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The Cahn—-Hilliard gradient theory for phase
separation with non-smooth free energy
Part II: Numerical analysis

J.F. BLOWEY and C. M. ELLIOTT

School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 90H, UK
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In this paper we consider the numerical analysis of a parabolic variational inequality arising
from a deep quench limit of a model for phase separation in a binary mixture due to Cahn and
Hilliard. Stability, convergence and error bounds for a finite element approximation are
proven. Numerical simulations in one and two space dimensions are presented.

1 Introduction

This paper is concerned with the numerical analysis of a parabolic variational inequality
introduced by Blowey & Elliott (1991) as a mathematical formulation of a model of phase
separation in a binary alloy. We refer to Blowey & Elliott (1991) and the references cited
therein for the physical background; for example, our work is relevant to that of Cerezo
et al. (1989).

Let Q < R? (1 < d < 3) be a bounded domain with sufficiently smooth boundary. Given
y>0, yyeK={9eH'(Q): —1<y<1} with m=(u,, 1)e(—|2},|2]) and T >0, we
consider the problems:

(P) Find {u, w} such that ue H(0, T; (H'(2))) n L*(0,T; HY(Q)), ucK for a.e. te(0,T)
and we L*(0, T; H'(Q))

’T)
<(Tu,77> +(Vw,Vy) =0V e HY(Q), a.e.te(0,T), (1.1a)
a oy N/ o
y(Vu,Voy—Vu)—(u,n—u) = w,p—u) Vyek, ae.te(0,T), (1.1b)
and u(0) = u,. (1.1's)

(Q) Find ue H'(0,T; (H'(2))) n L*(0, T; HY(Q)),ue K, for a.e. te(0,T) such that

u

v(Vu, Vip—Vu) + (fﬁN -

,77~u)—(u,777u)20V776Km, a.e. te(0,7), (1.2a)

and u(0) = u,, (1.2b)

where K, = {neK:(n,1) = m}, (.,.)is the L%(Q) inner-product and ¢, is the inverse of —A
with zero Neumann boundary data. Also, throughout this paper we denote the norm of
H?(Q) (p = 0) by |.Il, and the semi-norm || D?y||, by Il
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In Blowey & Elliott (1991) the following theorem concerning existence, uniqueness and
regularity was established.

Theorem 1.1. Problems (P) and (Q) have unique solutions and are equivalent. Furthermore,
if 0Q is smooth or Q is convex, then ue L*(0, T; H*(Q)).

In §2, a fully discrete finite element approximation is proposed. Existence and uniqueness
results for a small enough time step independent of 4, the space mesh parameter, are given,
so that the scheme is well defined. It is shown in §3 that the scheme possesses a Lyapunov
functional and satisfies certain stability estimates. Also, it is demonstrated that the scheme
simulates the long time asymptotic behaviour of the underlying nonlinear equation. An
error bound between the discrete and continuous solutions is given. In §4, an iterative
method for solving the algebraic problem at each time step is suggested and shown to be
convergent. Numerical simulations are described in §5. Various numerical tests are
performed in one space dimension, and some interesting numerical simulations in one and
two space dimensions are displayed which exhibit the behaviour expected of the physical
problem.

For other papers concerning the numerical analysis and simulations of the Cahn—Hilliard
equation with smooth free energy we refer to Elliott & French (1987), Elliott (1989), Elliott
et al. (1989), French & Nicolaides (1989), Copetti & Elliott (1990), French (1990) and
Elliott & Larsson (1991).

2 Discrete evolutionary problem

In this section we consider finite element approximations to (P) and (Q), denoted by (P")
and (Q"), respectively. For d = 2, 3, we assume that Q either has a smooth boundary or is
convex polyhedral, so that Theorem 1.1 holds.

2.1 Existence and uniqueness

For T>0 and MeN, define Ar=T/M, "=nAt, 0<n<M), J'= (""",
(1<n<M)and

on_ on—1
Nt — 7/ ’7 1

on™: VB <n<M, 2.1

for a given sequence {y§"})",.

We will focus our attention on the discrete schemes (@) and(P%) defined as follows:

(P! Given U’eK”

m?

for each n > 1 find {U", W"}e K" x S" such that

QU™ )" +(VW",Vy) =0V yeS", (2.2a)
')/(VU",VX-VU”)-(U”,X* Un)/z > (Wnaxf Un)h VXEKIZ, (22 b)
and U =ul. (2.2¢)

(@ Given U’eK”

mo

for each n > 1 find {U"}e K"

m

such that V ye K},

m

Y(VU”,VX*VU”)"‘(@%(CU"),X_ Un,)h_(Un,X_ Un)h 2 0’ (23d)
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and U° = uy,
where u} is an approximation to u,,
Sp={xeS":(x, )" = (ug, 1) = m},
K'={yeS": —1<y<1},
Kl ={yeSl:—1<y<l},

and we have introduced the following notation:

149
(2.3b)

1. 7" is a regular family of triangulations for Q (Ciarlet 1978), consisting of closed

simplices 7, with maximum diameter not exceeding A, so that Q = ( J,_,»7. If 0Q is
curved, then the boundary elements have at most one curved edge. Associated with .7 "
is the finite element space S" = H'(Q)

S" = {ye C°Q): x|, is linear for re 7"} (2.4)

. (.,.)" denotes an inner-product on L*(Q) or S" (and C(£2)), which is an approximation
to the L*(Q) inner-product using appropriate numerical quadrature.

. The discrete Green’s operator approximating the inverse of the Laplacian with
Neumann boundary data defined by:

GreL(F",8), Sq={xeS":(x, )" =0}, (2.5a)
(VGu,Vy) = (v, )"V yeS", (2.5b)

where # " is either 7 n L*(Q2) or S! when (.,.)" is, respectively, the L*(2) inner-product
or an approximation and F :={fe(H'(2)): 1 qy {f 1)@ = 0}. Note that ye F"
satisfies

Ixll2, = 195 X = (@3 x. 0" = (x. 9% x)"- (2.6)

The existence and uniqueness of 4% y solving (2.5a-b) follows from the discrete Poincaré
inequality given in (2.9) below. We assume the following for 5, ye S":

G x)— (g, )M < CR Il llxll, r=0,1, (2.7a)
Cylxla < Ixls < Colxl3, (2.7b)

(. )" = (gx. )" 2.7¢)

(1, D) = |Q|, (2.7d)

if £>=0 iscontinuous then (£ 1)" = 0, (2.7¢)

where C, and C, are constants independent of 4. From (2.7a, b) and the continuous
Poincaré inequality, for £€ H'(Q),

1€y < C(IE], +IE DD (2.8)

it follows that for 4 sufficiently small, we obtain the discrete Poincaré inequality

(O 0" = Il < Collxl+ 106 DD, (2.9)

where C, is a constant independent of A.
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Two possible choices for (.,.)" are

(r8)' =f ey, and G :f 1) () ., (2.10)

where /": C(€2) - S" is defined to the unique element in S” such that /"o = v at each vertex
of 7.
For fe7 ", it follows from the discrete Poincaré inequality that
G5 = (LGN < UGN, < Col G0N,
so that W1 =195, < Colflae .11

Other numerical schemes which approximate (P) are:

(P% Given U’ = ule K"
2 0

m?

for each n > 1 find {U", W™ e K" x S" such that
QU™ )" +(VW",Vy) =0V yeS", (2.122a)
YVU" Vy~VU— (U y = U™ = (W', y—U")" ¥ ye K", (2.12b)

(P Given U’ =u'eK"

m>

for each n = 1 find {U", W"e K" x S" such that
QU™ ) +(VW", Vy) =0V yeS”, (2.13a)
YU, Vy—VU") = (U5 x—U"Y = (W", x— U")' ¥ ye K", (2.13b)
where U™t = (U™ + U"™Y)/2.

Remarks Scheme (P%) is fully implicit and (P%) is the Crank—Nicolson scheme; also, scheme
(P%) has the advantage of having a unique solution for ¥ Ar > 0 (see Corollary 2.2).

If we observe that W" = — %, (0U")+ A", where A" = (W",1)"/|Q|, then it is clear that
{U", W"} solving (P}) immediately implies that {U"} solves (Q"). The analogous result is
also true for the associated problems (P¥) (i = 2, 3). ]

Theorem 2.1 There exist sequences {U"} and {U", W"} satisfying (2.3a, b) and (2.2a—c).
Furthermore, for At < At* = 4y, the sequence {U"} is uniquely defined.

Proof Existence to (@) is proved by consideration of the minimization problem: For each
n < M fixed, find Ue K”, such that

JM(U) =min 7"(y)= g”(,v)+2A Ix—= U,

)(EK/[

m

where E"(y)= Vm +@—1(g[h (2.14)

From the estimate #"*(y) > %b(\f, a standard minimization argument yields the existence of

U, a minimizer of #" over K. The critical points of the minimizer ¢ " over K"

m

are given by
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(2.3a), thus proving existence of the sequence {U"}. Given e S!, using Young’s inequality,

N

1
ab < gdz+%b2 (0 > 0), we obtain the estimate
Op, ) = (VG5 1, V) < 1%Ll s,
1 2 8 2 l 2 A\ 2
S S+l = sl +Z f. (2.15)

We now prove uniqueness. Let U! and U? be two possible solutions and define 9" =
U'—U?®. By substituting y = U, into (2.3a), when U, is the solution, and vice-versa, it
follows from addition of the resulting inequalities that

N . ‘
VIO 16712, 10" <0,

so, setting y = 0" and & = Ar in (2.15) we obtain,
AYANSE
(7‘—4“)]6('!12 <0,

and, since (/, 1)" = 0, the discrete Poincaré inequality (2.9) implies that U is unique. So for
each n, setting U" = U, we have existence and uniqueness to (Q").
To prove existence to (P%) we consider the problem:

(S}) Given ye€lp,, rg]. find U,e K" such that Vye K"
YOV =VU)+ (U= U)" > Ly = G) + Ly =)', (2.16)

where f=2U" -9 (QU"), i, = — 1 —max, o f(x), 4, = | —min,_, f{x) and U" is the unique
solution of (Q%).

Since the bilinear form on the left of (2.16) is strictly coercive, there exists a unique
solution to (S‘/{‘). We define the mapping .4 ":[u,, 1, ]— R by

MMy = (U D)

Let gy, piy €[ty pr), thensetting = py, 9 = U, and p = p,, = U,, in (2.16) and adding the
resulting inequalities, we obtain
0 < YU, — U, B+IU, —U, 12 < (M () — A1) (113 — ). 2.17)
From the Cauchy Schwarz inequality and (2.17) we have
() — ) 1Q) < U, = U, 2 < A ty) = () (i — 1),

so that .#” is monotone and continuous. Now, if we note that for all xeQ, where
[9(x)] < 1, the following trivial inequalities hold

(== RN )~ 1) >0 and (=1 =g, — ) () +1) > 0,
then it is clear from (2.7¢, ¢) that U

., =1 and U =—1, so that .#"(u,) = 2| and
A" (1) = — Q. Tt follows from the intermediate value theorem that there exists A€ [, , /¢,,]
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such that .#"(A) = (U, 1)" = m. Setting y = U, in (2.3a) and » = U” in (2.16) and adding

the resulting inequalities yields

NU= U+ U=, <0, (2.18)

which proves that U, = U", and defining W" = —%%(0U")+ A we have proved existence for
{U", W" solving (P%).

We have already proved uniqueness for U”, hence we conclude uniqueness for W" up to
the addition of a constant. |

Remark Under certain conditions (see (4.8 a, b) below), it is clear that if there exists a point
of the triangulation where |U"] < 1, then W™ is unique. OJ

Corollary 2.2 For schemes (P*) (i =2.3), there exist sequences {U", W"} satisfying the
associated inequalities. Furthermore, for At < At* = &y and + oo, for schemes (P! where
i =3 and 2, respectively, the sequence {U"} is uniquely defined.

Proof The proof is analogous to Theorem 2.1 and is not included.

3 Stability and convergence
Theorem 3.1 The sequences generated by (2.2a—c) and (2.3a, b) satisfy

(U = (u, )", (3.1a)

v At

| 1 :
ENUN) ="V 51U = U %+ (E—g) U"—U"13<0.  (3.1b)

Proof It is enough to prove the estimate for (P%). The conservation equation (3.1a) is a
direct consequence of taking y = [ in (2.2a). Taking y = U" " in (2.3a) and noting that
2a(b—a) = b* —a® —(a—b)?, we obtain

| s :
—*(d(ﬂh(Un) ‘f’(g?h(Un/l)*glU”‘ Unfl !faﬂ “ Un; Unleih_‘gilUn; (]nfl';‘£ 2 0 (32)
So from (2.15), setting » = U"—U" ! and § = Az, and (3.2), we obtain (3.1b). []

Corollary 3.2 For At < Ar* scheme (P satisfies the following stability estimates :

M M

max U™ |3+ ¥ Af]oU|2,+ = | U"=U" 2 < C, (3:3)
=000 ] M n=1 n=1
n h C
Ar
M
T AWri<C, (3.5)
n=1

where all constants are independent of h and At.
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Proof Summing (3.1b) from n=1,...,k (1 < k < M) and noting the Poincaré inequality
(2.9) gives (3.3). If we note

IW" = 10012, (3.6)
and use (3.3), we conclude that
M M
X AW = 2 AfloUm2, < C. (3.7
n=1 n=1

Setting y = 1 and —1 in (2.2b) and rearranging we obtain
(W™, 1| < lm|=26"(U") + (W™, U")" +12|.

h ’
AISO W", Un [ (Wn. Un;ﬂ) +£l_
( ) 1) 12|

(2.11) upon rearrangement we obtain

(W, 1), so by using the definition of 4" and
Yy N

il =26" U+, [0 =B ] +10
(W™ 1) < - 2
_
12|
~ s
il =26"U "+ C, W, U |+
& b . (3.8)
{_bml
12|
Hence, it follows from (3.3) and (3.6) that
C
V" 1)< CHCJRU, < Coy (3.9)
Also, using the discrete Poincaré inequality and (3.8) we obtain
[ W)z < C+ WS, (3.10)
which together with (3.7) yields (3.5). Ol

Corollary 3.3 For At < At* each of the numerical schemes (P¥) (i = 2, 3) possess the Lyapunov
Junctional &". They also satisfy the following stability estimates:

scheme (P%) satisfies (3.3), (3.4) and (3.5);
scheme (P%) satisfies (3.4), (3.5) and the estimate

max [U*I+ % AQU™|E, < C.

n=0;...,1 M n=1

Proof This is proven in an analogous manner to Corollary 3.2 O
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Remark The estimate

N

]

1o*=u"?1i< ¢,

n=1

Il

is an important ingredient in the proof of the error bound in Theorem 3.5 to follow. []

Numerical schemes for solving a nonlinear evolution equation over a long time interval
should simulate the asymptotic behaviour of the underlying equation. The critical points
of &" over K" are given by: U”e K” such that

y(VU" Vy—VU")—~(U", x— U =0V yeKk". (3.11)

Using a similar technique to that which was used in the proof of Theorem 2.1, we may also
consider the equivalent problem:

Find {U", A"} e KX x R such that
y(VU" Vy—=VU")—(U", x—U"Y' = A", x—U")"Y ye K". (3.12)

Note that (3.12) is the discrete analogue of the stationary problem considered in Blowey &
Elliott (1991): (S) Find {u,A}e K,, x R such that for all ve K

v(Vu, Vo—Vu)— (u,v—u) = A(1,v—u). (3.13)

Theorem 3.4 Let At < At* and {U", W"} be the uniquely defined sequence from (P (i = 1,
2,3). Then there exists a subsequence {U"», W"r} which converges to {U", A\"} solving (3.12).

Proof The proof will only be shown for (P%), as the proof for the other schemes is
analogous. The result depends upon (3.1b), which shows that &"(.) is a Lyapunov
functional for the scheme (P%). Implicit use will be made of the fact that K” is finite
dimensional, so that bounded sets are compact and norms are equivalent. From Corollary
3.2,

U, <C, (W1 <C+C/Af and lim [W"|, = lim [0U"||_, = 0.
Hence there exists a subsequence {U"», W"r} converging to {U", A"} e K x R. Therefore,

lim U"r = U", lim wre = A" and lim, _, U"*"—U" = 0. We may now pass to

np—>0 np—>0

the limit in (2.2b) to obtain (3.12) and consequently (3.11). ]

In the remainder of this subsection we assume that the discrete inner product satisfies

(x, D" = (x, ) Y yeS™. (3.14)

Two examples of this inner product are given by (2.10).
We introduce a little more notation; define

1
rO=ie. (Peg, | aCodsr=r) (3.15)
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(n=0,1,...,M) where 5 is any continuous (integrable) function in time defined on
Qx(0,T). Define P":L*Q) >S" to be the discrete L*-projection operator onto S*
satisfying

(P, x)" = (,x) ¥V xeS" (3.16)

We note the following estimate from Ciarlet (1978); for ve H*(2)
lo—I"v||, < Ch* 7 |oll,, s=0,1. (3.17)

We define 9%.:7 n L%Q)—~S" to be the discrete inverse Laplacian with zero Neumann
boundary data satisfying
(VG L VY) = (fix) VxeS", (3.18)

where we have not used numerical integration. As (7 ") is regular and %, is regular (Ciarlet
1978) for fe LX(Q) N F
(G —F)fy < Ch2Lf, (3.19)

From (2.7a) and the Poincaré inequality, it follows that for fe S?,
G0 GA ;=L G~ G~ GRS~ LI
< CR [ 1G5 f =G f - (3.20)
Hence from (3.19), the Poincaré inequality and (3.20) we obtain
%S~ % Sl S1B0S =G o+ G0 S~ G S oy
< CR | fIl,+CR2(fly = Ch* | f1;. (3.21)

Note that from (3.19) for fe.Z n L*Q), (3.21) trivially holds, that is (3.21) holds for all
feF "
Given ye L*(Q), using the definition of P*, (3.19) and (2.7a)
ly—Pyli?, = (G (y—P"y), y— P'n),
= (4~ G —P'n).y—P' )
+ (@A = Py), P'y) — (G (g — P'p), P,
< Ch*Jy— Pyl + ChIG (= Pyl [P,
it follows from (2.7b), the Poincaré inequality, the inequality 19" fl, <% fl,, Young’s
inequality and a kick-back argument that
lp—Piyll_, < Chlyl,. (3.22)
Error bounds for parabolic variational inequalities have been calculated by Johnson
(1976), Berger & Falk (1977), Scarpini & Vivaldi (1978), Colli & Verdi (1985), Fetter (1987)
and Vuik (1990). In each they essentially consider the same Dirichlet problem but with a
varying obstacle constraint. In Johnson (1976), Berger & Falk (1977), Fetter (1987) and
Vuik (1990) they have a fixed single obstacle. In Colli & Verdi (1985) the obstacle constraint

is only applied on part of 2€2, and in Scarpini & Vivaldi (1978) the double obstacle is time
dependent.
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Theorem 3.5 Let {u,w} be the unique solution to (P) and let {U", W"} be the sequence

generated by the problem (P where At < At*. Define

U* for teJ"=("",1",
U z( i) l)’: {
i Uit =0,
and €u()€, t)::u(xa t) - l]h,At(xa t)'

If U° = P'uye K" and At < 2, then

4

h
Heu“i’*(o,TxH‘(:z))/) oF HeuH?ﬁ(o, ey S C(E+h2+A1) =:0(h,Ar).

Proof It is important to note that Yn >0
(Una 1) = (Un: 1)h = (U0> l)h i (Phuoa l)h = (MO, 1) =m.

Consider

(4) ==J <g—i’—aU“,gN(u—U")> dr

+J y(Vu~VU",Vu~VU")dZ—J
J7L

J

(u—U™u—U"ds,
= (4, +(4,)+(4y).

We introduce the notation

m m
Up=U"—— and up=u"——

L a ] (n=0,1,... 5.

We estimate (4,)

(4,) :f <%—6U",€4N(u—U")> ds,
gn \ Ot

ou

_ J <5,44N(um)>dt+ f U9 (Up) di

= (<un i} un——l’ gN(U;Zn)> + (U" T Uﬂ*l’ @A’(a:i)))a
= (4)) +(4)) +(4)).

Now

du 19 (IR
(4} = f <5 %(um>> dr = JEZ o2y d = Sl 12, =)

(A= ("= U, () = S| OR |2, = U5 #1 T~ T2y,

(4) = —(u"—u" 1, G (Up)> + (U= U™, G (u ™))
+U"= U Gy(@ —u" ™)),

==, G (U)) + (U™ G p(un ) — (U = UL G (@ —u ™).

(3.23)

(3.24)

(3.25)
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Consequently, combining (42), (4%) and (4Y) and noting the definition of €,(?)
(A4) = Hla = U2, =3 = U2+ U = U2,
o (Un _ Unfl’ gl\'(un _ un— 1))’
= He (s —3lle @ DI+ U= T2,
*(U” Un—l’ gx(un _ un—l))_
Again noting the definition €,(¢)

(4,) = yf Ju— U= yf

J

elnldr,

(A;,):;J |uU"\§dz:—J le, (D[ d.
'/IL '/VI

Hence combining (4,), (4,) and (4.,)

(A4) = gle, (M2 —lle, (" DI, +7/f ) lﬁu(l)lfd"J

J

le. (D] dr

+yUr—U, = (U =U"" Gy —u"Y)), (3.26)
and summing from n=1,..., k(1 <k < M) yields
I ] ) ‘ !k ‘ [Iﬁ ‘ 1 i
2 (4)= { le (N2 +y | e DFdi— ié‘u(f)lédf}wlf:u(())i“l
n=1 2 0 0 2
2
= ()y+ )+ (II). (3.27)

We estimate an upper bound for (A4). Let teJ" and set y = U™ in (1.2a) and 5 = ["u" in
(2.2b), so that we obtain the following inequalities

|k
+{ E H Un o Unf] H?.l . Z (Un _ Ullfl’ {4‘\(17n_un\1))}7
n=1

n=1

Y(Vu, Vu—VU ") — (ut, u— U”)+(54N%, u—U") <0,
¢

VU NU"=VI"a"y—(U", U =" < (W", U"—=T"u")",
which imply
(A) < Atly(VU" VI'u" =V — QU", % " — U™+ (W, U" —TI"u")"}
+ A — (U™, " —a)y + (U Tt — U — (U Tu—U")'y. (3.28)
In general (I"a"—U", 1) % 0, so using the definition of 4%, (2.2a) and (3.16) gives
w1y = (Wr, U= Py +(W", Pu"—I"u")",
= (VW' VGI(U" — Prum) + (W™ a") — (W, I"a")",
= — U, 9" (U= Pu )+ (W, uy— (W, I'u")",
=(gLU",u" - U+ (W", u"—1I"u")
+(GL@EU™), U™ — (%1 U", U
+ (W )y — (W T, (3.29)
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and using (3.29) in (3.28) and summing from n = 1,..., k(1 < k < M) yields the estimate

M =

k k
(A) <y T AU VI'T" —Viy— S, A U™, I'a" — i)
n=1

1 = n=1

n

k k
+ 3 AW =T+ S A((G—% ) oU", (@ — U™))

n=1 n=1

LT AG@RQRU, UM —(@5EU"), U

n=1

k
+ 3 AW, 'at) — (W, Ia)"}

n=1
k
+ X AU I"a"— U™ — (U™, "t — U™, (3.30)
n=1
which we write as
k
A SUM+M)+VD+WVID+ (VI +IX)+(X). (3.31)

n=1

Now we estimate terms (//)—(X) in turn, and note that if there is no numerical integration
terms (VII)-(X) disappear. We estimate (I7) using (3.22)

D] = 3w’ — U112, < Ch* |luo|l§ < Ch2. (3.32)

1 S
e fﬂ jtn‘ u,(rydrds

& B, | i (3.33)

Before estimating (/1) we note that

s
=2l

|

" —u" | = ’

i L" (u(s)—u(" ) ds

=1

So using the Cauchy-Schwarz inequality, the arithmetic-geometric mean inequality, (3.33)
and the regularity result u, € L*0, T; (H(2))")

1 & N k ) -
I(ID)| > 7 Z U =U"M2,— Z U =U"Y_ a*—um)
n=1 n=1
1k At X
= _5 B[l —=ur™t H: > _7 % H%Hi"‘u";(ﬂ‘(g))')»
n=1 A=l
At
= ‘? “”z“/zﬁ(o,T;(Hl(Q»’) = —CAL (3.34)

We estimate (/1) by first decomposing it into two parts

k k
(V) =yAt ¥ (VU"=Vu",VI"a"—Vu")+yAt ¥ (Vu",VI"a" — V")

n=1 n=1

= (V) +(V).



Cahn—Hilliard gradient theory: Part 11 159

Noting [,n¢,(1)dr = Atu" — AtU", the Cauchy-Schwarz inequality for integrals and sums,
(3.17) and Young’s inequality, we estimate (/V,) as follows

k

k
Z J (V(/u(l),vun_v‘lhun)dt‘ < Z J |eu([)|] \un_[}zunlld[7
n=1JJ" gt

n=1 P

(VDI y =

k
SChy f le, (D], dz Jla"
=1 "

e 3 3
<chy Aré(f |eu(r)>%dz> %( f numusdr),
n-1 gh AYERW VT

1

k 5 k %
<Ch(z f eu(r)ﬁdz) (z f | |u<r>\§dr),

2

k
‘ v ‘
< )uliz(o,'l';HE(!J))_’_J |(~Ju(l)\fdl. (3:35)
v 2 )

Using Theorem 1.1, integration by parts, (3.17) and the Cauchy-Schwarz inequality for
sums and integrals, we estimate (/) as follows

VI y =

r
¥ f jVu(z).V(l"u”—u")dxdt
=l I W @

Il

k
ZJ JAM([)(M"—I”ZT‘)dxdl
= g 7% 0.5

s

k
<X f (D) " — 1", dt
n=1JJ"

‘ ;
<cxfzmé(f u(r)idz)ll(f u(r)lsdr),
i g Af2 gn

< Ch? HHH%Q((),T;HZ(Q)) < Chr?, (3.36)
9 [k:

hence (V)| <Ch+7’2"f le, (]2 dt. (3.37)
v 0

We estimate (V') using (3.17), the Cauchy—Schwarz inequality for integral and sums, (3.3)
and the regularity result ue L*0, T; H*(Q))
J )
J7L

k k
MI< Z U"IOII"J MJ uly < Ch* X U™,
1 gn g 1

n= : n=

bl

2

k
P
< Ch* Ar: > |Un|u HMHJJ‘(J”;H‘Z(Q)):

n=1

0¥

k 1/ k 5
< ChZ(Z A[|U"|é> (Z luiz(tl”;Hz(.Qn) s
n

n=1 =1

< Ch? lull 20, 7, 2@y < Ch?. (3.38)
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We estimate (V1) using (3.17), the Cauchy—Schwarz inequality for integrals and sums, (3.5)
and the regularity result ue L*0, T; H*(Q))

(VD) < At Z | ™| — T, 6 CHEAL S (W, (1@ 5

n=1

k % k %
< C/’lz(z At\W"ﬁ) (2 Hu“iZ(J";H'Z(Q») >
n=1

n=1

< CF? g2, sty S CHE. (3.39)

. 1 ; :
We estimate (VI/) using i’ ~U" = Ef e, (0)dt, (3.21), the Cauchy—Schwarz inequality
Vi

for sums and integrals, the Poincaré inequality and (3.3)

(VL] <

f (@Y= (U"=U"),¢,0)dt

N

k 2
= IU"WU“IlAt%U Ieu(f)ﬁdl),
= B

A
Ch(an" U“n)(f ” (r)i%dr)

4

Ch*

<O [ o (3.40)

The terms (VIII)~(X) are simply due to the numerical integration, so if we note that for y",

¢"eS"(1 <n < M), by using (2.7a) and the Cauchy-Schwarz inequality for sums

& cm(z Atl| Xﬂ(:%)"(z A;“w“g)é,

n=1 n=1

=" 8"

so that noting the Poincaré inequality, (3.3), (3.5), I"u" = w" +(I"u" —u"), (3.17) with
s =1, so that we are using the regularity ue L*(0, T; H*(Q)), and

1

k % k 1
<Z A[“ﬁn((f) < <Z “u“iz(I";Hi(Q))) < ”uHLZ(O,’I‘;Hi(Q)) <C i= laza
n=1

k=1

it follows that
(VIID+(IX)+(X) < Ch?.

Hence using (3.27), (3.31) and the estimates for (II)-(X), (1 < k < M), we obtain
tk t}c lk
%Heu(f’c)HglJer leu(f)ifdf—f le (Dlodt < 0(h7A1)+VVf le (D)7 dt. (3.41)
0 0 0
As (6,,1) =0, forall § >0

1
leals < Oy le, kt [le [
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hence from (3.41) we obtain

Sl 71 =3 =) f e (D d < %; f el di+ ot Ao, (3.42)

For teJ", noting the Poincaré inequality and Cauchy-Schwarz inequality for integrals

e (1) —e, (D2, = lu(r) —u(D]|%,,

" 2
< HJ\ utds
. s

So letting § = 1 —» in (3.42), using the inequality (a+6)* < (1 + D +(1+0b* (> 0)
and (3.43) yields

< Atlly, Hiz(,I":<Hl($2)>’>' (3:43)
1

%Hé’u(fk)llfl < % 2 J A+ e, (M) =€, 012+ A+ O fle, ()2 di +o(h, Ab),
Y0 1 J

L+ AR ) 1+ 9 A: N
< 0 g s+ a ™ X (POl + (kA (3.4
I ( At

Thus for A7 < 2y, there exist & close to 1 and { close to zero so that C, , = 5*% > 0,

and hence LA
N +

le (I, < C; >(( O e+ o Az)) (3.45)

’)/6 n=1

Now using the discrete Gronwall inequality, it follows that

k-1
= M,'; % Az) = o AOY 1 <k < M. (3.46)

.6 n=1

e (2, < o(h, At) exp(

For reJ*, using the arithmetic-geometric mean inequality and (3.43)

le. (D12, < 2/le, (D, + 2, (D) —e, (1)]2,,
< o, AD) +2A1]|1, |22yt 1t oy, < (R AT + CAL,
< o(h, Ab). (3.47)

For teJ*, setting 8 = v = § and using (3.47) yields

’/J le,(s)[3 ds < J e, () ds < f le. ()12, ds+o(h, A1),

< o(h, Ar). O

Corollary 3.6 For At < 2y scheme (P4 satisfies the error bound (3.25) where a(h, At) =
C(h*/At+h*+ Ar).

Proof If we note that
AI(UII—I’ L/?LAIhgn)h e A[‘{((]n, an_[}zu/n))z_F(L/fwl_ Uﬂ’ U"f]”ﬂ")"},
then we may adapt the proof of Theorem 3.5 to yield the result. O

6 EIM 3
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Remark From the proof of Theorem 3.5, it is clear that the constant in (3.25) is of the form
C = c exp"”, and since y is a small positive parameter (see Blowey & Elliott 1991), this error
bound is not effective unless # and At are sufficiently small. This may or may not be
practical.

4 An iterative method for solving (P")

Many methods to solve algebraic problems arising from discretizations of variational
inequalities can be found in Glowinski et al. (1981). We wish to use a method which
exploits:

(i) the fact that the algebraic problem arises from a discretization of a partial differential
equation,
(i) the size and sparsity of the matrices involved.

We introduce (¢,), as a piecewise linear basis for 7", where D is the number of vertices
of the triangulation, with the property that ¢i(x;) = 0,,(1 < i,j < D) where the X;’s are the
vertices of the triangulation.

Define the matrices K and M e R”*” to be

Ki]’ = (V¢iav¢7) and Mij = (¢z: ¢j)h’
and the vector e¢eR” defined by
e, = (¢, D"

We assume that M, is a diagonal matrix, M,, > 0, and write yeS" as XER” where y, =
X(x;); we hope that no confusion will arise between the two equivalent notations.

We have found it convenient to use an iterative procedure for solving double obstacle
problems based on the method of duality. A similar method for solving a single obstacle
problem with an integral constraint was used by Chakrabarti (1988).

It is convenient to observe that the algebraic form of (2.5a, b) is as follows. Given ve R”
such that

e"v=0, 4.1)
find ¢ e R” satisfying

Kb = My, (4.22)
and et =0. (4.2b)

There exists a unique solution & to (4.2a, b) and this implicitly defines the strictly coercive
linear vector-space operator G:Sy—= S, = {veR":e"v = 0} defined by

= Gu. (4.3)

1S5

Since & = 9} v, (2.15) gives us a norm inequality for these matrices: — for & > 0

o My < éQTKQ +gy'l'KQ. (4.4)

If we note that ye S" can be written as
D
x(x) = Ty, pdx),
i-1

and W" = -4 (QU")+A", where A" = (W",1)"/|Q|, then (P! may be written as:
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Given UeR", where |U}| < 1(1 <i< D) dnd e"U" = m, for each n > 1 find {U",A"} e
R” x R such thatVyeR”, where Wz\ <1(1<ig< D),

D

T (yUPKy,— Wi My, — UP M, — A", M) (g,— UP) = 0, (4.52)
i.j=1
1
I o n__ Un—l .
p G(At(l_] U )), (4.5b)
g'l'gﬂ = m, (45C)
UM <1 for (1<i<D), (4.5d)

where 1 is the vector with 1 in each component and U° = u".
It is convenient to set

R'=M"'(yKU" — MU" — M(5" + \"1); (4.6)
it follows that (4.5a) may be rewritten as

(MR")" (3—U") = 0. 4.7
Fixing / and taking B

(U?’”’ lf / :‘: l.’
}/. = )
' 12U;‘—sgn (U}),sgn (U) and U'—sgn (U}, if j=1i,

respectively, in (4.7) yields
M, R}(U}'—sgn(U}"))

>0V
M, RXsgn (UH—=U") =0V
—M, R sgn(U") =0V

which implies that

M, RHU!—sgn (U]")) =0V, (4.7a)
M, sgn (U R'<OVi (4.7b)
Further, if the vectors R” and U”" satisfy (4.7a, b) and |U}'| < 1, then:
Ur=1=M,R'p—U =0Vl <1,
U'=—1=M,R!n,—-U"=0V|y| <1,

UM < 1= M, R =0.

It follows that (4.5a-d) is equivalent to the following. Given U"e R”, |U?| < 1 Vi, for each
n>1find {U", R", A"} e R” x R” x R such that

R'=M " (yKU"—MU"— M(i" +A"1)), (53]
M, R} (U!—sgn (U}")) =0Vi, (4.8b)

M, sen (U R <0V, (480)

W = *G<;(U” anl)>’ (48d)

U™ = m, (4.8¢)

UM <1 for (1<i<D), (4.81)

where U’ = ull.
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Proposition 4.1 Let p be a given positive constant. Suppose that for n fixed {u,r,A}e
R” x R” x R satisfy

yKu—Mu—MGb+A1) = Mr, (4.92)
8= =6, w-0), (490)
e'u=m, (4.9¢)
r=(—pu—1D) +—pu+)’, (4.9d)

where (4.9d) is understood componentwise, (x)~ = min(x,0) and (x)* = max(x,0). Then
{U", R", A"} solves (4.9a—d) and {u,r, A} solves (4.5a—d).

Proof Let 1 < i < Dbefixed, if we note that either (r,—p(u;—1))” = 0 or (r,— p(u;+1))" = 0,
then it follows from

r,=(ri—p— 1)+, —pu; +1))" (4.10)
that
if r,>0 then wu,=-—1, if u,=—1 then r,>0,])
if r,<0 then wu,=1, and if wu,=1 then r, <0, (4.11a-f)
if r,=0 then Ju|<1, if Jul<1 then r,=0.
Hence
M;r(u;—sgn (u;)) =0, (4.12a)
M;; sgn (u)r; <0, (4.12b)
RN (4.12¢)

Likewise, it is easy to check that if u; and r, satisfy (4.12a—), u,, r, also satisfy (4.10). []

Remark From (4.2a) and (4.3)

1 n-1y | _— 1 = TT0-1
KG(E(g—(_J ))‘M(E(ﬂ U )),

and since K has a simple eigenvalue of 0 with corresponding eigenvector 1, it is easy to show
that if u solves

1
yM’lKM’lKu—FKZ(g—Q”‘l)—M”IKQ = M Kr, (4.13a)

r=[F—pla— 1))+ —plu+ 1)), (4.13b)

then u solves (4.9a-b). Also, premultiplication of (4.13a) by 17"M = e” yields (4.9¢). If we
multiply (4.9a) by M KM~ then we obtain (4.13a); that is, the two formulations are
equivalent. O]
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A natural iteration to solve (4.9a-d) is the following:

(4): Given (U4 #") for k=1 find {u* r* A%} such that

vKu* — Mw* — Mu* — M1 = Mt (4.14a)
1
0 = Gt - U, (4.14)
Tut = m, (4.14¢)
£ = (=l — DY+ — pl + D) (4.14d)

We first show that the sequence is well defined. For Ar < 4y existence is proved by
consideration of the unconstrained minimization problem:

Find u"e€ R” such that e”u* = m and

Juy = min  J(y), (4.15)

XERDZgl x=m

:Z T K _]_ On—INT /;n,fl‘l T (R INT 4
where J(y): X KXJrZAz(X ) Ky 5X My— ("1 "My,
and y"' = G(y—U"""). From (4.4) for A1 < 4y, J(.) is bounded below, hence the existence
of a minimizer u* is proved by standard arguments. The associated Euler-Lagrange
equation is

1
ngk—f—X[MG(g"”—U'")—Mgk—ﬁ"Ml: M, (4.16a)
where Af = —ﬁ(m+(r""l, ™). (4.16b)

Uniqueness follows for At < 4y. So u* and A* are well defined, and from (4.14d), r* is well
defined.

Theorem 4.2 For 0 < p < 2C, where C = C;*(y—At/4), the sequence {u*} defined by
(4.14a—d) converges to u the solution to (4.9a-d).

Proof We have adapted the proof for the method of duality from Glowinski ez al. (1981).
If r,#¥ = 0 then from (4.9d), (4.14d) and the inequalities

)" =T < Ix—=yl, 1) =)< Ix—yl,

it follows that
|r?\ri‘ < Iri'hl *ri_p(uf*uz')L
If r,rf <0, let us take r, > 0 and rf <0, then
0> rbr = r = (= )= (1= plou+ ),

=i —r—p(uf —u) +2p = rF T —r,— p(uf —u,);
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likewise, a similar inequality holds when r, < 0 and r* > 0. Hence

(e —r")"M(r—r) = Z My(r,— )",
S Z M (=i = plu,—up))%,
=X My(ri—=r{) =2 Z M, =) (r, = i)
0 M — 1)

= (=" M(r—r*") —2p(u—u")" M@z —r")
+p*(u—u")" M(u—u*).
Now noting (4.14d), (4.9a), using (4.4) with § = Ar and v = u—u* and (4.2a) we obtain

- 1
U—u)"M@r—r"") = y(u—u*)"Ku—u")+ v (u—u")"MG(u—u*)
—(u—u")"M(u—u),
At
2\ y—7 | =) Ku—u), (4.17)
so the discrete Poincaré inequality (2.9) implies that
(u— )" Mu—u*) < Ciu—u*)"Ku—u"),
and we deduce that

(=" Mr—r*) < =)' Mr—r*)—QCp—p®) (u—u*)" M(u—v*), (4.18)

where C = C;3(y—At/4). For 0 < p < 2C, (r—r* )" M(r—r*") is a decreasing sequence
which is bounded below, hence r} —r¥. So if we let k—o0 in (4.18), it follows that

(u—u")"Mu—u")-0 as k—oo,
that is ¥ - u,. Let ko0 in (4.14d); then by continuity
r* = (*—pu—1) +(*—pu+1)",
and letting k —>o0 in (4.14a), we obtain A* — A* such that
vKu—MWw—Mu—2A*M1 = Mr*,

1
p=——Gu—U"71).
w 0 (a—u"")
Hence {u, r*, A*} solves (4.9a-d). O]

Remarks If we take the previous remark into account, then it is easy to show that the
algorithm (4.14a—d) is equivalent to: Given (U" ™, r°) for k > 1 find {&*, r*} such that

1
yM KM ' Ku* +Z—l(g’“ —U"Y)— M Ku* = MKr*?, (4.19a)

rF =" —p* - 1) + (@ —p* + 1) (4.19b)
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FIGURE 1. Right angled triangulation when @ is a square.

After the completion of this work, the authors discovered a superior algorithm for the
solution of (P! based on a splitting method for the sum of two nonlinear operators, due
to Lions & Mercier (1979). J

5 Numerical simulations
5.1 Introduction

We sketch out a numerical method for solving (4.19a) in two space dimensions on a square
in a single step; the method can also be adapted to one and three space dimensions. We
have modified a method from French & Nicolaides (1989) which uses the discrete sine
transform to solve a pair of coupled linear equations with Dirichlet boundary data.

Let 2 = (0,1)x (0, 1) and lay down on N x N uniform square mesh on €2 with vertices

(xny) = (hjh), i.j=0,1,2,....N, h=1/N.

We now choose the triangulation for Q, in which each subsquare is bisected by the north
cast diagonal (see figure 1). For computational convenience the inner product (.,.)" is
defined by

9 = J IT"(x() () dx.
2

where IT"v is the piecewise bilinear function on Q which interpolates v at the nodes (x,, y;),
(Xi 1)y (6 pi) and (X 1. p5,) (7 =0,1,...,N—1); in one space dimension we use the
piecewise linear interpolant. The resulting matrix M 'K has eigenvectors and eigenvalues
given by (¢,,.4,,), where
¥, (i,J) = a(p. q) cos (pimh) cos (gjmh),
A,, = (4—=2 cos pmh—2 cos qmh)/h*,
l if p,gEOmodN,
aup,g)=1{1/2 if p=0modN or g=0modN and not both,
1/4 if p,g=0mod N,
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and the vectors {¢/,} form a basis for R¥*' x R¥**. We may thus express U™, r* ! and u*
as
A7
Ui = D ¢ ¥r(6))s

»,q=0

N
rg = 2 At ), (5.1)

»,q=0

3
uic] = Z CIICNI wpq(l’])

»,q=0

Substituting (5.1) into (4.19a) yields

e I L - g - . . 3
= (B(C];q_cgql)‘*_y’\ia C];)qx/\pq 0}724)1/,7”41(1’]) =2 /\pq d(;qllﬁm(l’])’ (5'2)

»,q=0 p.q=0

so because i/, forms a basis and 1+yAts*—Azs > 0, for Ar < 4y(seR), (5.2) can be

rearranged to obtain

o e, AL

ko S - - 5.3
0 T T yAE, — AN, Pl

So the implemented algorithm A,,,, comprises the following steps:

Given pointwise values of (U" %, %) we calculate

The discrete cosine transform of U" L.

The discrete cosine transform of r*7'.

Compute ¢%, via the formula (5.3).

Apply the inverse discrete cosine transform to obtain u*.

Update r* ! using (4.19b).

Repeat steps 2-5 until ||#*—r*""| is smaller than a prescribed tolerance &,,.

Oy AL i 19 (B =

The operation count to update u* is O(N*log, N); in one dimension the operation count
to update u*is O(N log, N). In the following three subsections we report on some numerical
simulations in one and two dimensions which were carried out in double precision on a
Sequent Symmetry S81; we did not use the parallel processing facility.

5.2 Numerical tests

We start by giving an account of some experiments to test the error estimate (3.25). We note
that in any space dimension

(10 = [ Paends = [ xwax= o,
Q Q
In particular, this form of numerical integration is used in the algorithm A4,,, in one
dimension, described in the previous subsection; hence the error estimate is valid for the
one dimensional experiments which will follow.
As no exact solution is known, a comparison between solutions U™ on a coarse mesh
with a solution #” on a fine mesh is made at fixed time intervals. We take At = O(h?) < 2y
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Table 1 Testing the error bound

h Test 1 error  Test 2 error
24 0.077658 0.15530
275 0.010215 0.02888
26 0.002228 0.00678
2 0.0004380 0.00137

so that o(h, At) = Ch?. The data used in the experiments is 2 = (0, 1),y = 0.005, h = 1/N
where N=2, (j=4,5,6,7),T = 0.075, 8,, = 1.0x 107" and Ar = 1.92/* for the coarse
meshes; for the fine mesh we take the same data, except N = 2°. The initial data was chosen
as follows: we took the solution of the problem (P*) at T = 0.40 and 0.115 where h = 2%
and

h

Uy =

., B .
{P (0.01 cos 7x—0.6) in test 1, (5.4)

P"(0.01 cos 2mrx—0.6) in test 2,

respectively. This solution was then interpolated onto the coarser mesh and used as initial
data to initiate the error tests; in each of the error tests, on each of the meshes, after one
time step there existed a mesh point where |U'| = 1. We compute the quantity

M
ety ac— (]Iz.A/HiZ(O.T;IH(Q)) R X At — Ukﬁ ~ o(h, A1),
k-1

where U, ,, is given by (3.23) and u, ,, is similarly defined for the sequence {u«*}. The values
for this quantity are given in table 1 below. Notice that the results in the table agree with
the proven error bound which, if sharp, implies a ratio of 4 in successive values.

On the basis of experimentation and lacking any theory, we used an empirical rule for
choosing p which was found to be satisfactory. An automatic adjustment of the relaxation
factor p was incorporated into the algorithm A,,,, the rule being as follows:

p is increased when A,,,, has converged only if the sequence {|r* —r*'||} was strictly
decreasing and a large number of iterations were required;

pisreduced only if a few terms in the sequence {|[r* —r*~'|| .} are larger than the preceding
term.

As the simulation is expected to take a large number of time steps to reach a stationary
solution, it is easy to see that the number of computations become expensive as i becomes
small.

It is worth while reviewing some of the results of Blowey & Elliott (1991, §3) concerning
the nature of stationary solutions {u, A} satisfying (3.13). We briefly summarize some of the
results. In one space dimension on the interval (0, 1) we can classify all of the stationary
solutions. The solution is C"! and is one of the following mutually exclusive types:

1. Piecewise + 1 or — I except on disjoint intervals (x,, x, +7/v), x, €(0, 1 —m+/y), where
u(x) = cos(x—x,)/+/y and A = 0;
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2. Without loss of generality, u is + 1 and any combination of

(i) u(x) =(1+A)cos (x—x,)/v/y—A on (x,,x,+2m/y), where x, (0,1 —2m+/7y).
(i) u(x) =—(14+A)cos x/+/y—A on (0,74/7y).
(iii) u(x) = (1 +A)cos(1—mvy—x)/v/y—Aon (1—my/y,1).
A < 0 is determined from the mass constraint (m > 0);
3. u(x) =morify=1/(n%), u(x) = m+acos x/+/y where |a| < min{l —m, | +m}.

It was also shown that the functional

1.
&) = %J (2 +1—u?)dx,
0

is minimized when the measure of the interval on which |u(x)| < 1 is minimized. In two
space dimensions, radially symmetric stationary solutions were constructed using Bessel
functions, where A = 0.

Our choice of a spatial mesh size is guided by our expectation of the width of the
interfacial region. We expect the width of a stationary solution with a single interface in one
dimension to be 774/y. This suggests that for the simulations to approximate the interface
of a stationary solution well, we need 7 < Cy/y. In a recent paper by Bellettini ez al. (1990),
for h = o(y%) they prove the I'-convergence of any discrete sequence of minimizers of

97%”(0) = f

Q

[y% Vol + 1 (1 — o) —7—271’L(Ky v)] dx,
’)/’2

over the set {ve K":v =1 "gy on 02}, to a piecewise constant function whose interfaces have
a prescribed mean curvature and contact angle with the boundary 0@ (x, and g, are,
respectively, functions related to a mean curvature and contact angle with the boundary
Q).

5.3 One-dimensional simulations

If the initial data is strictly less than one in magnitude, then the variational inequality
reduces to the equation
Uy = = YUpppp — Uy 0<x<1,

with boundary conditions

1,(0,%) = u, (1,0 =u,,(0,0) =u,. (1,0 =0,

zraxx

until the solution reaches one in magnitude. Thus for a short time
[e o]
u(x,t) = m+ ¥ ¢, exp ’»" cos prx,
p=1
where ¢, = 2 [ u, cos pmxdx and
o, = p*n*(yp*n* —1). (5.:5)

We see from the dispersion relation (5.5) that the Fourier components with p* > 1/(yn*) are
damped out and the maximum growth rate is associated with p% ~ 1/(2y#?*). Similarly,
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Table 2 Initial data taken in one dimensional simulations

Simulation Initial data Figure m =
| 0.05rnd (x) 2 0
2 0.05rnd (x)—0.6 3 —0.6
8 P"(0.01215 (—1)" cos 2mkx—0.6) 4 —0.6
4 P" (—0.005 cos 2mrx—0.95) 5 —0.95
5 P" (0.005 cos 2mx—0.95) 6 —0.95
6 P" (—0.005 cos mx —0.95) 7 —0.95

denoting by u” the value of the finite element approximation at the time level 1" = nAt and
mesh point x = ih (0 < i < N), we have the equation

n n—1 n n n
u; — U, 04 —ul  42u—u

[ [ — f__ no__ n R | . i—1 i i+1
TA; gt T +4ul | —6ul + Al —ul )+ i

where 1, = u, u_, = Uy, = Uy_, Uy, = Uy_,, until the value at a mesh point breaks
the magnitude one. Thus for small time

Nl [VAI Jphm At phm

u'=m+ Y £ |——16sin
op

= i T sin 5 +1} cos pmih

vyAt At =1y
+§\v[l6h‘4h2+l} 5 (5.6)

N-1
where =4l + ¥ u) cos kmph+3l (=1 (p=1,...,N).

D
k=1

We see from the discrete dispersion relation (5.6) that the discrete Fourier components with

. prl | .
smf?> (h/4y): are damped out, and for i small enough the maximum growth rate

is associated with 1/(2y#?); if applied directly when y = 0.005, the maximum growth rate
is for the discrete mode cos 37ik; for p = 5, the amplitude of the mode cos pmih decays to
Zero.

In all of these simulations Q = (0,1),y =0.005, N =100, Ar=y, T=10, ¢,, =
1.0 x 107 In each experiment the initial data u/ was taken to be a perturbation of a uniform
state (see table 2), rnd(x) generates a random number distributed between — 1 and 1 at cach
node of the triangulation ; the solutions were plotted out at time intervals of 0.2, that is
every 40 time steps.

In the first two simulations, we expect the high frequency oscillations to be damped out
before linear growth ensues, as discussed in the beginning of this subsection. In simulations
3-5. the initial data is even, and in simulation 6 the initial data is odd about the line x =
0.5. The initial data in simulation 3 has many high frequency modes which will decay whilst
low modes, namely 2 and 4, grow and dominate all other modes; the large oscillations in
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FIGURE 6. One dimensional simulation 5. FIGURE 7. One dimensional simulation 6.
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the initial data play no part as they quickly decay. In simulations 4-6 there is only growth.
For each simulation we have overlayed the discrete solution with an exact continuous
stationary solution, as given in the previous subsection; O denotes the value at the mesh
point for the continuous stationary solution.

We judged that we had a discrete stationary solution if we met all of the following
criteria.

® Only one iteration was required to solve the algorithm A,,,, at each time step.

® The computed discrete chemical potential W™ was constant up to the prescribed
tolerance 4, ,.

@ The computed stationary solution persisted for a large number of time steps.

The final discrete stationary solution obtained in simulation 2 is an approximation of the
minimizer of £. In simulation 1, the computed stationary solution has three interfaces; the
continuous analogue of this stationary solution is not the minimizer of &. If the early stages
are analysed more closely, then the cosine mode which dominates all others is the maximum
growth mode, cos 37x. When |U]"| = 1 for some mesh point, the point expands to a domain
which grows whilst the interfaces sharpen, which explains the stationary composition that
is obtained.

The final stationary solutions obtained in simulations 3-5 are not approximations to the
known global minimizer of &; however, since the initial data taken is even, the solution is
even for all time. The discrete stationary solutions obtained in these simulation appear to
be of type 2(i), (ii), (iii), described in the previous subsection. The computed stationary
solution observed in simulation 6 is close to the known minimizer of & for this value of m.
Simulations 3-5 can be considered from an alternative point of view. Since the initial data
is symmetric about the line x = 0.5, solving the problem on the half interval (0,0.5) is
equivalent to solving the full problem on (0, 1). In the continuous problem, the minimizer
on the interval (0,0.5) is given by the monotone solution where the length of the interval
on which |u] < 11s v/y. This is the case in simulations 3-5, where on the interval (0, 0.5)
the discrete stationary solution is monotone. Consequently, the computed stationary
compositions obtained are close to the known even minimizers of &.

A particular point of interest which arises from these simulations is that, however large
m is taken to be, growth followed by phase separation always ensues. Then over a large
period of time, the domains where |U”| = 1 grow and shrink as the interface migrates and
disappears. These two phenomena are also observed in the two dimensional simulations
that follow.

A question which was not addressed in Blowey & Elliott (1991) was the nature of stability
of the stationary solutions solving (3.13). A similar problem of finding #€ K such that
VyekK

vy(Vu, Viy —Vu) —(u, 5 —u) = 0,

has been studied by Chen & Elliott (1991). They have obtained results about the stability
of all of the one dimensional stationary solutions with respect to the evolutionary problem

u(tye K:(u, n—u)+y(Vu,Vy—Vu) = (u,n—u) Vye k.

In particular, steady state solutions of the form depicted in figure 2 were shown to be stable.
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We have been able to prove that for most type 2 stationary solutions there are directions
which decrease the energy of the Lyapunov functional &. For instance, consider the
continuous stationary solution

—A—(1+2) cos —— on (0,7v/v],
vY
u(x) = —A+(1+A)cos X_/,x" on (x,,x,+2m/v], G.7)
1 otherwise,
where vy < x, < 1 =27y, — | <u(x),A <0 and (u,1) = m > 0. Define
X ,
( -2(005 / + 1) on (Oaﬁ\')/L
vy
n(x) = — 5.8
—(cos e /X"— 1) on (x,,x,+2m/y], (58)
VY
0 otherwise,
and take || < p* =1imin{—A, A+ 1} so that for all |u| < p*
lu+puyl <1, (utpy, 1) =(ul). (5.9)

Then simple calculations reveal that for all 0 < |u| < u*
E(+un) = E(w) =3 myy < E(u),

suggesting that this stationary solution is unstable. This instability was borne out in some
numerical experiments, which we briefly describe. After some time, a discrete analogue of
(5.7) was obtained. This persisted for a large number of time steps; each time step required
a large number of iterations for A4;,,, to converge. Eventually, the composition evolved into
either a monotone discrete stationary solution or a discrete single humped stationary
solution.

5.4 Two-dimensional simulations

We first discuss two simulations with data differing only in their initial conditions. In each
case y =0.0032, Q=(0,1)x(0,1), N=64, At=v, §,,=50x107 and the initial
condition was taken to be a random perturbation, with values distributed between —0.05
and +0.05, of the uniform states u, = m, where m = 0 and m = —0.704, respectively. The
results are graphically displayed in figures 8(a—f) and 9(a-d); at (x,, y;) we denote a O to
mean that U, = 1, a * where Uj; = — 1, and a blank space where |U}j| < 1. Each simulation
was continued until we observed a computed stationary solution which fitted the following
criteria. Only one iteration was required to solve A4,,,, at cach time step; the discrete
chemical potential W™ was constant up to the prescribed tolerance &,,; the discrete
stationary solution persisted for a large number of time steps. The choice of the tolerance
§,, in the iteration was guided by the need to have reasonable computing time in order to
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FIGURE 10. (a) T = 0.08; (b) T = 8.0.

remaining parameters were taken to be the same as above, except that at each node (x5 )
(0 <i,j < N) of the mesh, the initial data was given by

| if r<r,
ug(x,, y) = A\ 1=2(r—r)/(r,—r) if r,<r<r, (5.10)
—1 if r,<r,

where r = ((x[—0.5)2+yf)5, 11 =0.32 and r; = 0.36, so that (!, 1) ~ 0. We observe that
when m = 0:

(1) as y > 0 there always exists a continuous stationary solution consisting of strips;
(ii) the length of the interface is minimized by a strip solution.

We performed the test when y = 0.0002, 0.0008 and 0.0032. The only discrete stationary
solution which was a perfect strip was for the value y = 0.0032; the other two discrete
stationary solutions had an interface which had a small and differing amount of curvature,
and appeared not to be approximations to any continuous stationary solution.

A further simulation was performed where the initial data taken was precisely the same
as in the first simulation of this subsection (so that ! was a random perturbation +0.05
of the uniform value m = 0), but y was taken to be 0.0002. The behaviour in the early stages
was similar to the previous simulation for larger y (figure 10(a)), where a lamellar structure
forms. However, the corresponding computed stationary solution was such that Q" the
domain-where |[U"| < 1, consisted of a strip Q%, together with a quarter annulus Q" (figure
10(b)). We conjecture that this is a spurious solution in the sense that it is an artefact
of the numerical scheme, and is not an approximation of an exact solution of the partial
differential equation. It occurs because /i is too large for the accurate resolution of the
moving interfacial region. In one dimension the exact stationary solution with one interface
is a cosine and A = 0, whereas in two dimensions the exact radially-symmetric stationary
solution with one interface is a Bessel function and [A| > 0. Since A is constant throughout
€, we cannot have such exact solutions coexisting. This is compelling evidence that the
computed stationary solution in figure 10(b) arising from the discretization with y = 0.0002
is indeed spurious. Across the width of the interface, we note that there are only one or two
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mesh spacings. It is clear then in order to resolve the interfaces, we need sufficient mesh
points in the interfacial region.

5.5 Concluding remarks

1. In the early stages of all experiments when |U"| < 1, one iteration was required for the
algorithm A,,,, to converge and solve the linear problem.

2. With our numerical experiments, no problems were experienced with respect to the
convergence of the algorithm. In the earlier stages of the two dimensional simulations
when |U"| = 1 for some i, there were many variations in U", so the average number of
iterations, > 100, was larger than in the later stages, 50-100, and in the very late stages
very few iterations were required.

3. It was noted previously that if the initial data is non-constant, where |m| < 1, then phase
separation always ensues. This contrasts with the Cahn-Hilliard equation, where for m
outside the spinodal interval, initial data with nucleation centres are taken to obtain
phase separation (Copetti & Elliott 1990). The reason for this difference is that in this
model the whole interval (—1, 1) is the spinodal interval.

It may be of interest to the general reader to view some real experimental data obtained
by material scientists, thus we refer to Cerezo er al. (1989) for the spinodal decomposition
of an alloy obtained using a position-sensitive atom probe.
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