for the surfactant indeed is
(1.1).

To numerically approximate and solve (4.15)–(4.18) we applied the methods described inBlowey &
Elliott (1992),Barrettet al. (1999) andKay et al. (2008). In particular, the saddle point problem arising
from the Navier–Stokes system has been solved with a preconditioned general minimal residual method.
The discrete Blowey–Elliott Cahn–Hilliard variational inequality (4.18) was solved with a Gauss–Seidel
type iteration in which the phase field variable and chemical potential at a grid point are solved for si-
multaneously (Elliott & Gardiner,1994;Barrettet al.,1999,2004). Because of the degenerate mobility
the solution is restricted to a narrow band outside of which the phase field variable is±1.
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On the domainΩ = [−5,5] × [−2,2] ⊂ R2 the velocity was initialized att = 0 with the shear
flow vvv(x1, x2) = (x2/2,0) that are also the boundary values at later times on∂Ω. We further defined
ϕ(xxx, 0) = ψ(‖xxx‖2/ε) with ψ as in (4.9) andε ≈ 2

√
2/100 which yields a circular diffuse interface of

radius 1 and centremmm = (0,0). On the thin layer we initializedu homogeneously with one. The other
parameter values were Peϕ = 1, Re= 10, Ca= 0.7 andDc = 10. We will report on two simulations
differing in the choice ofγ . In one simulation it is constant and set to one so that the surface quantityu
does not influence the two-phase flow. In another simulation we setγ (u) = 1 − u/4.

Starting from a uniform triangulation the grid was adaptively refined to ensure at least eight nodes
across the diffuse interface but keeping it quite coarse in the pure phases. We had a minimal edge length
of hmin = 2−6.5 ≈ 0.01105 in the narrow band, whilehmax = 2−3 = 0.125 in the bulk. The time
step for the phase field and surface quantity wasτCHS = hmin/(25‖vvv‖max) ≈ 0.000441, while the
Navier–Stokes system was solved with time stepτNS = hmax/(12.5‖vvv‖max) = 0.01.

Figure6 displays the diffuse interface in terms of the surfactantu in the range 0 (white) to 3 (black).
For constantγ = 1 (first line) we observe a behaviour as inLai et al. (2008, Section 4.2, Fig. 1). In the
caseγ (u) = 1 − u/4 (second line in Fig.6) the elongation of the droplet is enhanced as expected. The
surfactant reveals an aggregation phenomenon at the tips of the droplet as can be seen in Fig.7. Since
the surfactant lowers the surface tension the high curvature in the tips is less able to prevent the droplet
from further extending by following the flow.

The dependence of the droplet shape on the thickness parameterε and the choice ofγ (u) will be the
subject of future studies (Elliott et al.,2009).

FIG. 6. Diffuse interface with surfactant in two-phase flow at timest = 0,2,6,14. In the upper line the (dimensionless) sur-
face tension isσ = 1, in the lower line we haveσ(u) = 1 − u/4. The grey scales linearly with the density ranging from
0.0 to 3.0.

FIG. 7. Diffuse interface with surfactant in two-phase flow at timet = 14, simulation forγ (u) = 1 − u/4. The height and the
grey scales linearly with the density ranging from 0.0 to 3.0.
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Additional note

In revision we learnt of the paperTeigenet al. (2009) which considers a similar approach to that of this
paper using a phase field function which does not have compact support.
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ABELS, H. & RÖGER, M. (2008) Existence of weak solutions for a non-classical sharp interface model for a
two-phase flow of viscous, incompressible fluids.Technical Report 71. Leipzig: Max Planck Institute.

ADALSTEINSSON, D. & SETHIAN , J. A. (2003) Transport and diffusion of material quantities on propagating
interfaces via level set methods.J. Comput. Phys.,185, 271–288.

BARRETT, J. & ELLIOTT, C. M. (1984) A finite element method for solving elliptic equations with Neumann data
on a curved boundary using unfitted meshes.IMA J. Numer. Anal., 4, 309–325.

BARRETT, J. & ELLIOTT, C. M. (1988) Finite element approximation of elliptic equations with Neumann or Robin
condition on a curved boundary.IMA J. Numer. Anal., 8, 321–342.

BARRETT, J. W., BLOWEY, J. F. & GARCKE, H. (1999) Finite element approximation of the Cahn–Hilliard
equation with degenerate mobility.SIAM J. Numer. Anal.,37, 286–318.
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