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The Cahn—Hilliard gradient theory for phase
separation with non-smooth free energy
Part I: Mathematical analysis

J.F.BLOWEY and C. M. ELLIOTT

School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, UK
(Received 26 October 1990)

A mathematical analysis is carried out for the Cahn—Hilliard equation where the free energy
takes the form of a double well potential function with infinite walls. Existence and uniqueness
are proved for a weak formulation of the problem which possesses a Lyapunov functional.
Regularity results are presented for the weak formulation, and consideration is given to the
asymptotic behaviour as the time becomes infinite. An investigation of the associated
stationary problem is undertaken proving the existence of a nontrivial stationary solution and
further regularity results for any stationary solution. Stationary solutions are constructed in
one and two dimensions; a formula for the number of stationary solutions in one dimension
is derived. It is then natural to study the asymptotic behaviour as the phenomenological
parameter y -0, the main result being that the interface between the two phases has minimal
area.

1 Introduction

When a binary alloy (or mixture), comprising of species A and B, is prepared at a uniform
temperature 7;, greater than the critical temperature T, the system is stable with mean
composition u,. Suppose now that the temperature is quenched (rapid reduction of
temperature) to a temperature 7,, less than 7.. Then experimentally one observes that the
concentration u(x, t), i.e., the difference between the mass fractions of each of the two
species, of the alloy changes from the uniform mixed state to that of a spatially separated
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FIGURE 1. Free energy of the system below the critical temperature.
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FIGURE 2. Phase diagram for a binary alloy.

two-phase structure, each phase being characterized by a different concentration value
which is either , or u,. The kinetics of this decomposition is called phase separation. We
refer to Cahn & Hilliard (1958, 1971) and Cahn (1961). (See also the reviews by Gunton
et al. 1983 and Skripov & Skripov 1979.)

A phenomenological theory describing the above is provided by consideration of a free
energy yr(u, T'), where for T> T, ¢, (u, T) >0 and for T < T}, ¢, (u, T) < 0 in just one
interval [u},u;], called the spinodal interval (see figure 1). Connected with this description
is the phase diagram depicted in figure 2. The spinodal curve B is the locus of points where
Yuu(u, T) = 0. Above the coexistence curve «, any uniform concentration is stable. Below
the spinodal curve, the state (u,,, 7,,) is unstable, and the alloy separates into two values
characterized by the values u, and u,, where the line T = T}, crosses the coexistence curve.

In order to model surface energy of the interface separating the phases Cahn & Hilliard
(1958) modify the free energy by adding the gradient term yIVu?/2 where y > 0 so that the
free energy becomes

¥ = )+ 2y Vad?, (1.1)

and () is called the homogeneous free energy. Van der Waals (1893) had previously used
gradients to model the surface energy of the interfaces separating phases. The
Cahn-Hilliard—van der Waals model for the equilibrium description of phase separation is
thus to find

min  &,(u)

subject to J u(x)dx = u,,|Q|, (1:2)
Q2
where &,(-) is the Ginzburg-Landau energy functional
Efu) = %yf IVu)de+f Yr(u)dx. (1.3)
2 Q2

It is noteworthy that the generalized chemical potential w is the functional derivative of &,

w = ' (u) —yAu. (1.4a)
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FIGURE 3. Non-differentiable homogeneous free energy for three different values of 7.

The mass flux is given by — MVw, where M is the mobility, so that the generalized
diffusion equation for this non-equilibrium gradient theory of phase separation is (Cahn
1961)

Qu/dt = V- (MVw). (1.4b)

(1.4a, b) can be written equivalently as
Qu/dt = V- MV (u)—yAu)), xeQ,t>0. (1.5)

This fourth-order in space, nonlinear time-dependent partial differential equation is called
the Cahn—Hilliard equation. For a closed system there is no mass flux so that

M(Vw)'n=0 on 09, (1.6a)

and for the other boundary condition we take the natural boundary condition associated
with the variational problem (1.2),

y(Vu):'n=0 on 0Q. (1.6b)

The initial boundary-value problem for a closed system is then to solve (1.5) subject to
the boundary conditions (1.6a, b), and the initial condition

u(x,0) = uy(x), xef. (1.7

The form of u,(x) that is of interest in modelling the quenching process described earlier
is

Uy(X) = 1y, + £(x), j E)dx =0, [E(x)]<1. (1.8)

The solution to the initial value problem satisfies

dé,(u) = f [ () u,+yVuVu,]dx = J

wu,dx = -J M|Vw|*dx, (1.9a)
d¢ & G

EJ udx =0, Ju(x,t)dx=f u, dx. (1.9b)
d‘t Q Q Q
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FiGURE 4. Phase diagram for non-differentiable homogeneous free energy.

This is in accordance with the requirement for this model of kinetics of phase separation
that the evolution of a non-equilibrium composition is to a composition of lower energy
whilst conserving the mass. Indeed, it is natural to ask the questions: does the time-
dependent solution to the initial value problem converge to a minimizer of the energy as
t— o0, and if we were to let v -0 for a sequence of minimizers, would the measure of the
interface be minimized?

A fuller description of the above, and some further considerations, are given in a review
of the mathematical and numerical analysis which may be found in Elliott (1989).

Up to this point we have assumed that the homogeneous free energy i is differentiable
in u. We now consider ¥ to be of the form

Y(w) = (0, T)—3kT u* + 2k T[(1 —u) log, (1 —u) + (1 +u) log,(14u)] (1.10)

(see figure 3), where k is Boltzmann’s constant, T is considered as a parameter, (0, T) is
continuous in 7" and the concentration u varies between the values + 1, which correspond
to either atoms of type A, say, or type B. This form of the free energy was suggested by Cahn
& Hilliard (1958), where
(0, T) =2kT —kTlog,2.
Since
1 kT

1//’(u) —’—‘»—k];u-‘f-%kTIOge[I——f—Z], Qﬁ”(ll) Z*—kT;-FTt;E, (111)
it follows that for T'> T, ¢ is a convex function on (—1,1), and for T < T, ¢ has
the required double-well form. The values u, and u, defining the minima of ¥ (-) are
u, = —u, = 3, where J is the positive root of

2T/ T = log[(1+ )/ (1 =)}/ (1.12)

Furthermore, the spinodal interval in which /() is negative is (— (1 — T/ T))t, (1 — T/ T))?)
(see figure 4 for the phase diagram associated with ¢). So, in summary, this free energy has
the desired properties described above.
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FIGURE 5. Homogeneous free energy under consideration.

For T close to T, we may approximate () by the simple quartic polynomial retaining
the double well form, namely

Y) = jo® — §7)°. (1.13)

It is in this form of i that the Cahn—Hilliard equation has been widely studied from the
analytical and numerical point of view (cf. Elliott & Zheng 1986; Novick-Cohen & Segel
1984; Copetti & Elliott 1990). A mathematical analysis for arbitrary polynomial ¥ has
been carried out by von Wahl (1985), Témam (1988) and Nicaelenko et al. (1989).

We consider a limit corresponding to a deep quench for which 7/7, < 1. it is clear that
as T/1,— 0, the spinodal interval expands to (—1, 1), and ¥” tends to a constant. For this
reason, we study the homogeneous free energy depicted in figure 5 given by

—u®) ifful <1,
Y(u) = { ‘ (1.14)
+ 00 if jul > 1.
This form of the free energy has been proposed by Oono & Puri (1988), who performed a
numerical study of a discrete cell dynamical system.

The Ginzburg-Landau energy functional &(-) is still defined by (1.3), but since &,(-) is
now non-differentiable, the definition of the generalized chemical potential formally
becomes

w+yAu+uedl(u), (1.15)

where OI(+) is the subdifferential of the indicator function /() of the set [—1, 1].
Rescaling x and ¢, and taking the mobility to be a constant, we are led to the following
free-boundary problem:

Given y > 0 find {u(x, f), w(x, £)} such that on Q, = 2 x(0,T),

du/dt = Aw, (1.16)
(Il = 1) (=yAu—u—w) =0,
(yAu+u+w)signu = 0, (1.17)

lul <1,
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and |u| = 1, Vu = 0 on the free boundary, subject to the initial and boundary conditions
u(x,0) = uy(x) for xeQ, u/dv=0dw/dv=0 on 3Q, (1.18)

where 002 is smooth. This corresponds to the chemical potential being
w=—yAu—u, |u<I1. (1.19)

This problem can be studied with periodic boundary conditions.

We now give a brief description of the contents of this paper. In §2 a global existence
theorem for a weak formulation possessing a Lyapunov functional is proven. Regularity
results are presented for the weak formulation, and consideration is given to the asymptotic
behaviour of u(x, f) in time.

In §3 an investigation of the associated stationary problem is undertaken, proving the
existence of a non-trivial stationary solution for y small enough, and further regularity
results for any stationary solution. Stationary solutions are constructed in one and two
space dimensions; a formula for the number of stationary solutions in one dimension is
derived. It is then natural to study the asymptotic behaviour as y—0 of a sequence of
minimizers of &) over the set where the mass is fixed and modulus is less than or equal
to one almost everywhere. In particular, the existence of a sequence of minimizers which
converges to a function in L'(Q) is proven. The limit is piecewise + 1 a.e. with the interface
between the two sets having minimal area. Moreover, the associated sequence of Lagrange
multipliers for the sequence of minimizers converges to 0 at a prescribed rate. These results
are an application of the theorems of Modica (1987) and Luckhaus & Modica (1989).

Remarks This problem also arises in the study of the Stefan problem with surface tension.
It corresponds to a model proposed by Visintin (1984, 1989) where u denotes the phase
parameter, w the temperature, and the specific heat is zero. An existence proof for a weak
solution of a related initial boundary value problem is given by Visintin (1984).

After this work was completed, Elliott & Luckhaus (1990) then showed that (1.5),
(1.6a, b) and (1.7) have a unique solution with ¢ given by (1.10), and that as 7/7,— 0 this
solution converges to a solution of (1.16)—(1.18).

2 Evolutionary problem
2.1 Existence and uniqueness

Throughout, 2 denotes a bounded domain in R? (d = 1,2,3), we denote the norm of
H?(Q) (p = 0) by | -|l,, the semi-norm | D?y|, by |5|, and the L*(Q2) inner-product by (., .).
For d = 2,3 we assume that 0Q is Lipschitz continuous.

We introduce the Green’s operator %, for the inverse of the Laplacian with zero
Neumann boundary data: given fe # = {fe (HY(Q)) : {f, 1) = 0} we define %, fe H'(Q) to
be the unique solution of

(VG £, V) =fim> Ve H(Q), (2.1a)
@ 1) =10, (2.1b)

where <., .> denotes the duality pairing between (H'(2))’ and H*(2) such that
L=y YSfeLX Q). 2.2)
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The existence and uniqueness of %, f follows from the Poincaré inequality

Inle < Coll(p, DI+Inl} Vye H(Q), (23)

and the Lax-Milgram theorem.
For fe # we define
11y = 190 S (2.4)

and note that if fe & n L*Q) then
s = G f R (2.5)
For fe 7 n L*(Q), the Poincaré inequality (2.3) and (2.5) yields
1A12s < 1f16l%x S 1o < Colfld%a S 1y = Calfloll £l
so that 11y < Colfle- 2.6)
Given y >0 and u,eK={neH'(Q): —1 <9 <1} with m= (u,,1)e(—|2],|2]), we
consider the problems (P) and (Q) defined as follows:

(P) Find {u, w} such that ue H'(0, T; (H*(22))") N L*(0, T; H(2)), ue K for a.e. te(0, T') and
we L*(0, T; H(Q))

Qu/ot,yy +(Vw,Vy) =0 Vye HY (Q), ae. te(0,T), (2.7a)
y(Vu,Vyp—Vu)—(u,p—u) = w,9—u) Vyek, ae te(0,7T), (2.7b)
and u(0) = u,. (2:7¢)

(Q) Find ue H'(0, T; (H'(2))) n L*(0, T; H'(Q)), ucK,, for a.e. te(0, T) such that

Y(Vu,Vip—=Vu)y+(9, ou/ot,p—uw)—(u,n—u) =0 VYyekK,, ae te(0,T), (2.8a)
and u(0) = u,, (2.8b)
where K, = {9peK:(y,1) = (u,, 1) = m}.

vs) ¢
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FIGURE 6. Penalized homogeneous free energy i, for three values of e.
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Remarks
(1) We note that if |m| =|| then the problems have the unique trivial solution
u(x, 1) = signm, V(x,1) e 2 x (0, T), and if m > |Q| then there cannot be a solution.
(2) Plainly, if {u, w} solves (P), then we can see that u solves (Q) simply by observing that

w=—%,0u/0t+A,
where A = (w, 1)/|9|.

Given 0 < ¢ < 1 we introduce the homogeneous free energy i, € C*(R) defined as follows:

(1 e\ €
~ == A —1_‘ 2 R > -4
2€<r <1+2>) +3( r)+24 for r>=1+e¢
1 3 1 2
@E(r-l) +3(1—r?) for 1<r<l+e,
Y(r)=1{ 3(1—r®) for |rl<1, (2.9)
1
—@(r+1)3+§(1*r2) for —l—e<r<-—1,
s8] tin—me 2 Bor e
2¢ 1k 7 %

(see figure 6). It is easy to show that for ¢ < %
Y r) = —Cye, (2.10)

where C, is a positive constant bounded independently of e. We define g, e C*(R) as follows:

(r—(l—i—%) for r>=1+e,

l(r-l)2 for 1<r<l+e,
2e
B.(r)=e(r+y(r)=< 0 for |rl <1, (2.11)

= (s off =l=@=P<~1;
21 1)? fi 1 1
€

r+(1+§) for r<—1—e.
We note that g, is a Lipschitz continuous function where
08 <1: 2.12)
It will also be useful to introduce the convex function
Y=y —31-r>), (2.13)

which obviously satisfies
i =1p and 0<y’<1/e (2.14)
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Also, it follows from the definition of ¢/, that
A 1 )
NCES 08 2.15)

and from the convexity of 1, that

1
V) 2 Y+ _ B8 (r—s). (2.16)
It is convenient to introduce the following penalized problem:

(P) For ¢>0, find {u,w} such that w eHY0,T;(HYQ)))nL*0,T; H(Q)) and
w,.€ L0, T; HY()),

a
<(f;",77>+(w6,v77)=0 VyeHY(Q), ae. te(0,T), 2.17a)

C
Y(Vu, Vi) + r(u).m) = (w,m) Vye H(Q), ae. te(0,7T), (2.17b)
and u,(0) = u,. (2.17¢)

(P, is a weak formulation of the Cahn—Hilliard equation (1.5).

Theorem 2.1 For 0 < e < § there exists a unique solution to (P,) such that:

HueHH‘(O,'/';(ul(Q))’) <C, (2183)
H“cHL“‘«),7';11‘(9)) <C, (2.18D)
Hwe”LZ(o,'r;u‘(Q)) < C(l + Té)? (2.18(3)

Jor constants C independent of ¢ and T.

Proof We will prove existence using the classical Galerkin method of Lions (1969). Let

{z;};2, be the orthogonal basis for H'() consisting of the eigenfunctions for
—Az+z=pz; 0z/v =0, (2.19)

and normalized so that
(z,2,) = 0, (2.20)

Note that {z;} is an orthonormal basis for L*Q). Let ¥* denote the finite dimensional
subspace of H'(£2) spanned by {z,}* ,. A Galerkin approximation to (P,) is the following:

k k
() = X c(t)z;, wh(r) = X dy(0)z,, (2.21a)
i=1 j=1
(di* /dt, ")+ (Vw*, V) = 0 Vybe VX, (2.21b)
1
y(Vu"T, V’}h) +- (ﬂs(uk)v 77k) - (uk7 77,6) = (Wk: 77k) v 77k € Vk’ (221 C)
€

u®(0) = P(u,), (2.21d)
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where P*: H'(Q) — V" is the projection defined by:
k
Pv=3 (v,z)z; Y9*eV* and (Poo—u0,9)=0 Vo eV~ (2.22)
=1

It is easy to prove global existence and uniqueness for #* and w* by a standard result in
systems of ordinary differential equations.
Let us consider the Ginzburg—Landau free energy functional

&)= gylli + (. (0), 1) ve H(Q). (2.23)

ince du”/dre or each ¢, differentiating &°(u*) with respect to ¢ we obtain
Si duf/dre V* £ h ¢, diff g &4(u*) with respect t b

dé&e (") _ 7/(Vu’“, % du") . (gﬁ;(u"), du") _ (w‘, du’c>

dr dt dt dt
— — Wi, (224)

Integrating over (0, ), we obtain
t
£€(u")+J W (s)|2ds < E(P*(uy)). @2.25)
0
As |PE(uy)l, < lugly, (2.13), setting s = P*u, and r =u, in (2.16), —1<u, <1, from

Lipschitz continuity of 4, and the strong convergence of P*u, to u, in L*(£2) it follows that

‘gC(Pkuo) = %}/|P"u0|f e (%(Pkuo), 1),
1
< gylwgls +3(1 —(Prug), 1) +g(ﬂe(Pk“o)a Pruy—uy),

and hence lim sup &(Pu,) < 6(uy) = 6,(uy); (2.26)

k—o0

in particular, since u,e H'(2)
EPH ) < C,

where C is independent of ¢ and k.
Now from (2.10) for ¢ < %, we have

Y@, 1) = —CylQle.
So (2.23) and (2.25) yield

14
%7Iuk|%+f W (s)lids < C, (2.27)
0

where C is independent of T, ¢ and k. From (2.22) we have

du” |2 du* du* B du i dut B . ) du
‘ dr ||, (E,%VW) = (dz’P g‘”?) = —(VW VB %y :

k d k
N 7(Vw’“, V%%) = —(wk,dil) = W, (2.28)
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so (2.25) implies the bound

k
‘ e < (2.29)
dr L350, T5(H @))
where C is independent of 7, € and k.
Now substituting #* = 1/|QJ in (2.21b, ¢) yields
duk k k 1 K
E’l =0=@w"1)+Mw ,1)—;(/)’5(14 ), 1), (2.30)
@ (1), 1) = (u(0), 1) = (P(uy), 1). (2.31)

From (2.31), (2.27) and the Poincaré inequality, (2.3), we obtain the bound
HUICHI,‘(O,'/':HI(Q)) <C (2.32)
In order to obtain a bound on w* in H'(Q2) we must estimate |(w*,1)]. As £, =0 on

[—1,1] it follows from the definition of g, that |5.(r)] < rf.(r), hence

L < L, 2.3)

Using (2.30) it follows that

[Ov", DI < 1w, 1) +é(|ﬂﬁ(u’“)la D),

<l DI+ (9,1,

So, setting %" = u* in (2.21¢) we obtain
[0v*, DI < [utg, DI 5 — v [ [T+ (w0, ). (2.34)
Now by using the definition of %,, (2.1a b), and noting that (x*, 1) = m we obtain
(W, uf) = (—u*, 1/1Q1w", 1) + (", H(w*, /1€,
= (VW5 VG (u* —m/|QD) + m(w*, 1) /12|,
< WG Wh —m/|1QD] +m(w*, 1)/12], (2.35)
because |(,, 1)| = [m| < |Q|. Upon rearranging (2.34) using (2.35) and (2.6) we obtain

[+ [ [0 — 13 + Wl —m /12

[CPRVIIES

1—|m|/|Q| '
k2 _ k(2 K k_
1—|ml|/|2|
Hence using the Poincaré inequality (2.3)
W, < C+ Clw',, (2.37)

so w¥(¢) is bounded in L*(0, T; H'(2)) independently of k& and e.
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From compactness arguments we deduce the existence of subsequences {«*, w*} having
the following properties:

W —u, in  HY0, T;(H(Q)))n L¥0, T; H\(Q)), (2.382)
wE—*y_in  L2(0, T; HY()), (2.38b)

wf—w_ in L*0,T; HYQ)), (2.38¢)

W—>u in LYQ,), (2.384d)

(2.38d) being a consequence of a compactness theorem (cf. Lions 1969). Furthermore,
HY0,T;(H'(2))) n L0, T; H(2)) & C([0, T]; L*()) (cf. Témam 1977), which together
with (2.38a) and the strong convergence in L*(22) of P*(u,) to u, implies that u,(0) = u,.

For any 7€ H'(Q) set 9* = Py in (2.21b, ¢). We can immediately pass to the limit a.e.
in (2.21b) to obtain (2.7a). To yield the result it remains to prove that

B, 7" ) > (Bw),n) as k- o0.

This is proved quite simply using the Lipschitz continuity of j, properties of P* and the
strong convergence of u* to u, in L*(Q):

|(B*), ") = (B(u), Ml < (BLu") = B.(w), n") — (B.(w), 9 — "),
< [ —ulolnlo +1B.u)loln — 9"y ~0 as k- oo.

Hence we obtain
y(Vu, Vi) + @), ) = (W, ).

Finally, we prove uniqueness. Let {u;, w;} and {u,,w,} be two solutions to (P,), define
0" = u,—u, and 6” = w, —w,. Subtract (2.17a), when u, is the solution, from (2.17a),
when u, is the solution, and subtract (2.17b), when u, is the solution and 7 = 6*, from
(2.17b), when u, is the solution and 5 = 6*. Using the monotonicity of g, yields

Q0" Jot, >+ (VO*,Vy) =0 Yye HY(RQ), (2.394)
Y16 — 6“5 < (6%, 6"). (2.39b)

Setting 4 = %, 0" in (2.39a) and substituting into (2.39b) yields
<00 /01, G 0" + |02 < |63 (2.40)

Now using the definition of %,, (2.1a, b), the identity
d
06" /01,9y 6" = . 16"12,,
and the Cauchy-Schwarz inequality, we deduce

d 2 % 2 U 12 U 1 w
g 1012+ 716 < 10°15 = (V6" V9, 6*) < 3710 lHEW 1%,

d, , 1
U i "2 u |2
so that e 16*112, —y16™; < 7 16012,
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Multiplying through by exp™” and integrating over (0, ¢) yields

t
exp“vw“(znawf exp (6" (s)|2ds < [0*(0)]%, = 0. (2.41)

0

Also noting that from (2.17a), (6%, 1) = 0 and the Poincaré inequality (2.3) we obtain the
uniqueness of u. Now using (2.17b) with 5 =1 and the uniqueness of u we obtain
0",1)=0. Also

07} = —<6" /01,6 = 0,

and so again from the Poincaré inequality (2.3) we obtain uniqueness of w,, thus proving
existence and uniqueness to the problem (P,). [J

Remark It will be of use to note that, setting s = u, and r = u* in (2.16), noting (2.13), and
the convergence of u* to u_in H'(Q), yields

& ") = pylu i+ (Y (), 1),
- 1
> &)+ (), D+ (Bu), u" —u);

hence liminf &*(u*) > &,(u) +(f (1), 1) = &),

k-0

which together with (2.26) and (2.25) yield that

&(u,)+ f w,(s)[2ds < & (u,). (2.42)

We now take the limit of (P,). It is convenient to define f: R— R as follows:
r—1 for r>1,
Ar)=1limg(r) ={0 for [rl<1, (2.43)
0
r+1 for r<—1.
We note that g is a Lipschitz continuous function, and that
B =PI <3 VreR, and |p(n—pH)<Ir—s| Vr.seR. (2.44)
Theorem 2.2 Problems (P) and (Q) have unique solutions and are equivalent. Also given initial
data u, and v, and denoting the solutions to (Q) by u(t) and v(t), respectively, then
(@) —v(D -, < CO) g =yl s (2.45)
Furthermore, ¥ 6 > 0 ue C([8, T; H(Q)) and &, defined by (1.3) is a Lyapunov functional for
(P) and (Q), namely

VO < <1, &uD)+ f t w(s)2ds < & (u()), (2.462)

VO <1, & u)+ f t w(s)[2ds < & (u,). (2.46b)
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Proof We observe that u,e L*(0, T; H(2)) n H'(0, T;(H'(2))') and w,e L*0, T; H'(Q))
are bounded independently of e; thus by compactness there exists a subsequence of {,} and
{w_} such that

u,—~u in HY0,T;(HYQ)))n L0, T; H'(2)), (2.47a)
u,—~*u in L2, T; H\(Q)), (2.47b)
w,—w in LX0, T; H(Q)). (2.47¢)

From the estimates obtained above we can pass to the limit in (2.17a) to obtain (2.7b). Now
let us set » = f,(u,) e H'(R2) in (2.17b); so, using the Cauchy-Schwarz inequality,

y(Vu, VB (u,) +é 1BIls = (u+w,, B.(u)) < (o +1w.lo) 1B,
< e(fufo+w.lo) +2ielﬂ€(ue)lﬁ- (2.48)

Since 0 < fI(-) < 1

. 800) = | ) VeV > [ v vaa,
= Bl =0, (2.49)
it follows from (2.48) and the stability bounds in Theorem 2.1 that
18 20,y < Ce. (2.50)
From (2.49), (2.48) and the stability bounds in Theorem 2.1,
1B 20, ;100 < Ce, (2.51)
so if we let ¢ 0 then from (2.50) we conclude that for a.e. te(0, T)

tim |8,(u)], = 0.

e—~0

Using (2.44), the Lipschitz continuity of 8, and (2.50)

f 1(BG), ) <J (18G) = pluly +18w) — Blulo +18.)ly) Inl,,

< Cju,— u|L2(QT) +¢) |77‘L2(QT)3

so that from the compactness result of Lions, u, converges strongly to u in L*Q,),
pu) =0 a.e.; that is, ue K.
Let ve K; thus g.(v) = 0 and

YVit, Vo= Vi) = 0, 1,0 ) = L (B(0) — (). 0—10) > 0. 2.52)

From all of the convergence properties of u, and w, we deduce the existence of a solution
to (P).
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To prove existence to (Q) we note that
w=—%,(0u/dt)+A, (2.53)

where A = (w, 1)/|€Q]. It follows that u solves (Q) by substituting (2.53) into (2.7b) and
restricting those 7€ K to have a fixed mass, i.e. (y, 1) = (i, 1).

It only remains to prove uniqueness.

Suppose that we have two solutions to (P), {u;, w,} and {u,, w,}; then set y = u, in (2.7b)
when {u;,w,} is the solution and similarly when {u,,w,} is the solution, add the two
inequalities together, and obtain

—(6%,6")+ 7163 < 16"[;,
so setting y = %, 0" in (2.7a) and subtracting gives
—(6",0") = 06" /ot, 9, 0™>.

We now repeat the arguments used in proving uniqueness for u,_ in (P,) to prove uniqueness
for u. If we note that
|6"F = —<06" /at, 6 = 0,

then we see that w is unique up to addition of a constant. As ue L*(0, T; H'(Q)) we may
define, in the H' sense, the open set

Q,)={xeQ:|ux)| <1} ae.t. (2.59)

Since (u,1) = me(—12/,|Q2]), Q,(r) is non-empty. Take 5 =u+d¢ in (2.7b), where
peCy(2,(1), and & is chosen so that ye K. Then

y(Vu, Vo) = (u+w,¢) YpeCr(R,(1), ae.t,
and we conclude that
0(1), ) =0 VopeCr(R,), ae.t,

from which uniqueness for w follows.
Let us now take initial data u, and v,; then as in the uniqueness proof for (P,), (compare
with (2.41)), it is possible to show that for all # > 0

t

eXp”’!u(Z)-v(Z)IZH’J expu(s) —v(s)[F ds < [lu(0) —v(0)%,, (2.55)

0

from which it is easy to deduce (2.45).
If we differentiate (2.21¢) with respect to ¢ and set 4* = du*/dre V'*, then

k|2

yldut /i +§(/f;(u'f>, (du*/dny?) — [% = (dwh/dr, dut/d1);

noting that £/(-) > 0 and setting #* = (dw*/d¢) in (2.21b) we obtain
yidu*/del; + (Vdw*/de, V) < |du® /defZ,

du” |?

dr

1

<Y

L ydutsdepe,,
2y

1
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k 2 k|2 l duk 2
so that vidu*/de|} +d/degw* R < — || —]| . (2.56)
vl de |l
Multiplication by 7 > 0, and noting (2.28), yields
d/ddfw* 3]+ tyldu* /e < iwk|?+§/ du*/dr|2,,
= (1+t/M WL,
so that from integration over (0, ) and (2.27)
't 13
w3 +7J slduf/de2 ds < f (1+5/y) W (s)|2ds,
0 0
< (1410 Cluy). (2.57)

Hence, for ¢ > 0, from the Poincaré inequality it follows that u*e H'(d, T; H(R)) and
passing to the limit in k£ and e we obtain ue C°([8, T]; H(Q)).
By the weak convergence of u, to u in H'(), (2.15) and (2.50),

lim inf &(u,) = lim inf & () + lim inf (5, (), 1),
0

>0 &> &0

> liminf &,(u,) +1im 1/2¢|8,u)I2 > &,(u).

e—>0 >0

Hence by the weak convergence of w, to w in H'(£2), (2.46b) follows from (2.42). To prove
that (2.46a) holds we use a ‘stop-start’ argument. As ue C([8, T]; HX(R)),V 6 > 0, we may
set for ¢/ > 0 U, = u(') and then solve (P) with the initial data U, to obtain U(f)V ¢ > 1,
which satisfies

fa@y(U(t))Jrf 1U$)2,ds < 6,(Uy) = &,u(r)).

By uniqueness we have that u(f) = U(z) and so (2.46a) holds. [

2.2 Regularity

We suppose 0£2 to be sufficiently smooth, so that if z is the weak solution to
—Az=f, 0z/ov =0, (2.58)

where fe # n L*(£2) then
2]l h2) < ClAzZ|,, (2.59)

(see Grisvard 1985 for sufficient conditions).

Proposition 2.3 For Q sufficiently smooth we have the regularity results

ue L*0,T; H¥Q)) and du/dv =0 ondQ for a.e. t, (2.60a)
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and in addition

Vi>0 min{d 1u@l, < Clu), min{d Biwol, < Co).  (2.60b)
Proof Setting #* = —Au*e V* in (2.21¢),

v|AuF2— |u"lf+%(V/3’e(u’“), VuF) = Wk, — Au¥) = (VwF, Vu"),

= —(du*/dt,u*) = —%mg, 2.61)
and rearranging yields
YA+ (VA,), Vi) + Ty =
It follows from g, > 0, (VA.(u*), Vu*) = 0, that

d
PIAUE -+ <

so integrating over (0, 1) for t€[0, T] and noting that u*e L*(0, T; H(Q)) yields

t i 24
Iu"(t)|3+27ff AVAIES ZJ |} + 1" (0)]5,
0 0
£€ Yrel, T (2.62)

It follows from (2.59) that u* is bounded in L0, T'; H*(2)) independently of ¢ and k, so by
the usual compactness arguments we conclude that ue L*0, T'; H*(Q2)). Furthermore, since
ou¥/dv = 0 on 042 it follows by the weak convergence of #* to u in H*Q) that du/0v = 0 in
L}(09Q).

Now noting (2.61) we deduce that

YIAUFG < W]+ [wE
and from (2.57), (2.37) and (2.27) we obtain
W lIT < Clug) (141/1),
|Aut]s < Clup) (1+1/1),

which we can rewrite as

V (/A +0) [wFlly < Cluy),
V(1 +0)|Aut]y < Cluy).
Using (2.59) and the simple inequality
V(t/(A+10) =z min{\/t,1}/4/2 V=0,
(2.60b) easily follows. []
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Corollary 2.4 For a.e. t€(0,T) u satisfies the following complementarity problem:

—1<u<l ae inQ, (2.63a)
(—yAu—u—w)(Jul—1) =0 a.e.in Q, (2.63b)
sign (u)(yAu+u+w) >0 a.e.in Q. (2.63¢)

Proof By Proposition 2.3 for a.e. t€(0, T), integrating by parts in (2.7b) yields
—J (YAu+u+w)y(v—u) >0 Vvek. (2.64)
Q

Let us define the sets Q,, 2,, 2_ to be
Qy={xeQ: -1 <u(x) < 1},
B ={reluls) =1}
Q ={xeQ:u(x)=—1}.

By the Sobolev imbedding theorem, u is continuous, and hence £, is open, so by choosing
LeCP(Q,), setting v = u+el e K and assuming that |¢| is small enough yields

—yAu—u=w inQ,. (2.65)
In a similar manner, by letting {e C5(,) where —2 < +{ <0 so that v = u+{eK we
arrive at (2.63c). [
We now suppose further regularity on 09, so that if z is the weak solution to
—Az=f, 0z/ov =0, (2.606)
where fe # n HY(Q2) then
2]l 20y < CllAz],. (2.67)
Proposition 2.5 If Q is sufficiently smooth, and we assume further regularity on the initial
data Auye HY(Q) and du,/dv = 0 on 082, then
ue H'(0, T; H'(2)) n L*(0, T; H*(Q)),
and we L¥0, T; H*(Q)) n L*(0, T; H'(Q)).

Proof Integrating (2.56) over (0, f) we obtain the estimate that, Vz€[0, T,

[wk(t)|f+yf [du®/de3 < [wH(0)[3 + l/yf [du®/de|?,. (2.68)

We must now estimate [w*(0)|,. Let #*€ V* so that
(P*Auy, ") = (Auy, ) = —(Vu,, V") = = (VP*u,, Vi) = (AP*u,, 9%);

thus in HY(Q),
lim Au*(0) = lim AP*u, = lim P*Au, = Au,,.

k—o0 k-0 k-0
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So by the Sobolev imbedding theorem H?*(Q2) <, L*(2), u*(0) > u, in L*(Q). Now
w¥(0) = —yAu*(0) —u"(0) + 1/ P*,(u"(0)),

so that
W (0)l, < y|Au*(0)], + [ (0)], + 1 /el 5" (0));,
<

YIAUF(O)]; + (0, + 1/€l (" (0)] gy [ (0 (2.69)

Since g, is continuous and —1 < u, < 1, as k— oo, |S/(1*(0))],»,— 0, so that from (2.69)
the regularity of the initial data yields

W (O)l, < C,
where C is independent of k and ¢. Hence it follows from (2.68) and (2.29) that

2

k
L (2.70)
1

t
Ict 2
ot [ S

where C is independent k, ¢ and T, yielding du*/dte L*0, T; H*(2)). Noting (2.37) and
(2.70), we may conclude that w*e L*(0, T; H*()). Also, from the smoothness of 08,
—Aw* = du¥/dt and (2.67) yield that w* e L*(0, T; H*(2)), where the bound is independent
of k, ¢ and T. Finally, if we note that

wrhe L=(0, T; H\(Q)), (Vw*, Vi) < [whl,Jut, (2.61) and (2.59),

then we obtain the bound u*e L*(0, T; H*(Q)).
Note that each bound in this proof is independent of &, ¢ and T'; the usual compactness
results yield the result. [J

2.3 Asymptotic behaviour in ¢

For 1 > 0 let S(7) be the solution operator for the initial-value problem (2.7a—), so that
S(#) u, = u(?). Define X to be the metric space consisting of the set K, endowed with the
metric

d(¢.8) = llp—£&ll, forp,EeK,.
By definition, {S(?)}, , is a semi-group of operators mapping X into itself. Furthermore, by
(2.45), for v,,ve X,
1S v;— S o], < C@) llo;—vll 43
it follows that S(7): X — X is continuous for each ¢ > 0. For u,e X, let w(u,) denote the
w-limit set
w(uy)={ve X:3t, > oo such that lim S(¢,) 4, = v in X}. (2.71)

n—>o0

We assume that 0Q2 is sufficiently regular that Proposition 2.3 holds. Since
min {1, v/} [u(?)ll, < Clu,)

for all ¢, it follows that for each ¢, >0, U,., S(r)u, is relatively compact in X. Hence, by
standard arguments in topological dynamical systems (see Témam 1988), it follows that
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(i) o(u,) is compact and connected;
(i) S) w(uy) = w(uy) Vt=0.

We note that &) is continuous on H'(Q) and, from (2.46a), that for 0 < ¢ < ¢
E(S(D)uy)+ f [du(s)/dt]|?, ds < E(S(F)uy) VueX. (2.72)
"

Since, by Proposition 2.3 for T > 0, ue C((0, T1; H'(€2)) and, since &, is bounded below on
X, it follows from (2.72) that

& = lim & (S(1) u,),

t—>00

is well-defined. Furthermore, since |u(?)|, < C(uy, t,) for ¢ > t, it follows that for ve w(u,)
there exists {t,},-, such that v = lim,, ., S(z,) 4, in H'(2). Hence, by the continuity of &,(*)
on HY(Q),

& (v) = lim &,(S(2,) u) = 67,

and we have that &) is constant on w(u,). Inequality (2.72) yields that
d/dit(S(®)v) =0 for vew(y,),
so that v is a fixed point of S(¢). Hence if vew(u,), then
y(Vu,Vy—Vo)—(v,x—v) =20 Vyek,, (2.73)
and there exists A€ R such that

y(Vo,Vx—Vo)—(v,x—v) = A(l,y—v) Vyek (2.74)

2.4 The linear equation

When [u,| < 1 the solution for small time is given by

m

u(x, t) = 1]

+ 2 a,(0) exp“”ﬂrhzﬂﬂf*l)”zj(x), (2.75)
j=2

where a,;(0) = (z;, 4,). The maximum growth rate is for the wave number p, ~ 1+1/(2y).
Neglecting all other terms, the critical time 7,, at which |u(x, )] = 1, is given by

t, = dylog (min{ll —m/|Ql},] -1 —M/)QH})'

|(Ze> )l 112/l

3 The stationary problem

We now focus our attention upon the stationary problem:
(S,) Find {u,A\je K, x R such that Vype K,

y(Vu, Vop — Vi) — (u,n—u)— A(1, p—u) = 0, 3.1
where K= {ne HY(2): —1 <y < 1}.
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We also consider the related minimization problem:

(M,) Find ue K, such that

€,(u) = min &, ()= 3y(Vy, Vi) +3(1 — 7% 1), (3.2)

neK ,

and the critical point problem:

(C,) Find ueK,, such that
y(Vu,Vy—Vu)—(u,n—u) =20 Vyek,,. (3.3)

Remarks
1. In (3.1) A is the constant steady state value of the chemical potential.
2. Itis obvious that if {u, A} solves (S,) then u solves (C,). Furthermore, (S,) and (C,) are
the stationary versions of (P) and (Q), respectively.
3. As remarked previously in §2, we may assume that |m| < |Q|, otherwise the problem
(S,) is trivial.

3.1 Existence and regularity

Proposition 3.1 There exists a minimizer to the minimization problem (M.).

Proof Since &(n) > y/2yl;, for yeK,,, existence follows by a standard minimization
argument. []

Remark Observe that the trivial solution u = m/|Q|, A = —m/|Q| and u = m/|Q| always
solves (S,) and (C,), respectively. Later we will prove that for y < C} there exists a non-
trivial solution to (S,) and (C,).

Lemma 3.2 Let {u, A} be a solution of (S,). Then for Q sufficiently regular, ue W*?(Q),
1<p< oo, ueC Q) for 0 < a < 1 and

Qu/dv=0 ae. onodQ, (3.4a)

—1<u<1l ae iinQ, (3.4b)

(—yAu—u—)(ul—1) =0 ae inQ, (3.4¢)

sigh (W) (YAu+u+2) >0 ae. inQ, (3.44)

/\=—l/|QO|J u(x)dx, —1<A<l, (3.4¢)
QO

26, (u) = [Q,|(1-2%), (3.41)

where Q.= {xeQ:|u(x)| < 1}.

Proof Given {u, A} we set f'=2u+ A and rewrite (3.1) as
y(Vu,Vip—=Vu)+(u,n—u) = (fin—u) Vyek. (3.3)

We can approximate u via the following penalized problem:
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(S, Find u.e H'(Q) such that YVye H'(Q)
v(Vu, Vi) + 1/e(B (), n) + (. 7) = (£, ), (3.6)

where f,(+) is given in §2 by (2.11) and fe H(). Existence and uniqueness are proved via
a Galerkin approximation as in §2. By setting 5 = (8,(1,))** in (3.6), where p > 2 is even,
and noting that

(Vau, V(B(u )P = L (p=D)(B.u))"p(u,) Vu, Vu,dx > 0,

we obtain
1 ;
- 1B U Tr 0y < (f—u, (BLu))"™),
1/q
< (Ifimwiueiwg))( f )
= (|fl e + [t o) B )2 e s
so that l/elﬁe(ue)le(Q) < lflL”(.O) +lue]Lp<Q)'

In particular, for p =2, |1 /e f(u)|, < C, so we conclude that
YA, < |flo+1/elBuly+luly < C,

where C is independent of . Passing to the limit as ¢~ 0, standard arguments yield weak
convergence in H*(Q) of u, to u for Q sufficiently smooth. Since du,/dv = 0 in the sense of
traces on 0€2, we have that du/dv = 0. Now, since H*(Q2) o, L?(Q) for 1 < p < o0, where
d < 3, it follows that fe L”(Q2), and, from the above calculations,

YlA”e'ﬂ”(Q) < |fle(Q)+ 1/6’ﬁe(ue),1,p(9)+ luell,p(Q) <C

Hence for 2 < p and p even, from the regularity of elliptic equations for £ smooth enough,
ue W*?(Q); however, since 2 is bounded we immediately deduce that for all 1 < p < oo,
ue W*?(Q) and, from the Sobolev imbedding theorem, ue C**Q).

The regularity of u allows the use of Green’s theorem to deduce from (3.1) that

—j (YAu+u+A)(p—u) >0 VYyek. (3:7)

Let us define the sets Q,, 2., 2_ to be the following:
Q,={xeQ:—1 <ulx) <1},
Q, ={xeQ:ulx)=1},
8_={xed:ulx)=—1}

Since u is continuous, 2, is open, so by choosing {e C(2,) and setting » = u+{eK in
(3.7), for |4 small enough, we obtain

7|,

Vu'ngx:j A+u)yldx= —yAu—u=2A inQ,. (3.8)
Q(l

(]
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In a similar manner, let {e C3(Q,), where —2 < +{ < 0, so that setting » = u+{e K in
(3.7) yields (3.4d). If we note that

ou
Ozj —ds=f Audx=f Audx:f Audx,
v e} Q. Ueue 2,

then integrating (3.8) over £, yields

AR = —J (AAu(x)+u(x))dx = —J u(x)dx, (3.9)

2

from which we obtain (3.4e), since

1
[A| S——J fu(x)|dx < 1.
121 q, )
A direct calculation yields

26 (u) = ~yJ ulAudx+|0Q|— ]' udx,
Q Jo

= f [2* + ul] dx+l.Ql—j u* dx,
Q, Q
~(1-)Q O
Proposition 3.3 The problems (S,) and (C)) are equivalent.

Proof It has already been remarked that if {u, A} solves (S,) then u solves (C)). Let ue Kk,
solve (C,). We now consider the problem:

(S,) Given pe[—3,3] find u,ek satisfying for all yek
’y(vuﬂ’ V"? = Vuﬂ) + (u/p 77 - uﬂ) > (ﬁ 77 - u//,) +/’L(1 3, ?7 . u/«, 2 (3 10)

where f'= 2u. We note that there exists a unique solution to (gﬂ). Define the mapping
M :[—3,3]- R by
M) = (u,, 1).

Let u;, y€[—3,3], then set p = p;, n = u, and u = p,, 5 = u, in (3.10), add the resulting
inequalities, and we obtain

0 <yl —u, 141w, —u, o < (A (uy) — M (1)) (11, — 12) ; (3.11)
also from the Cauchy-Schwarz inequality and (3.11),
A () — M () /191 < Ny — 10, [ < (A () — A (1)) (1 — 1),
so that .# is monotone and continuous. Now if we note the trivial inequalities
(1-3-2u)(p—1) >0 and (—143-2u)(np+1)=20 V-1<9n<]1,

then it is clear that u, =1 and u_, = —1, so that .#(—3)=—|2] and .#(3)=1Q|. It
follows from the intermediate value theorem that there exists Ae[—3,3] such that

9 EJM 2
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AM(X) = (u,, 1) = m. Now setting » = u, in (3.3) and » = win (3.10) and adding the resulting
inequalities, yields
Ylu—u)|i+u—u)s <0, (3.12)

i.e. u, = u and from (3.4¢) the uniqueness of A follows. []

Proposition 3.4 For y > C3, there exists a unique solution to (3.1). Let u, be the smallest
positive eigenvalue and e, the associated eigenfunction for the eigenvalue problem

—Ae=pe; Qe/ov=0 on 0Q. (3.13)

Then, for v < 1/u,, there exists a nontrivial solution to (S,).

Proof Suppose that {u;,A,} and {u,, A} € K,, x R solve (3.1). Setting » = u, when {u,, A} is

the solution, and vice-versa, then adding the two inequalities leads to
Yl — 1,7 =y — )2 — (A —Ay) (u,—u,, 1) < 0.
Thus, noting that (u, —u,, 1) = 0, and the Poincaré inequality, we obtain
(/Co—Du,~uylg <0,

so that u is unique ; however, noting that we always have the trivial solution we conclude
that A is unique.

In order to prove the existence of a nontrivial solution it is enough to note that the trivial
solution is not the solution to (M,).

When y = 1/p, and 9 = de; +m/|Q|, where |8 < (1 —|m|/|2])/|le,| .., so that [5] < 1 and
(1, 1) = m, then 7 solves (C,) and hence (S,). Now let y < 1/u,, and calculate the energy for
n:

26,(y) = yole 2 — (3%e, 2+ m2/1QD) + €2,

= (y=1/p) leii +0%(les [t/ e —lesly) —m? /121 + 12,
<|Q—-m*/|1Q| =26(m/1Q]). O

Remark It is clear that if {l/y,e} is an eigenvalue and eigenfunction of (3.13) then
de+m/|Q|, where |8] < (1—|ml|/|Q2])/|lell,, so that |y <1 and (3, 1) = m, solves (C,), and
hence we have a continuum of solutions. It will become clear in the next subsection that,
when we construct solutions solving (S,) in one dimension, there may exist a continuum of
solutions to the free-boundary value problem.

3.2 The one-dimensional problem

In this subsection we construct all the solutions for the one-dimensional problem (S,) with
2 = (0,/) and consider the minimization problem (M,).

From Lemma 3.2 it is clear that the problem we must solve is to find ue C*'(£2) and
AeR such that

ydPu/dx*+u(x)+A =0 for xeQ,={xeQ:|u(x) <1}, (3.14a)
w(x) =0 for xe0Q,U0Q, (3.14b)
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1
where —A= mj u(x)dx and Ju(x)|<1 for xeQ. (3.14¢)
ol J o,

We may partition Q, = U/, Q' where Q' = (x7, x},) and Q' is defined to be the maximally-
connected set such that |u(x)| < 1 on Q% and Q' n Q' = ¢F if i & j, ordered so that

3 1 s s J J
0l «xl ... €3 L ah Lo ¥ <xp <L

Hence we have

J J-1
(0,0) = (0,x}]U U (x3, x5) U U [xp, X711 U [x3, 1), (3.15)
i-1 i-1
J-1
where lu(x) =1 for xeQ—Q,=(0,x1]U U [x%, x2TU [x7, D).
i=1
Oneach Q' (i=1,...,J)
yd*u/dx*+u+A =0, (3.16a)
and w'(xh) =u'(xy) =0, (3.16b)
for which the general solution is
x—x S . :
u(x) = a,cos —L)—)A, where x},—xj=k'vym k'eN. (3.17)
vy

It is easy to see that for each i we have the following exhaustive and mutually exclusive
possibilities :

Type 1:ie[1,J], u(x))u(xi) <0 and |u(x)|=1, u(x})|=1;
Type 2(0): ie[1,J], u(x)u(xi) >0 and |u(xi)l =1, |u(xp)|=1;
Type 2(ii): i=1, Q'=(0,x;) and |u(0) <1, |u(xp)|=1;

Type 2(iii): i=J, Q7 =(x],[) and |u()l <1, |u(x))|=1;
Type3: J=1, Q'=(0,I) and |u(0) <1, [u(/)]<]1.

We now consider each case separately.
Type 1 Without loss of generality, assume that u(x}) =1 and wu(x})=—1. Simple
calculations reveal that the solution is given by
A=0 and u(x)=cos(x—x})/+/y on £ where xh—x=+/ym. (3.18)
Type 2 (i) Without loss of generality, let u(x}) =1 and u(xy)=1. Again, simple
calculations reveal that on Q'
—1<A<0 and wu(x)=(1+A)cos(x—xt)/v/y—A where xi,—xj =2ym.
(ii) Without loss of generality, let u(x}) = 1. Then the solution on Q' is given by
—1<X<0 and wu(x)=—(+A)cosx/v/y—A where x}=+/y7m.
(iii) Without loss of generality, let u(x;) = 1. Then the solution on Q7 is given by

—1<A<0 and u(x)=(1+A)cos(x—x7)//y—A where [—x]=+/ym.

9-2
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4 ry

N
b
Rearrange

FIGURE 7. Rearranging a constructed stationary solution when m = 0.

It follows that since the existence of an interval of Type 2 implies A = 0.
A solution of (S,) cannot have an interval of Type 1 and an interval of Type 2.
If there exists an interval of Type 2, then A % 0 and (3.21) implies m =+ 0.

Type 3 Since Q' = (0,/) and [, u(x)dx = m, it follows that
A=—m/l and wu(x)=acosx/\y+m/l,

where either y = k*7%/1* and 0 < |a| < 1 —|m]|/l, where keN or a = 0.

We have found u on the J intervals Q¢, i = 1,2,...,J. From (3.15) we see that we must
piece the curves back together so that u is defined on (0, /). Hence we consider the following
three mutually exclusive cases:

Case A (Piecing together J curves of Type 1). For the moment assume that m = 0. We
observe that

f "u(x)dx =0, so 0 =J ol G = i |8,
Q

ik
4y

ie. |2, =]Q_|. Note that

J
Q)| = X 19 =Jvym <, (3.19)
i=1
50 |2, = (I—J+/ym)/2. Now let u(x) = 1 on an interval of width length |©2,], and likewise
let u(x) = — 1 on an interval of width length |©2_|. Then by a simple rearrangement we have
constructed our solution (see figure 7).
From (3.19) it is clear that there are a finite number of possible Js, and in particular for

]2 J2
=
N+ Y SNeE T

1<T< N (3.20)

Now suppose that m = 0, set u(x) = signm on an interval of length |m|. If we then
redefine the length of our interval to be /—|m| then we reduce our problem with m = 0. So
if we construct our solution on the interval of length /—|m| as discussed previously, then,
upon rearrangement (see figure 8), we may ensure that all the conditions are satisfied.



Cahn—Hilliard gradient theory analysis: Part | 259

4

1T |

3
L4

Rearrange

FIGURE 8. Rearranging a constructed stationary solution when m = 0.

Case B (Piecing together J curves of Type 2(i)—(iii)). Without loss of generality consider
u(x) > —1on 2 and X < 0. Noting

4
m = f u(x)dx =1Q,| +J u(x)dx = |Q,]—]Q,] A,

0 Q,
=1—(1+21)]2,, (3.21)
and rearranging yields
A= (=m)/1Q,[-1, (3.22)
and since |Q,| </ it follows that
—m/l <A <0, (3.23)

as a consequence, m > 0. Substituting (3.22) into (2.23) and rearranging we obtain

0<l-m<|Q) <L (3.24)
Furthermore, since
12| = i] €27, (3.25)
it follows that Q)] =J'\ym, (3.26)
where
2J, if we have pieced together curves of Type 2(i) only,

2J—1, if we have pieced together curves of Type 2(i) and (i)

or 2(1) and (iii),
2J—2, if we have pieced together curves of Type 2(i), (ii) and (iii).
Substituting (3.26) into (3.24) it follows that

[;
MUYy N
vym vymn

(3.27)

Case C. This is simply the solution of Type 3.
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In the theorem that follows an equation for the number of stationary solutions is given.
However, this should be understood in the following sense: as the position of the free
boundary is unknown « priori, if there are enough points on the free boundary, at least two:
or three, then the free-boundary points are unrestricted in their position. We count two
stationary solutions as the same if the constraint (u, 1) = m is satisfied, and it is possible to’
obtain one stationary solution from the other by moving the free-boundary points, which
should not cross in the process. This also means that in certain cases we have a continuum
of solutions.

Theorem 3.5 Given v > 0 and m where |m| < I, let

N=:[ 2 ]
Yy

Then there are exactly 2N+ 1 solutions to (S,).

Proof Let us define

o]
Y
and J,, J, J,, J, to be the smallest/largest, even/odd J’ satisfying

[—|m|
—— <

: J <N, (3.28)
Voym

Le. M+1<J < N. We consider cases A-C separately.

Case A. Without loss of generality we assume that m = 0 (see the previous reference for case
A). It is enough to consider

1 on (0, %],
.
i) == oo B g (3.29)
vy
(=1’ on [xy, 1),

where x} = (I-Jv/ym)/2, x; = (+Jvym)/2 and 1 <J < M, because piecing together
curves from Case 1 is the same as unpicking and rearranging (3.29). There are M solutions
of this type, and reflection about u = 0 yields a further M solutions. Hence we have 2M
solutions from Case A.

Case B. We note that, if m = 0, no solutions arise from Case B. So, for [m| > 0, we separate
B into the four possible cases:

1. Curves of Type 2(i) alone. Let J* = 2J satisfy (3.28). As in Case A, consideration of
the curve

[*/\—F(l +A)cosx/+/y on (0,2 ym),

x) = 3.30
u(x) h (3.30)

on [2J\/ym, 1),
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Table 1| The number of stationary solutions to case B

M+1 even even odd odd
N cven odd even odd
Case B
I N—(M+1 1) — (M +1 (M2 N—1)— 2
(+)+l (N )(+)+1 N(+)Jrl (N-1) (M+)+l
23 5 2 2
2. N—D—(M+2 N—(M N—1)—(M —(M+1
( )(Jr)Jrl (+2)+1 ( )(H)Jrl N(+)+l
2 2 5, D
3. N—1)—(M+2 N—(M —1)—(M+1 —(M+1
N-D=(M+2) | M+2) | (N=D=(M+D),  N=(M+D)
2 2 2 2
4. N—(M+1 N—1)— N—(M+2 1) — 2
( +)+1 ( ) (M+1)Jrl ( +)+1 (N-1)—(M + )+1
2 2 2 2
Total IN—2M IN—2M ON—2M IN—2M

yields that we have precisely (J—J)/2+ 1 solutions.
2. Curves of Type 2(i) and (ii). Let J' = 2J— 1 satisfy (3.28). As in Case A, consideration
of the curve

—A—(1+A)cosx/+/y on (0, /vy ],
u(x) ={ —A+(1+A)cos(x—x,)/vy on(x,,x,), (3.31)
1 on [x,,1[),

where x, = v/y7 and x, = (2J—1)\/ym, yields that we have precisely (J,—J)/2+1
solutions. o
3. Curves of Type 2(i) and (iii). Let J* = 2J—1 satisfy (3.28). Then simply by reflecting
u(x), as given in (3.31), about x = //2 yields that we have precisely (J,—J,)/2+ | solutions.
4. Curves of type 2(i), (i) and (iii). Let 2J —2 satisfy (3.28). As in Case A, consideration
of the curve

—A—(1+A)cosx/\/y on (0, /vy ],
—A+(1+A)cos(x—x,)/v on (x,, x,),

u(x) = DIV no (3.32)
1 on [x, 1= /7 m),

A+ +A)cos(I—x—/ym)/vy on[l—+yml),

where x, = v/y7 and x, = (2J—1)+/ym, yields that we have precisely (J,—J)/2+1
solutions. B

We combine the total number of solutions to 1-4 in Table 1, where we assume M+ 1 < N;
otherwise, M+1 > N;ie. M = N, and there are no solutions from Case B.

Case C. From previous calculations we see that we have only one possibility.
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Table 2 Splitting the number of stationary solutions for various m and

v = 0.005 0.001

m = 0 —0.6 —0:95 0 —0.6 —0.95
A 2x4 2x1 0 2x10 2x4 0

B 0 6 8 0 12 20

C 1 1 1 l 1 1

Thus, combining the number of solutions from cases A, B and C:
if M+1 < Nwehave 2M +(2N—2M )+ 1 solutions in total, and
if M+1> N,i.e. M = N, then we have 2N+ 1 solutions in total. []
Table 2 splits the different types of stationary solutions for various values of m and y

when /= 1.

Theorem 3.6 For v < FF/#*, the minimizers to (M) are the steady state solutions with
smallest |©2,].

Proof We first compute the minimum energies for steady state solutions of cases A, B and
C denoted & (u,), &,(u,) and &,(u.), respectively.
For a solution of Case A, A =0 so that by (3.4f) we have

26,(u) = 1€,

thus &(-) is smallest when | is minimal, that is u, has one interface, and hence
26 (u,) =y

Without loss of generality we consider m > 0, so that for a solution to Case B, from
(3.4f) and (3.22), it follows that

26, (1) = 21— m) —(I—m)*/12,],
so the energy is smallest when |Q,] is minimal and |Q,] > 2\/y 7. From (3.24) we deduce
I—m < 28 (uy) < [—m?/l. (3.33)
For a solution to Case C, setting A = —m// and Q| =/ in (3.41) yields

26 (up) =1—m*/L

_ 2 2
Since Y < (l nﬂ) @77\,/7/ < ]7\;7” < /‘n/; ,
Vi

it follows that & (u,) < mini{é& (u,), &,(u )} for y < ((I—|ml)/m)>.
We now turn to the situation ((/—|m|)/m)* < v < (//7)*. In this case, no solution to Case
A exists; however, from (3.33) & (u,) < 6,(u.) with equality only when |2, =7 [
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Remarks

1. Noting the Poincaré inequality C, =//m, it follows from Proposition 3.4 for
y > (I/m)* that we have uniqueness to (S,).

2. For y < ((I—|ml)/m)? the minimum is unique, up to reversal, and

Q:(OHL;M] Qoz(um;nw,um;nw), Q:[Hm%w’,),

This compares with Carr ez al. (1984), who proved that in the Cahn-Hilliard equation for
y small enough, the associated Lyapunov functional has a unique minimizer with one
interface (note that again the reversal has the same energy).

3. Zheng (1986) has shown that, in one space dimension, if |m|/|Q] lies in the spinodal
interval, then there are a finite number of solutions; in particular, when the free-energy is
given by y(u) = (u*—1)*/4 and m = 0 then there are 2N,+ 1 solutions where

Ny < 1/(my/y) < Ny+1.

3.3 The two-dimensional problem on a square

It is the purpose of this subsection to construct stationary solutions on the square
Q= (0,0)x(0,1).

Using the results from the previous subsection, a two-dimensional solution may be
obtained from a one-dimensional solution with many interfaces; for example, if
X, X, +m/y€[0,[] then '

1 if xe[0, x,),

u(x,y) ={ cos(x—x,)/+v/y if xe[x,,x,+m/y],
—1 ifxe(x,+my/y,1],

where x, is chosen so that (u, 1) = m, is a stationary solution.

Radially symmetric solutions can also be used to construct solutions on the square. In
order for there to be a radial solution satisfying the zero Neumann boundary data
condition, the solution should be radial on a quarter or half annulus intersecting with the
boundary or on a full annulus contained within the interior of the square. Now some
radially symmetric solutions are constructed.

We look for u(x,y) = u(r) where r = (x4 y%);, on

A={(x,y)eR%r,, < P+ <), (3.34)
and 0 <r,, <r,, <[ From the regularity of u it follows without loss of generality that
W (ry,) =u(ry) =0, (3.35a)
U(ry) = —lroy) = 1, (3.35b)
otherwise we multiply u by —1. And from (3.4c) we obtain

=) [y —u=Ary, <F<ry,. (3.36)

10 EIM 2
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Table 3 Some zeros of J, and the scaling values

k R RE+ ¢ A

0 0 3.832 1.426 0.4258

1 3.832 7.016 —2.846 0.1460

2 7.016 10.173 3.638 9.686 x 102
3 10.173 13.324 —4.279 6.697 x 10°2
4 13.324 16.470 4.821 5278 x 107
5 16.470 19.616 — 5312 4356 % 10
6

19.616 22.760 5.760 3.709 x 102

Multiplying (3.36) by #'(r) and integration over (r,,,r,,.) yields, upon noting (3.35a, b),

in?

that
Tout Tout # 2
—2A=A J W (rydr = ~J (yu”(r) w(r)+y (—u(:l +u'(r) u(r)) dr,
70“ 4 2
e i J ‘(“—(r’)ldr <o,
hence A > 0.
It is easy to show that for some constants ¢, and ¢, the general solution of (3.36) is
ur) = =A+coh(r/vVy)+ e, Yo(r/v/y), (3.37)

where J; and Y, are the Bessel functions of order zero of the first and second kind,
respectively.
For simplicity we choose only to seek solutions of the form

u(r) = — A+ ¢y Jy(r/v/9). (3.38)
Applying (3.35a) to (3.38) yields
Jo(rn/ V) = To(roue/ vV ¥) = 0,

so r,,/+/y and r,,,/+/y are taken to be successive zeros, R* and R*"', respectively, of J,
where |Jo(r)] > 0 on (R*, R**'). Applying (3.35b) to (3.38) yields

C. = 2 and A = ‘]O(Fin/\/Y)_P_‘}é(rout/\/’}/)
! ‘](](rin/\/Y)~‘][)(rout/\/y) "I(](rln/\/’)/) _J()(rout/\/’y) .

Since J, is monotone on our chosen interval, it follows that [A] < 1. (See Table 3 for some
of the important values.) Note that J, has the following properties (Birkhoff & Rota 1959):

(3.39)

(1) Jo(r) has an infinite number of zeros.
(ii) The difference between consecutive zeros of Jy(r) converges to 7 as r — co.
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(iif) Jy(r) has an asymptotic expansion

__V2
V()

We now consider the mass constraint upon u. From (3.4e) if Q, = A4, a single quarter
annulus, then

J(r) cos(r+in)+0@rr% as r—oo. (3.40)

fj u(x, y)dxdy = gmA(rf, —riu)- (3.41)
A
Let ©, consist of n quarter annuli of the same radii; then
m= J u(x,y)dxdy = J u(x,y)dxdy,
Q Q,UQuQ_

nm

= A = (-2 )
- %”((1 FO R+ (1= r2,)— 12 (3.42)
Since r,, = R*/y and r,,, = R**1y/y, (3.42) may be rewritten as
m = ”ﬂ’T”((l + ) (R + (1= ) (R1)2) — 2., (3.43)

As an example, using the values in Table 3.3 with Q = (0, 5) x (0, 5), and v = 0.08, we obtain
Table 4.

It is useful to introduce

m
mR? TR?
that TR (2 —m
so tha 7] (l 4) m

We now construct a sequence of radial solutions {#*}, where Q, consists of a single
quarter annulus and

—PP<m<@r—1)0, (3.44)
sothat 0 < R < [
Define

P (3.452)

LR — L (R’ '

J(R") + J,(RF*)
B0 4]0 o 3.45b
‘IO(RIC) _.]O(Rlﬁ-l) ( )
2

v A"+ m) (3.450)

() R+ (1= A (R

10-2
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Table 4 Mass of a radially symmetric stationary solution

m

k T, s n=1 n=2 n=23 n=4
0 0.00 1.08 —24.5 —=23.9 —23.4 —22.9
1 1.08 1.98 —21.3 —17.6 —139 —10.2
2 1.98 2.88 —15.8 =65 2.8 12.1
3 2.88 3.77 =T 9.7

4 3.77 4.66 29

Since the sequence {R*} is unbounded and |A*| < 1, it follows that lim, y* = 0. If we
rewrite (3.43) when n = 1 and note that R* < R*"', then it follows that

YA+ AR+ (1= A (R™)]

Y(R*? < R* = > LR, (3.46)
so that from (3.40) lim R***— R* = 7;
k-0
since y* -0 as k— oo, it follows that
: 2Am+1%)\:
fim REy/7* = (ﬂi—)) R (3.47)
k—o0 m
Now define k* to be the smallest integer so that
VYT R (3.48)

Then it follows that for k > k* {u*, A*} solves (S,%).

We now show that the sequence of Lagrange multipliers A* converges to 0 at a prescribed
rate.

From (3.45b) and (3.47), and the asymptotic expansion (3.40),

X R* J(RY IR
lie = = lime——— 2 0 2
Y e R IR —HE’

B limkal/\/RkAl/\/Rlﬁ»l.
T e R O1/VRA1/VRET

since lim, . R*'— R* = 7, it follows that

4 m

lim—— = —. 4
e V7F 4R i

We consider more general results of this nature in the next subsection.
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3.4 The asymptotic behaviour as v —0

In this subsection we consider the limit y -0 in the problem (M) for 2 = R?, (1 < d < 3),
being a bounded domain with Lipschitz continuous boundary. Following Modica (1987),
we establish that, as y — 0, there is a sequence of minimizers {#}, of (M,) which converges
to a function u* that only takes on the values +1 and —1 with the interface between the
two sets being minimal. This result is interesting, as the phenomenological parameter y was
introduced to model interfacial energy. A different approach has been studied by Gurtin
(1985). Some results of Luckhaus & Modica (1989), 2 < d < 3, are then duplicated which
verify the Gibbs—Thomson relation for surface tension.
Define y: R— R by
Y(s) = 3(1—+5%;

for y > 0, u”e K, we note that

&) = i+ @), 1), (3.50)
and L Yi(s)ds = ﬁi (3.51)

We remark that Modica (1987) and Luckhaus & Modica (1989) study the free energy
functional (3.50) with ¥(-) being a C° and C* function, respectively, having a double well
form; the purpose of this subsection is to apply their results to this situation.

For any open subset of E < R?% 1 <d <3, and ve L} (E), we define

loc

J |Do|:= sup{f vV -g(x)dx:ge CP(E;RY), gl < 1}. (3.52)

Also, BV(E)= {UELl(Q)If |Dv| < oo}.

The Sobolev space W' (E) is contained in BV(E), and for ve W'Y(E), [,|Dv| equals the
ordinary Lebesgue integral [,|Vo|dx.
If {v,} is a sequence in L'(22) which converges in L(f2) to v, then

f |Dv_| < liminf J |Dv,. (3.53)
Q Q

k-

When m and c are real constants the set
{veLl(Q):(v, 1) = m,f {Dv] < c} is compact in LY(Q2). (3.54)
2

If E is any measurable subset of R?%, we denote by I,, the characteristic function of E, and
define

Py(E)= f IDIL,.
Q

It can be proved that Py(E) < #, ,(0ENQ), where #, , is the (d—1)-dimensional
Hausdorff measure, with equality if 0En Q is a Lipschitz continuous hypersurface.
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Let ve BV(R?), then the function ¢ — P,({xe R*: v(x) > ¢}) is Lebesgue measurable on R,
and the Fleming—Rishel formula (1960) holds:

f |Do| = J P({xeR*:v(x) > t}) dz. (3.55)
Q —©
All of the results above can be found in Giusti (1984).

Theorem 3.7 For v > 0 and me(—|R2|,|R2|), suppose that v’ is a solution to
&(w) = min{é (v):vek, (v, 1) = m}. (3.56)

Then there exists a sequence {u”*} such that:
(i) As y,—0, u’* converges to u* in LNQ) where |u*(x)| = 1 for a.e. xeQ.
(ii) The set Q* = {xe Q:u*(x) = — 1} is a solution of the variational problem

; Q|—
P,(Q%) = min {PQ(F): Feo Fl="* 5 m}.
(iii)
lim y 28, (u") = kmPo(2%).
k—o0
Note that P,(Q*) = P,(2%), where Q* = {xe Q:u*(x) = 1}.
This theorem is a modification from Modica (1987), for which we require the following
propositions and lemmas before proving the theorem. For completeness we include the

proofs of Propositions 3.8 and 3.11 and theorem 3.7, which involve calculations similar to
those of Modica.

Proposition 3.8 Let (v},., be a family of functions in K such that v’ —v* in L) as
v—0*.
(@) If
lim infy—&,(v”) < + oo,

bad

then [v*(x)| = 1 for a.e. xeQ.
(b) If [v*(x)| = 1 for a.e. xeQ then

Py(E) < 2/mliminfy~8,(v"), (3.57)

=0

where E={xeQ:v*(x) = —1}.

Proof Let {y,} be a positive sequence converging to zero as k — oo such that {v”+} converges
pointwise to v* a.e. in 2, and

lim &, (%) = 0.

k

—>00
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It follows that [v*(x)| < 1 a.e. in Q, and by Fatou’s Lemma,

f Y(v*(x))dx < liminf f Y((x))dx < liminf &, (v"%) =0,
Q Q 0

k>0 k—

since ¥(s) = 0 for —1 < s < 1, it follows that (a) holds.
For te[—1, 1] define

B(0)= f " whis)as, (3.58)

note that ¢(—1) = 0 and ¢(1) = 7/(2+/2). Set
w*(x) = g(v*(x)) andfor y>0 w'(x)=¢@"(x)), xeQ.

Since v” is equibounded and ¢ e C*, w” converges to w* in L(Q) as y - 07, so by the lower
semi-continuity (3.53)
J | Dw*| < lim inff | Dw?|. (3.59)
Q o)

y—=>0

Since Py(£2) = 0 and Py(A) = 0 if AN Q2 = J, then by the Fleming—Rishel formula (3.55)
and the hypothesis [v*(x)| = 1 for a.e. xeQ,

f |Dw¥| = f " P Q:p* () > Bdr,

B(1) _
= f P(Q—E)dt,
#(=1)
= ()= ¢(— 1) Pu(E) = 575 PulE) (3.60)

On the other hand, v” € H'(R2) implies that Vw”(x) = ¢'(v"(x)) Vv"(x) (cf. Marcus & Mizel
1973); hence

f [Vw?dx = 4/2 J |¢%(vv(x))|i|vuv(x)1dx, (3.61)
2 o V2

1

7’% 2 -1
P 7\, 3 ¥
\\/2L{2'VU, +y (v )}dx,

TR B

\/27 &(v"). (3.62)
By inserting (3.60) and (3.62) in (3.59) upon rearrangement we obtain (b). []

Lemma 3.9 Let E be a measurable subset of Q2 with 0 < |E| < |Q|. If, for a fixed § > 0, we

have & < Fy(A) for every open bounded subset A of R* which has a smooth boundary and
satisfies #,_(0AN0Q) =0, |AN Q| = |E|, then

0 < min {P,(F): F a measurable subset of Q, |F| = |E|}.
If, in particular, § = Py(E), then equality holds.
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Proof See Modica (1987).

Lemma 3.10 Let A = R? be an open set with smooth, non-empty compact boundary. Define
h:R*—>R by

—dist (x,04), if xeA,

Wh{mmm@ium.

(3.63)

Then h is Lipschitz continuous, |Dh(x)| = 1 for a.e. xe R* and

lim #, (5,0 Q) = #, ,QAN Q),

t—>0

where S,={xeR*: h(x) = 1}.
Proof See Modica (1987).

Proposition 3.11 Let A = R* be an open set with 0A a non-empty, compact, smooth
hypersurface and #,_,(0A N 02) = 0. Define v*: Q2 R by

f—l ifxednQ,
v (x)=
l 1 ifxe(R*—A)NnQ. (3.64)

Then there is a family {v"}, . , of Lipschitz continuous functions on Q such that v" —v* in L*(Q)
as y—0", | < 1 for every y > 0 and

(&) @, 1)=0w*1)=|Q—-A4|—-]AnQ2|Vy > 0.

2. a
(b) ;hm sup y 26(07) < Py(A).

y<0+

Proof Define y*:R— R by

-1, t<0O,
XW&={ 1, t>0, (3.65)
so that v¥(x) = y*(h(x)) for xeQ,
and define {: R— R by
-1, 1=,
g)={ —cos(t/vy), 0<t<y' =mV7,
1 7’ < L. (3.66)
Plainly, e C*(R) and for 7€]0, "]
YHE) () = V2 HE (D). (3.67)

Note that for all reR
Gl )< gut+y )
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thus there exists §” €[0, %”] such that

j Q(h(x)+67")dx = J

Q

y*(h(x)) dx = j v*(x) dx. (3.68)

Finally, for te R, we define y?(f) = {7(¢+6”) and for xe Q, v"(x) = y"(h(x)).
Each v” is a Lipschitz continuous function, and —1 <v” < 1; by Lemma 3.10

f %] e = f 7 (AG)) — x* ()] DAGO)| dx,

so that the coarea formula (cf. Federer 1968)

J ()| Dg)| dx — f” 1) #((xe@:g0) = 1)ds

which holds for any Lebesgue measurable function f and any Lipschitz continuous
function g, implies that

”7767
f 07— 0¥ dx = J W) —x* ()| #, (5,1 D) dr,
0

—&7

< 29" sup ,_,(S, N Q),
el <n”
where S,= {xeR”?: h(x) = t}. As 3" = m+/7y, applying Lemma 3.10 again, we conclude that
v” converges to v* in LY(Q2) as y— 0",
Since (a) is a direct consequence of (3.68), it remains to prove (b).
Let & = sup,.,» #,_,(S, N 2); from the coarea formula we obtain

rigw) = | {Lor+ryon)as

- Forosrvwol s

1

<o {L@wrorrieela,

—&
-e['{% (@ @+ @)

Now, recalling (3.67),

rigw < vae | @oyen

—y2p f JA(s) ds.
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Since Lemma 3.10 implies

lim & = #, (04 N Q) = Py(A),
y-0*
we conclude that
limsupy6,0") < P O

¥=0

Proof of Theorem 3.7 We select, as comparison functions for #?, the following piecewise
affine functions w”, depending on the first variable x;:

-1 ifx; <z—+y,

Xy—Z
wre={ =2 fz—vy<x, <z+4/7,
1 if %; e+
with z chosen so that w, 1) = m.

If we let 77 = {xeQ:z—+/y < X, < z++/7}, then by the boundedness of Q, it follows
that |T7| < Cy/y for every y > 0 and some suitable constant C; hence by the minimizing
property of u”,

rigw) <yigm) = [ [Lertone)ax

< C{14+ max ¥(s)} < C. (3.69)

-1<s<1

We now prove the existence of a sequence w”s —u* as v,—0. For y > 0 define v” = ¢(u?).
As 0 < v/2¢3(s) < 1 for se[—1,1], v is bounded in LY(Q). However, recalling (3.62) and
(3.69),

LsDzﬂ\ dx < l’v—;(g;(uY) <C Yy>0.
Now from compactness (3.54) there is a sequence {y,} of positive numbers converging to
zero such that v% —>ov* in LY(Q). We now return to the functions u”. As ¢ is strictly
monotone increasing and continuous on [—1,1], ¢7* is well defined, bounded and
uniformly continuous on [0,7/(2y/2)]. Define u*(x) = ¢~(v*(x)); then by the uniform
continuity we conclude that u” = ¢~*(v”*) converges in L) to u* as k — oo, thus proving
existence. Hence Proposition 3.8 applies and (i) is proved.
We now turn to the proof of (ii). Since

Q¥ = J (1 ;”*)dx _ @%T

by Lemma 3.9 it suffices to verify that P,(Q2*) < P,(A) for every open, bounded subset A4
of R%, with smooth boundary, such that #, ,(04n0Q2) =0 and |4 N Q| = |Q*|. Fix such a
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subset 4 and note that 04 N Q % &, because 0 < |4 N Q| < |2|; using Proposition 3.11 we
construct a family {w?},_, in H'(£2), different from the sequence of affine functions at the
start of the proof, such that

W, 1) = |Q—A|— |40 Q| = (12| |Q*)— 2% = m,
and 2/m lim sup y 8, (w") < Po(A). (3.70)
y-0"
On the other hand, by (i) and Proposition 3.8,
Py(Q*) < 2/mliminfy :&, (), (3.71)

y—-0F
and by the minimizing property of u*
&, W) < &, (wr) VkeN. (3.72)

It is now obvious that (3.71), (3.72) and (3.70) yield P,(22*) < Py(4). This completes the
proof of (ii).
Finally, let us prove (iii). By taking into account (3.71), (3.72) and (3.70), we find that

LnPy(Q¥) < liminfy: &, (u’%) < limsup yié, (') < wPy(A),

k— ko0

for any open, bounded set 4 = R?, with smooth boundary, such that #, (04 N02) =0
and |4 N Q] = |Q*|. Applying Lemma 3.9 with ¢ = lim sup,_, yi &, () in conjunction with
(ii), we immediately obtain (iii). [J

Remark Let us consider the one-dimensional problem when Q = (0,/). Let F be a subset

of (0,/) so that |F| = (/—m)/2; then

F=1JJY

iel
where 7 is some index used to count the intervals, J'nJ? = ¢ for i=*j,i,jel and
J'= (%, xL), ie L. how
Py(F)= Sup{f g'(x)dx:ge CF(0,1); R), |g| < 1},
F
so that

f g@dx=3 | geydx= 3 g(xt)—g(xl).

tel J 2l el

If we assume that |/| is finite, then Po(F) = 2|I|—{the number of endpoints of Q in F}; hence
considering all the possibilities, the minimum value that P,(F) can take is 1. Hence,
Q* = (0,(l—m)/2) or Q* = ((I+m)/2,]) so that P,(Q*) = 1 and

. 1

2 k) = L
lim yk%“’yk(u k) = 377.
k—>00
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=2

FIGURE 9. Domain decomposition of £ into 2, and Q .

However, from the construction of stationary solutions and Theorem 3.6, for 0 <y <
(/—|ml)/m, a minimizer u” of &, satisfies

1 U dur\? : 'y
70 e — . e — LY
gy(u) z(yjo(dx) ! fo(u)> Z "
_ LA 1—|m| 2
and, rewriting Yy W) =n/2 VO<y< — s

Throughout the remainder of this subsection, {«”} is a subsequence of {#”} converging to
u* in L'(£2) which was found in Theorem 3.7; likewise, {v”} is the bounded sequence in
BV(£2), introduced in the proof of Theorem 3.7, defined by

v =¢W) y>0 where v"—0v*in LY(Q).
Since w*:= ¢ }(v*) and |u*(x)| = 1 for a.e. xe®, it follows that

won [P VxeQ*
U(x)—{gﬁ(—l) VxeQ*’ (3:.73)

We now modify a Theorem of Luckhaus & Modica (1989). For simplicity we assume that
Q c R (d=2) has a sufficiently smooth boundary so that Lemma 3.2 holds. For
completeness we include the proof which again involves calculations similar to those of
Luckhaus & Modica.

Let A*eR be the Lagrange multiplier associated with the minimization problem (M,).
The constant A* has the following geometrical significance from the theory of minimal
surfaces: the surface S =Q*NQ is a smooth hypersurface (Giusti 1984) whose mean
curvature « is constant, and is equal to A*/(d—1).

Theorem 3.12 Let the sequence {A"} be the associated sequence of Lagrange multipliers for
the sequence {u"}; then

lim y A" = —im(d—1)«, (3.74)

y>0"

where « is the (constant) mean curvature of the hypersurface S = 0Q2* N Q.
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Proof From (3.4¢)
YAW+uw+A" =0 on Qi

Vuww=0 on Q_UQ,.

Hence for a fixed vector field £e C7(2; R?); since ue H*(Q) the following equality holds
f (YAW +u+ A", D, u”dx = 0, (3.75)
Q
where D, = V and summation is taken over repeated indices. Integration by parts yields
0= f (—=yD;wD(& D,w)+ug D,u +A"¢, D, u) dx. (3.76)
Q

Noting that
D;uwDy(§; D;w) = D;u’D, &, D;u” + D, w§, D%, (3.77)

1
f D,wE, Diu?dx = EJ £,D,(D,uD,u)dx,
Q Q

_ ! f V|2 div £ dx, (3.78)
2)o =
J wg D,udx = ——lj & D,(1—w)?dx,
o 2Jq
= j Y(u)divEdx, (3.79)
Q
—J A, D, u’dx = /\Yj wdiv £dx. (3.80)
Q Q
Hence substituting (3.77)—(3.80) into (3.76), dividing by 1/, and rearranging yields

_3_; f wdivgdy = L (% Va? —ﬁlﬁ(u’)) divgdx

+4/y f (D,u'D, & D,u?)— V| div £)dx.  (3.81)
Q

It is obvious that we may pass to the limit on the left-hand side of (3.81); since S is
smooth we obtain from the divergence theorem

lim | wdivgdx = f

7~>O+ Q Q

u*divgdx = —ZJ EvdA#, ,, (3.82)
S

where v is the outer, unit normal vector on S = 9Q* N Q (see figure 9). We postpone the
remainder of the proof to prove two lemmas which estimate the two terms on the right-
hand side of (3.81).
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Lemma 3.13 We have the following three limits:

’)/% 1 ol 4
lim (—|Vu7|—y‘i¢ﬁ(u“/)> dx,

y»0+ Q \/2
. ’}/% i
= lim |V — |Vu| y2(v”) | dx,
)/90+ Q \/2
—lim | |E v —y ) |dx =0. (3.83)
ot J o 2
v
Proof From theorem 3.7 part (iii)
lim (?IVMP +y51ﬁ(u7)) dx = lim y: (") = W Py(2%); (3.84)
y—>0+ Q 7»0+

for y small enough this shows that the sequences {y%|Vu7’|} and {y’igﬁ(uy)} are bounded in
L*(). From (3.61), (3.53) and (3.60)

lim infj V2|V | i) dx = 4/2liminf f V| dx,
Q y»0+ Q

v
2472 f [Vo*| = LrPy(Q%); (3.85)
o
hence we conclude that
0 < lim (7’— V7| —yil/f%(uv)f dx < lnP(Q*)—nPy(2%) = 0. (3.86)
g PV

Noting the inequalities

la>—ab| < (a—b)?+|(a—b)b| and |a*—b* < (a—b)*+2|(a—0b)b|,
using the Cauchy-Schwarz inequality, (3.86) and the boundedness of the sequences
(YiIVi} and {y i)} in L¥(Q) easily yields the result. [

Lemma 3.14 If the surface S is smooth inside the support of &, then

lim V%J ((D,u’D, &, D;u")— |V |* div §) dx = +3zmA* J EvdA, . (3.87)
y—>0* Q K
Proof For y > 0 define
Q" = {xeQ:|Vv'(x)| > 0}. (3.88)
Vw(x) Vv'(x)
h = VxeQ :
Note that Vel Vo] xe, (3.89)
and for xeQ, neR? (3 + 0) define
fox,m) = %ff”f— div £(x). (3.90)

It follows from Lemma 3.13 and the boundedness of f that
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lim 52 j ((D,wD, & D,uw)—|Vu? div £) dx
y»0+ Q

= lim y? f Sfx, Vo) V)P dx = /2 lim | Alx, Vo?)|Vo?| dx,
y—>0t Q

7»0*’ Q7
=4/2 limf F(x, Vv”)dx, (3.91)
7»04' Q
S, )yl for |yl >0,
where Floo;m) = L L (3.92)
0 otherwise.

We remark that {Vo”} converges weakly in L), or weakly * in the sense of vector
measures to the measure

Do* Hals, (3.93)

_ m
Y

where ,_, | denotes the (d— 1)-dimension Hausdorff measure restricted to the surface S;
in fact, from (3.73), for every vector field y e C(€Q),

lim | x,D,v”dx = —lim deivxdx=—f v*div y dx,
Q

y>otJQ y>0"J

= —f ¢(—1)didex—J $(1)div ydx,

7’ 4
~ 57 J_ yd#, . (3.94)

Now [,|Vv?|dx is bounded, and from (3.62) and the proof of Theorem 3.7,

m
lim supj Vo'l dx < ——= P,(Q%), (3.95)
y—>0" Q 2v2 “
and from (3.85) liminf | |Vo"|dx > —LPQ(QT), (3.96)
40t Jo 24/2

which together with (3.70) imply that

lim | [Vo|dx =~

Py(R2*) = | |Dv*dx. 307
y>0tJe 2v2 ke JO] | ( )

We can now apply a result of Reshetnyak (see Luckhaus & Modica 1989) about the weak
convergence of homogeneous function of measures, which yields

yhj;l R, Vo) dx = 27’? J P v() d#, . (3.98)

Let us introduce on S the tangential derivative operator
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0;=D,—(v; D), (3.99)

which is merely the component of V in the tangential direction, and the corresponding

divergence operator )
divy =20, (3.100)

Elementary differential geometry yields that

F(x,v(x)) = fix,y(x)) = —divg§(x) and divgy = A*.

Finally, the divergence theorem on curved hypersurfaces (see Massari & Miranda 1984)
leads to

S

F(x,v(x))d#,_, = —j divgé(x)dsf, , = —J £vdivgrds, ,,
S S

= —/\*j gudat, (3.101)
S
and Lemma 3.14 is proved. []
We now conclude the proof of Theorem 3.12.

Proof If we apply Lemma 3.13 to the first term on the right-hand side of (3.81), then we
obtain

lim J <K|Vu7l2—y‘%¢(u7)> div£dx = 0. (3.102)
y»O+ Q 2 B

As Q%* is a minimal set in 2 and 2 < d < 3 then it follows from the theory of minimal
surfaces that 0Q* N Q is an analytic hypersurface (see Giusti 1984); hence Lemma 3.14
implies that

lim y* f (D, wD, &, D, u*) —div gVu|?) dx = —gm\*J £vdA, . (3.103)
Q S

70"

Any choice in (3.81) and (3.82) of £ C(R) such that SN (support £) is smooth and

J EvdH#,y  F0,
S
yields the result. [

Remark If the sequence of radial solutions constructed in the previous subsection is a
sequence of minimizers of (M,), then it is easily seen that (3.49) is in agreement theorem
3.12.

4 Conclusion

We have presented a mathematical analysis of a parabolic variational inequality and its
steady state that arises from the deep quench limit of a model of phase separation in a
binary mixture due to Cahn and Hilliard. This form of the free energy with ‘infinite walls’
had previously been suggested by Oono and Puri. The numerical analysis of this model is
studied in Part IT of this work. It is expected that variants of (1.16) and (1.17) will provide
an alternative phase field model for the Stefan problem with interfacial energy effects. The
advantage of this approach to approximate phase transformations with infinitesimal
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nterfaces is that the order parameter is identically + 1 or — 1, except in a narrow interfacial
ransition layer. The implication of these remarks will be pursued in a future work.
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