On the Cahn-Hilliard Equation

CHARLES M. ELLIOTT & ZHENG SONGMU

Communicated by J. B. McLeod

§ 1. Introduction

The phenomenological Cahn-Hilliard equation

$$\frac{\partial u}{\partial t} + \gamma \frac{\partial^4 u}{\partial x^4} = \frac{\partial^2 \varphi(u)}{\partial x^2}, \quad 0 < x < L, \quad 0 < t$$
 (1-1 a)

$$\varphi(u) = \gamma_2 u^3 + \gamma_1 u^2 - u \tag{1-1b}$$

where γ , γ_1 and γ_2 are constants with $\gamma > 0$, arises in the study of phase separation in cooling binary solutions such as alloys, glasses and polymer mixtures; see Cahn & Hilliard [1958], Novick-Cohen & Segel [1984], Novick-Cohen [1985] and the references cited therein. Here u(x, t) is a perturbation of the concentration of one of the phases and (1-1a) is the equation of conservation of mass with the mass flux J being

$$J = -\frac{\partial}{\partial x} \left[\varphi(u) - \gamma \frac{\partial^2 u}{\partial x^2} \right]. \tag{1-2}$$

Clearly critical points of the Landau-Ginzburg free energy form,

$$\int_{0}^{L} \left\{ H(u) + \frac{1}{2} \gamma \left(\frac{\partial u}{\partial x} \right)^{2} \right\} dx, \qquad (1-3a)$$

$$H(u) = \int_{0}^{u} \varphi(s) ds, \qquad (1-3b)$$

with appropriate side conditions are steady state solutions of (1-1). See CARR, GURTIN & SLEMROD [1984] for the study of (1-3) for small γ and subject to the constraint of prescribed mass,

$$\frac{1}{L} \int_{0}^{L} u(x) \, dx = M. \tag{1-4}$$

Equation (1-1) is supplemented by the zero mass flux boundary condition

$$-\frac{\partial \varphi(u)}{\partial x} + \gamma \frac{\partial^3 u}{\partial x^3} \bigg|_{x=0,L} = 0, \qquad (1-5a)$$

the natural boundary condition for (1-3),

$$\left. \frac{\partial u}{\partial x} \right|_{x=0,L} = 0 \tag{1-5b}$$

and the initial condition

$$u(x, 0) = u_0(x)$$
 $0 < x < L$. (1-5c)

It follows from (1-5b) and (1-1b) that (1-5a) can be replaced by

$$\left. \frac{\partial^3 u}{\partial x^3} \right|_{x=0,L} = 0. \tag{1-5d}$$

A solution of (1-1) and (1-5) satisfies

$$\frac{d}{dt} \int_{0}^{L} u(x, t) dx = \int_{0}^{L} \frac{\partial u}{\partial t}(x, t) dx = \int_{0}^{L} -\frac{\partial J}{\partial x} dx = 0$$

and hence the total mass remains constant,

$$\frac{1}{L} \int_{0}^{L} u(x, t) dx = \frac{1}{L} \int_{0}^{L} u_{0}(x) dx = M, \quad t > 0.$$
 (1-6)

Equation (1-1) has been considered in other contexts in order to generate spatial pattern formation. Cohen & Murray [1981] derive it, in an ecological context, as a generalization of Fickian diffusion. Hazewinkel, Kaashoek & Leynse [1985] obtain the equation as a limit of Thom's river basin model.

In this paper we consider the global existence or blow up in a finite time of the solution to the initial boundary value problem (1-1) and (1-5) and its related finite element Galerkin approximation. We have found that the sign of γ_2 in (1-1 b) is crucial. If $\gamma_2 > 0$, then there is a unique global solution for any initial data $u_0 \in H^2$ and satisfying (1-5b). If $\gamma_2 < 0$, then the solution must blow up

in a finite time for large initial data. On the other hand, if $\gamma > \frac{L^2}{\pi^2}$ and the initial data is small, no matter what the sign of γ_2 is, there is a unique global solution which decays to the constant M as $t \to \infty$. We also extend these results to the multidimensional problem.

$$\frac{\partial u}{\partial t} + \gamma \Delta^2 u = \Delta \varphi(u) \quad x \in \Omega, \quad t > 0$$
 (1-7a)

$$\frac{\partial u}{\partial v} = 0, \quad \frac{\partial}{\partial v} \left(\gamma \, \Delta u - \varphi(u) \right) = 0 \quad x \in \Gamma, \quad t > 0$$
 (1-7b)

$$u(x, 0) = u_0(x), \quad x \in \Omega$$
 (1-7c)

where Γ is the smooth boundary of a bounded domain Ω in \mathbb{R}^n ($n \leq 3$) and $\frac{\partial}{\partial \nu}$ is the exterior normal derivative to Γ . The global existence theorems are proved in section 2 and finite time blow up is obtained in section 3.

In the remaining section we study a finite element Galerkin approximation to the initial boundary value problem and obtain existence results and optimal order error bounds.

Throughout the paper we use D to denote $\frac{\partial}{\partial x}$ and Q_T to denote $\Omega \times (0, T)$.

The norms of $L^{\infty}(\Omega)$, $L^{2}(\Omega)$ and $H^{s}(\Omega)$ are denoted by $\|\cdot\|_{\infty}$, $\|\cdot\|$ and $\|\cdot\|_{s}$. The semi-norm $\|D^{s}v\|$ is denoted by $\|v\|_{s}$.

We note the Friedrichs inequality

$$||v|| \leq \begin{cases} L/\pi |v|_1, & n=1\\ C(\Omega) |v|, & n \geq 2 \end{cases} \quad \forall v \in H_0^1(\Omega)$$
 (1-8)

the Poincaré inequality

$$||v||^{2} \leq \begin{cases} \frac{L^{2}}{2} |v|_{1}^{2} + 1/L \left(\int_{0}^{L} v \, dx \right)^{2}, & n = 1 \\ C(\Omega) \left\{ |v|_{1}^{2} + \left(\int_{\Omega} v(x) \, dx \right)^{2} \right\}, & n \geq 2, \end{cases} \quad \forall v \in H^{1}(\Omega), \quad (1-9)$$

and the Nirenberg inequality (see ADAMS [1975])

$$\|D^{J}v\|_{L^{p}} \le C_{1} \|D^{m}v\|_{L^{p}}^{a} \|v\|_{L^{q}}^{1-a} + C_{2} \|v\|_{L^{q}},$$
 (1-10a)

$$\frac{j}{m} \le a \le 1, \quad \frac{1}{p} = \frac{j}{n} + a\left(\frac{1}{r} - \frac{m}{n}\right) + (1 - a)\frac{1}{q}.$$
 (1-10b)

Finally, we use the notation $H_E^2(\Omega) = \left\{v \in H^2(\Omega): \frac{\partial v}{\partial \nu} = 0 \text{ on } \Gamma\right\}$ and note the inequality

$$|v|_1^2 \le ||v|| ||\Delta v|| \quad \forall \ v \in H_E^2(\Omega)$$
 (1-11)

which follows from the equality

$$0 = \int_{\Omega} \nabla(u \nabla u) dx = \int_{\Omega} \{|\nabla u|^2 + u \Delta u\} dx.$$

§ 2. Global Existence

In this section we are going to prove the global existence of solutions to the following initial-boundary value problem:

$$\frac{\partial u}{\partial t} + \gamma D^4 u = D^2 \varphi(x) \quad 0 < x < L, \quad 0 < t < T, \quad I = (0, L) \quad (2-1a)$$

$$Du(0, t) = Du(L, t) = 0, \quad D^3u(0, t) = D^3u(L, t) = 0, \quad t > 0$$
 (2-1b)

$$u(x, 0) = u_0(x), \quad 0 < x < L$$
 (2-1c)

where

$$\varphi(u) = -u + \gamma_1 u^2 + \gamma_2 u^3 \tag{2-2}$$

with γ , γ_1 and γ_2 being constants and γ being positive. We can easily obtain local in time existence and uniqueness results. It is sufficient to apply the standard Picard iteration scheme. Therefore in order to obtain existence on [0, T] for any T > 0 we need a priori estimates on u.

Theorem 2.1. If $\gamma_2 > 0$, then for any initial data $u_0 \in H_E^2(I)$ and T > 0 there exists a unique global solution $H^{4,1}(Q_T)$. Moreover, if $u_0 \in H^6(I) \cap H_E^2(I)$ and $D^2u_0 \in H_E^2(I)$, then the solution is a classical one.

Proof. Multiplying equation (2-1a) by u and integrating with respect to x we obtain

$$\frac{1}{2}\frac{d}{dt}\|u\|^2+\gamma\|D^2u\|^2+\int_0^L\varphi'(u)\,(Du)^2\,dx=0. \tag{2-3}$$

Since $\gamma_2 > 0$, a simple calculation shows that

$$\varphi'(u) = 3\gamma_2 u^2 + 2\gamma_1 u - 1 \ge -c_0 = -\frac{\gamma_1^2}{3\gamma_2} - 1, \quad c_0 > 0.$$
 (2-4)

Thus it follows from (2-3) that

$$\frac{1}{2} \frac{d}{dt} \|u\|^{2} + \gamma \|D^{2}u\|^{2} \leq c_{0} \|Du\|^{2}$$

$$\leq c_{0} \|D^{2}u\| \|u\|$$

$$\leq \frac{\gamma}{2} \|D^{2}u\|^{2} + \frac{c_{0}^{2}}{2} \|u\|^{2}, \qquad (2-5)$$

where we have used the inequality (1-11). By the Gronwall inequality, (2-5) implies that

$$\|u(t)\|^2 \le \|u_0\|^2 e^{c_0^2 T/\gamma}, \qquad 0 \le t \le T$$
 (2-6a)

$$\int_{0}^{t} \|D^{2}u\|^{2} d\tau \leq \frac{\|u_{0}\|^{2}}{\gamma} e^{c_{0}^{2}T/\gamma}, \quad 0 \leq t \leq T.$$
 (2-6b)

In the following we use C_T generically to denote constants depending on T but independent of the solution u.

Defining

$$H(u) = \int_{0}^{u} \varphi(s) ds = \frac{\gamma_2}{4} u^4 + \frac{\gamma_1}{3} u^3 - \frac{1}{2} u^2$$
 (2-7a)

and

$$F(t) = \int_0^L \left(H(u) + \frac{\gamma}{2} (Du)^2 \right) dx, \qquad (2-7b)$$

we have

$$\frac{dF}{dt} = \int_{0}^{L} \left(\varphi(u) \frac{\partial u}{\partial t} + \gamma Du D \frac{\partial u}{\partial t} \right) dx.$$
 (2-8)

Integrations by parts and equations (2-1a, b) yield

$$\frac{dF}{dt} = \int_{0}^{L} \left[\varphi(u) \left(-\gamma D^{4}u + D^{2}\varphi \right) - \gamma D^{2}u (-\gamma D^{4}u + D^{2}\varphi) \right] dx$$

$$= -\int_{0}^{L} \left[\gamma^{2} (D^{3}u)^{2} - 2\gamma D^{3}u D\varphi + (D\varphi)^{2} \right] dx$$

$$= -\int_{0}^{L} \left[\gamma D^{3}u - D\varphi \right]^{2} dx \le 0, \tag{2-9}$$

and

$$F(t) \le F(0) = \int_0^L \left(H(u_0) + \frac{\gamma}{2} (Du_0)^2 \right) dx. \tag{2-10}$$

By Young's inequality

$$u^2 \le \varepsilon u^4 + C_{1\varepsilon}, |u^3| \le \varepsilon u^4 + C_{2\varepsilon}$$
 (2-11)

we have from (2-7b), (2-10) and (2-6a) that

$$\frac{\gamma}{2} \|Du\|^2 + \frac{\gamma_2}{2} \left[\int_0^L u^4 \, dx + \int_0^L u^2 \, dx \right] \le C_3 + F(0) = C. \tag{2-12}$$

By Sobolev's imbedding theorem it follows from (2-6a) and (2-12) that

$$||u(t)||_{\infty} \le C', \quad \forall \ t \in [0, T].$$
 (2-13)

Next we multiply equation (2-1a) by D^4u and integrate with respect to x, obtaining

$$\frac{1}{2}\frac{d}{dt}\|D^2u\|^2 + \gamma\|D^4u\|^2 = \int_0^L D^2\varphi(u)\,D^4u\,dx. \tag{2-14}$$

Note that

$$D^{2}\varphi(u) = \varphi'(u) D^{2}u + \varphi''(Du)^{2}$$

$$= (3\gamma_{2}u^{2} + 2\gamma_{1} u - 1) D^{2}u + (6\gamma_{2} u + 2\gamma_{1}) (Du)^{2}.$$
(2-15)

By the Nirenberg inequality (1-10),

$$||Du||_{\infty} \le C(||D^4u||^{3/8} ||u||^{5/8} + ||u||),$$
 (2-16)

we obtain, using (2-12) and (2-13), the inequality

$$\left| \int_{0}^{L} \varphi''(u) (Du)^{2} D^{4}u \, dx \right| \leq C_{T} \|Du\|_{\infty} \|Du\| \|D^{4}u\|$$

$$\leq C_{T} (\|D^{4}u\|^{3/8} + 1) \|D^{4}u\|$$

$$\leq \frac{\gamma}{4} \|D^{4}u\|^{2} + C_{T}. \tag{2-17}$$

It follows from (2-14), (2-15), (2-17) and (2-13) that

$$\frac{1}{2} \frac{d}{dt} \|D^{2}u\|^{2} + \gamma \|D^{4}u\|^{2} \leq \left| \int_{0}^{L} \varphi'(u) D^{2}u D^{4}u dx \right| + \left| \int_{0}^{L} \varphi''(u) (Du)^{2} D^{4}u dx \right|$$

$$\leq \frac{\gamma}{2} \|D^{4}u\|^{2} + C_{T} \|D^{2}u\|^{2} \tag{2-18}$$

and by Gronwall's inequality,

$$||D^2u(t)||^2 \le C_T, \quad \forall \ t \in [0, T]$$
 (2-19a)

$$\int_{0}^{t} \|D^{4}u\|^{2} d\tau \leq C_{T}, \quad \forall \ t \in [0, T].$$
 (2-19b)

The a priori estimates (2-6), (2-12), (2-13) and (2-19) complete the proof of global existence of a $u \in H^{4,1}(Q_T)$.

Further regularity of the solution is obtained by the use of a bootstrap argument. Since $u \in H^{4,1}(Q_T)$ we have

$$Du \in L^{\infty}(Q_T), D^2u \in L^2(0, T; L^{\infty}(I)).$$
 (2-20)

from which it follows, by a direct calculation, that

$$f(x,t) \equiv D^2 \varphi(u(x,t)), Df \in L^2(Q_T), D^2 f \in L^2(Q_T).$$
 (2-21)

It is well known (Lions & Magenes [1972]) that if $f \in L^2(0, T; L^2(I))$ and $v_0 \in H^2_E(I)$ then the initial boundary value problem

$$\frac{\partial v}{\partial t} + \gamma \ D^4 v = f, \tag{2-22a}$$

$$Dv|_{x=0,L} = D^3v|_{x=0,L} = 0, v|_{t=0} = v_0$$
 (2-22b)

has a unique solition $v \in H^{4,1}(Q_T)$. Now it is easy to see that taking

$$f(x,t) \equiv D^3 \varphi(u(x,t)), \quad v_0 = Du_0 \quad \text{yields} \quad v = Du \in H^{4,1}(Q_T),$$
 (2-23a)

$$f(x, t) \equiv D^4 \varphi(u(x, t)), \quad v_0 = D^2 u_0 \quad \text{ yields} \quad v = D^2 u \in H^{4,1}(Q_T).$$
 (2-23b)

Furthermore, (2-23) implies that $f = \frac{\partial}{\partial t} D^2 \varphi \in L^2(Q_T)$ and assuming that $D^5 u_0|_{x=0,L} = 0$ we have that $v_0 = -\gamma D^4 u_0 + D^2 \varphi(u_0) \in H_E^2(I)$. Hence

$$v = \frac{\partial u}{\partial t} \in H^{4,1}(Q_T) \tag{2-24}$$

and by interpolation theory, (2-23) and (2-24) imply that

$$Du, D^4u \in C(\overline{Q}_T). \tag{2-25}$$

This completes the proof of the existence of a classical solution.

We turn now to the proof of global existence for γ sufficiently large and $||u_0||_2$ sufficiently small. Note that integration of (2-1) yields

$$\frac{1}{L} \int_{0}^{L} u(x,t) dx = \frac{1}{L} \int_{0}^{L} u_{0}(x) dx \equiv M.$$
 (2-26)

If we set

$$v(x, t) = u(x, t) - M,$$
 (2-27)

so that

$$\int_{0}^{L} v(x, t) dx = 0, \qquad (2-28)$$

the problem (2-1) is converted into

$$\frac{\partial v}{\partial t} + \gamma D^4 v = D^2 \tilde{\varphi}(v),$$
 (2-29a)

$$Dv|_{x=0,L} = D^3v|_{x=0,L} = 0,$$
 (2-29b)

$$v(x, 0) = u_0(x) - M,$$
 (2-29c)

where

$$\tilde{\varphi}(v) = \gamma_2 v^3 + (3\gamma_2 M + \gamma_1) v^2 + (3\gamma_2 M^2 + 2\gamma_1 M - 1) v.$$
 (2-30)

Theorem 2.2. If $\gamma > L^2/\pi^2$, $u_0 \in H_E^2(I)$ and $||u_0||_2$ is sufficiently small, then there exists a unique global solution $u \in H^{4,1}(Q_T)$ to (2-1). Moreover, it holds that

$$\lim_{t \to \infty} \|u(t) - M\|_{\infty} = \lim_{t \to \infty} \|Du(t)\|_{\infty} = \lim_{t \to \infty} \|D^2u(t)\| = 0.$$
 (2-31)

Proof. It is easy to see that problem (2-1) is equivalent to (2-29). As previously noted we have local in time existence and uniqueness of a solution so that for global existence it is only necessary to obtain a priori estimates of v. In what follows C_j , $j = 1, 2, \ldots$ denote constants which are independent of v and t. If we set

$$\gamma_0 = 3\gamma_2 M^2 + 2\gamma_1 M - 1, \quad \tilde{\gamma}_1 = 3\gamma_2 M + \gamma_1,$$
 (2-32)

equation (2-29a) may be rewritten as

$$\frac{\partial v}{\partial t} + \gamma D^4 v - \gamma_0 D^2 v = f \equiv D^2 (\gamma_2 v^3 + \tilde{\gamma}_1 v^2). \tag{2-33}$$

Since $||u_0||_2$ is assumed to be sufficiently small, we may assume that

$$|\gamma_0| < \gamma \pi^2 / L^2. \tag{2-34}$$

Now, for any fixed t > 0, define

$$N(t) = \sup_{0 < \tau < t} \|v(\tau)\|_2^2 + \int_0^t \|v(\tau)\|_2^2 d\tau.$$
 (2-35)

Our goal is to show that N(t) can be bounded, independently of t, by the initial data. This is achieved in the following steps.

Step 1. Multiplying (2-33) by v and integrating with respect to x, we obtain

$$\frac{1}{2}\frac{d}{dt}\|v\|^2 + \gamma \|D^2v\|^2 + \gamma_0 \|Dv\|^2 = \int_0^L fv \, dx. \tag{2-36}$$

Since $Dv \in H_0^1(I)$, Friedrichs' inequality (1-8) implies that

$$\frac{1}{2}\frac{d}{dt}\|v\|^2 + C_1\|D^2v\|^2 \le \int_0^L fv \ dx \tag{2-37}$$

where

$$C_1 = \gamma - |\gamma_0| L^2/\pi^2 > 0.$$
 (2-38)

Since $\int_0^L v(x, t) dx = 0$, by Poincaré's inequality (1-9) and Friedrichs' inequality (1-8) we have

$$||v||^2 \le C_2 ||D^2v||^2, \tag{2-39}$$

so that (2-37) yields,

$$\frac{1}{2}\frac{d}{dt}\|v\|^2 + C_3\|v\|_2^2 \le C_4\|f\|^2. \tag{2-40}$$

Step 2. Multiplying (2-33) by $\partial v/\partial t$ and integrating with respect to x, we obtain

$$\left\| \frac{\partial v}{\partial t} \right\|^2 + \gamma \frac{d}{dt} \|D^2 v\|^2 + \gamma_0 \frac{d}{dt} \|Dv\|^2 \le \|f\|^2.$$
 (2-41)

Integrating (2-41) with respect to t, using Friedrichs' inequality (1-8) and noting (2-38) yields

$$\int_{0}^{t} \left\| \frac{\partial v}{\partial t} \right\|^{2} d\tau + C_{1} \|D^{2}v\|^{2} \leq \gamma \|D^{2}v_{0}\|^{2} + |\gamma_{0}| \|Dv_{0}\|^{2} + \int_{0}^{t} \|f\|^{2} d\tau. \tag{2-42}$$

It follows from (2-40) and (2-42) that

$$N(t) \le C_4 \left\{ \|v_0\|_2^2 + \int_0^t \|f\|^2 d\tau \right\}. \tag{2-43}$$

Since

$$f \equiv D^2(\gamma_2 v^3 + \tilde{\gamma}_1 v^2) = (3\gamma_2 v^2 + 2\tilde{\gamma}_1 v) D^2 v + (6\gamma_2 v + 2\tilde{\gamma}_1) (Dv)^2$$

we have

$$||f||^{2} \leq C_{5} \{ (||v||_{\infty}^{4} + ||v||_{\infty}^{2}) ||D^{2}v||^{2} + (||v||_{\infty}^{2} ||Dv||_{\infty}^{2} + ||Dv||_{\infty}^{2}) ||Dv||^{2} \}.$$
 (2-44)

Sobolev's inequality for one dimension and Poincaré's inequality (1-9) yield

$$||v||_{\infty} \le C_6 ||Dv||, \quad ||Dv||_{\infty} \le C_7 ||D^2v||$$

and from (2-44) we have that

$$||f||^2 \leq C_8(||D^2v||^4 + ||D^2v||^6)$$

and

$$\int_{0}^{t} \|f\|^{2} d\tau \le C_{8} \sup_{\tau \in [0,t]} \|v\|_{2}^{2} \left[1 + \sup_{\tau \in [0,t]} \|v\|_{2}^{2} \right] \int_{0}^{t} \|v\|_{2}^{2} d\tau. \tag{2-45}$$

Taking (2-43) and (2-45) together yields

$$N(t) \le C_9 \{ \|v_0\|_2^2 + N(t)^2 + N(t)^3 \} \quad \forall \ t > 0.$$
 (2-46)

By considering the graph of the function $F(N) = C_9\{\|v_0\|_2^2 + N^2 + N^3\} - N$ and following the argument of Klainerman & Ponce [1983] it is clear that if $\|v_0\|_2$ is sufficiently small then there is a constant C_{10} such that

$$N(t) \le C_{10} \|v_0\|_2^2, \quad \forall \ t > 0.$$
 (2-47)

This proves the global existence of a weak solution in $H^{2,1}(Q_T)$. To complete the proof of global existence in $H^{4,1}(Q_T)$ we observe that multiplying (2-33) by $-D^2v$ and D^4v yield, after calculations similar to the above, the inequalities

$$||Dv||^2 + \int_0^t ||D^3v||^2 d\tau \le C_{11} \left\{ ||v_0||_1^2 + \int_0^t ||f||^2 d\tau \right\}$$
 (2-48 a)

$$||D^{2}v||^{2} + \int_{0}^{t} ||D^{4}v||^{2} d\tau \leq C_{12} \left\{ ||v_{0}||_{2}^{2} + \int_{0}^{t} ||f||^{2} d\tau \right\}. \tag{2-48b}$$

Thus a priori bounds in $H^{4,1}(Q_T)$ follow from (2-48), (2-46) and (2-45).

In order to prove that v tends to zero as $t \to \infty$ we notice that, since (2-47) holds for all t,

$$||f||^2 \le \varepsilon ||D^2v||^2$$
 (2-49)

where ε is sufficiently small provided $||v_0||_2$ is sufficiently small. It follows from (2-40) that

$$\frac{1}{2} \frac{d}{dt} \|v\|^2 + (C_3 - \varepsilon C_4) \|v\|_2^2 \le 0$$
 (2-50)

which implies for $\varepsilon(\|v_0\|_2)$ sufficiently small that $\|v\|$ decays exponentially to zero. Similarly, we obtain $\|v\|_2 \to 0$ as $t \to \infty$ from the differential inequalities corresponding to (2-48). Thus we have also that $\|v\|_{\infty}$ and $\|Dv\|_{\infty}$ also tend to zero as $t \to \infty$.

Remark I. If the initial data is close to a constant M and $|\varphi'(M)| < \gamma \pi^2/L^2$ then we have similar results. In particular consider the Sivashinsky equation modelling a planar solid-liquid interface for a binary alloy (SIVASHINSKY [1983])

$$\frac{\partial u}{\partial t} + D^4 u + \alpha u - D^2 (2u - \frac{1}{2}u^2) = 0, \quad \alpha > 0,$$
 (2-51)

with the same initial boundary values (2-1 b, c). If $\pi^2 > 2L^2$ or $\alpha > 1$ then problem (2-51, 2-1 b, c) has a unique global solution provided the initial data is small.

Remark 2 (Multidimensions $n \le 3$). The corresponding problem for n = 2, 3 is

$$\frac{\partial u}{\partial t} + \gamma \Delta^2 u = \Delta \varphi(u), \qquad (2-52a)$$

$$\frac{\partial u}{\partial v} = \frac{\partial}{\partial v} \Delta u = 0, \text{ on } \Gamma$$
 (2-52b)

$$u|_{t=0} = u_0, (2-52c)$$

where Ω is a bounded domain in \mathbb{R}^n (n=2,3) with a smooth boundary Γ and ν is the unit exterior normal to Γ . For $u_0 \in H_E^2(\Omega)$ there exists a unique global solution $u \in H^{4,1}(Q_T)$. The proof is the same as that of Theorem 2.1 with minor changes. Since under the translation

$$v = u - M, \quad M = \int_{\Omega} u_0(x) \, dx / |\Omega|$$
 (2-53)

the value of γ_2 does not change, we may, without loss of generality, assume that

$$\int_{0}^{\infty} u_{0}(x) dx = 0 = \int_{0}^{\infty} u(x, t) dt.$$
 (2-54)

Now as before in (2-6) and (2-12) we have

$$||u(t)||_1 + \int_0^t |u|_2^2 d\tau \le C_T, \quad \forall \ t \in (0, T].$$
 (2-55)

It can be seen from (2-14) that the crucial term to estimate is $\|\Delta\varphi(u)\|$. By the boundary conditions, (2-54) and the Poincaré-Friedrichs inequalities $\|\Delta^2 u\|$ is equivalent to $\|u\|_4$. By Sobolev's imbedding theorem and (2-55) we have

$$||u||_{rq} \leq C_T$$
 for any $q < \infty$ $(n=2)$, $(2-56a)$

$$||u||_{L^6} \le C_T \quad (n=3).$$
 (2-56b)

By the Nirenberg inequality (1-10), we have

$$\|u\|_{\infty} \le C \|\Delta^2 u\|^a \|u\|_{L^q}^{1-a}$$
 where $a = (1 + 3q/2)^{-1}$ $(n = 2)$, $(2-57a)$

$$||u||_{\infty} \le C ||A^2 u||^{\frac{1}{6}} ||u||_{L^6}^{\frac{5}{6}} \qquad (n=3),$$
 (2-57b)

$$\|\nabla u\|_{L^{4}} \le C \|\Delta^{2} u\|^{\frac{1}{6}} \|\nabla u\|^{\frac{5}{6}} \quad (n=2), \tag{2-58a}$$

$$\|\nabla u\|_{L^{4}} \le C \|\Delta^{2}u\|^{\frac{1}{4}} \|\nabla u\|^{\frac{3}{4}} \quad (n=3)$$
 (2-58b)

and

$$\|\Delta u\| \le C \|\Delta^2 u\|^{\frac{1}{3}} \|\nabla u\|^{\frac{2}{3}} \quad (n=2),$$
 (2-59a)

$$\|\Delta u\| \le C \|\Delta^2 u\|^{\frac{1}{2}} \|\nabla u\|^{\frac{1}{2}} \quad (n=3).$$
 (2-59b)

From these inequalities we finally arrive at

$$||u^2 \Delta u|| \le ||u||_{\infty}^2 ||\Delta u|| \le C_T ||\Delta^2 u||^{\frac{1}{3} + 2a}$$
 $(n = 2),$ (2-60a)

$$||u^2 \Delta u|| \le C_T ||\Delta^2 u||^{\frac{5}{6}} \quad (n=3)$$
 (2-60b)

and

$$||u|\nabla u|^2|| \le ||u||_{\infty} ||\nabla u||_{L^4}^2 \le C_T ||\Delta^2 u||^{a+\frac{1}{3}} \quad (n=2),$$
 (2-61 a)

$$||u||\nabla u|^2|| \le C_T ||\Delta^2 u||^{\frac{2}{3}} \quad (n=3).$$
 (2-61b)

Since

$$\Delta\varphi(u) = \varphi'(u) \, \Delta u + \varphi''(u) \, |\nabla u|^2,$$

applying Young's inequality to the right-hand side of

$$\frac{1}{2}\frac{d}{dt}\|\Delta u\|^2 + \gamma\|\Delta^2 u\|^2 = \int_{u} \Delta \varphi(u)\Delta^2 u \ dx$$

using (2-61), we obtain

$$\|\Delta u(t)\|^2 + \int_0^t \|\Delta^2 u\|^2 d\tau \le C_T, \quad \forall \ t \in [0, T].$$
 (2-61)

This completes the proof of global existence.

§ 3. Blow up in finite time when $\gamma_2 < 0$

In the previous section we proved that if $\gamma_2 > 0$ then (2-1) and (2-5b) admit unique global solutions. On the other hand numerical experiments in one space dimension (HAZEWINKEL, KAASHOEK & LEYNSE [1985]), indicate that if $\gamma_2 < 0$,

then, in general, the solution will blow up in finite time. In this section we give a rigorous proof of that.

Theorem 3.1. If $\gamma_2 < 0$ and $-\int_{\Omega} \left\{ H(u_0) + \frac{\gamma}{2} |\nabla u_0|^2 \right\} dx$ is sufficiently large, then the solution u of (2–51) $(n \le 3)$ blows up in finite time: there is a $T^* > 0$ such that

$$\lim_{t \to T^*} \|u(t)\|_2 = +\infty. \tag{3-1}$$

Proof. Without loss of generality we consider initial data such that (2-54) holds, i.e. $\int_0^\infty u_0(x) dx = 0$. As in the proof of Theorem 2.1,

$$2 \int_{0}^{\infty} H(u) dx - 2F(0) \le -\gamma |u|_{1}^{2}$$
 (3-2)

where

$$F(0) = \int_{\Omega} \left(H(u_0) + \frac{\gamma}{2} |\nabla u_0|^2 \right) dx. \tag{3-3}$$

Let w(x, t) be the unique solution of

$$\Delta w = u,$$

$$\frac{\partial w}{\partial v} = 0, \quad \text{on } \Gamma, \quad \stackrel{\circ}{\Omega} w \, dx = 0. \tag{3-4}$$

It follows that

$$|w|_1^2 \le C \|u\|^2. \tag{3-5}$$

Now multiplying (2-52a) by w and integrating with respect to x, using (3-4), we obtain

$$\frac{d}{dt} |w|_1^2 = -2 \int_{\Omega} \varphi(u) u \, dx - 2\gamma |u|_1^2$$

$$\geq 4 \int_{\Omega} H(u) \, dx - 4F(0) - 2 \int_{\Omega} \varphi(u) u \, dx$$

$$= -\gamma_2 \int_{\Omega} u^4 \, dx + \frac{10}{3} \gamma_1 \int_{\Omega} u^3 \, dx - 4F(0)$$

$$\geq -\frac{\gamma_2}{2} \int_{\Omega} u^4 \, dx - 4F(0) - C_1$$

$$\geq \frac{-\gamma_2}{2 |\Omega|} \left(\int_{\Omega} u^2 \, dx \right)^2 - 4F(0) - C_1$$

and using (3-5),

$$\frac{1}{2}\frac{d}{dt}|w|_1^2 \ge \frac{-\gamma_2}{2|\Omega|C}|w|_1^4 - 4F(0) - C_1 \tag{3-6}$$

where C_1 is a constant depending only on γ_1 , γ_2 and Ω . Thus (3-6) yields, when

$$-F(0) > C_1/4, (3-7)$$

that $|w|_1^2$ must blow up in a finite time T^* . Hence by (3-5) we have that (3-1) holds. An inspection of the dependence on u_0 of F(0) shows that given any $g \in H_E^2(\Omega)$ choosing $u_0 = kg$ yields (3-7) for k large enough.

§ 4. Finite element Galerkin approximation

Let S_l^r be the piecewise polynomial spline space

$$S_l^r = \{ \chi \in C^l(I) : \chi|_{I_i} \in \Pi_{r-1}(I_i), \quad i = 1, 2, 3, \dots N \}$$
 (4-1)

where r and l are integers, $-1 \le l \le r-1$, $0 = x_0 < x_1 < x_2 < \ldots < x_N = L$, $I_i = (x_{i-1}, x_i)$, $|I_i| \in (\delta h, h)$ for some $\delta > 0$ and $II_{r-1}(I_i)$ denotes the set of all polynomials on I_i of degree less or equal to r-1. Let $k \ge 1$ and $r \ge 4$ so that $S_k^r \subset H^2(I)$ and let $\mathring{S}_k^r \subset H_E^2(I)$ denote $\{\chi : D\chi(0) = D\chi(L) = 0\} \cap S_k^r$. The following approximation property is assumed for all $v \in H_E^2(I) \cap W_p^s(I)$ with $2 \le s \le r$,

$$\inf_{x \in \mathcal{S}_L^s} \sum_{j=0}^2 h^j \| D^j(v-x) \|_{L^p(I)} \le C h^s \| v \|_{w_p^s(I)}. \tag{4-2}$$

A natural Galerkin approximation to (2-1) is: find $u^h:[0,T]\to \mathring{S}^r_k$ such that

$$\left(\frac{\partial u^h}{\partial t},\chi\right) + \gamma(D^2 u^h, D^2 \chi) = (\varphi(u^h), D^2 \chi) \quad \forall \chi \in \mathring{S}_k^r$$
 (4-3a)

$$u^h(0) = u_0^h (4-3b)$$

where $u_0^h \in \mathring{S}_k^r$ is a suitable approximation to u_0 . We note that since $\chi = 1$ belongs to \mathring{S}_k^r , (4-3a) implies

$$\frac{1}{L}(u^h(t),1) = \frac{1}{L}(u_0^h,1). \tag{4-4}$$

The global existence theorems of section 2 can be extended to the Galerkin approximation (4-3).

Proposition 4.1.

- (a) If $\gamma_2 > 0$ then for any initial data $u_0^h \in \mathring{S}_k^r$ and T > 0 there exists a unique global solution $u^h \in H^{2,1}(Q_T)$ to (4.3).
- (b) If $\gamma > L^2/\pi^2$ and the initial data $u_0^h \in \mathring{S}_k^r$ is such that $\|u_0^h\|_2$ is sufficiently small, then there exists a unique global solution $u^h \in H^{2,1}(Q_T)$ to (4-3).

Proof. Local existence and uniqueness is proved using Picard iteration. Global existence will follow from *a priori* bounds.

(a) Taking $\chi = u^h(t)$ in (4-3a) leads to the estimates, as in the derivation of (2-6),

$$||u^h(t)|| \le C_T ||u_0^h||, \tag{4-5a}$$

$$\int_{0}^{t} \|D^{2}u^{h}(\tau)\|^{2} d\tau \le C_{T} \|u_{0}^{h}\|^{2}. \tag{4-5b}$$

Since \mathring{S}_k^r is a finite-dimensional space (4-5a) also implies that, for fixed h, $\|u^h(t)\|_{\infty}$ is uniformly bounded on [0, T] which is sufficient to deduce global existence for the ordinary differential equations (4-3) since $\varphi(\cdot)$ is continuously differentiable.

(b) Setting

$$v^{h}(t) = u^{h}(t) - \frac{1}{L}(u_{0}^{h}, 1)$$
 (4-6)

and following the arguments leading up to inequality (2.47) of Theorem 2.2 yields the desired assertion.

Associated with \mathring{S}_k^r is the elliptic projection $P^h: H_E^2(I) \to \mathring{S}_k^r$ defined by: for $v \in H_E^2(I)$ then $P^h v$ satisfies

$$(D^2 P^h v - D^2 v, D^2 \chi) = 0 \quad \forall \chi \in \mathring{S}_k^r \text{ and } (\chi, 1) = 0,$$
 (4-7a)

$$(P^h v - v, 1) = 0. (4-7b)$$

The existence of a unique P^hv satisfying (4-7) follows from the Lax-Milgram theorem and the Friedrichs-Poincaré inequality

$$\|\eta\|_2 \le C\{|\eta|_2 + |(\eta, 1)|\}, \quad \forall \, \eta \in H_E^2(I).$$
 (4-8)

Theorem 4.1. Suppose that the solution u(t) of (2-1) is sufficiently regular for a given T > 0 and that the solution of (4-3) satisfies

$$||u^h(t)||_{\infty} \leq C_T, \quad 0 \leq t \leq T. \tag{4-9}$$

If the initial data satisfy

$$||u_0 - u_0^h|| \le Ch^r$$
 and $(u_0^h, 1) = M$, (4-10)

then

$$t^{\frac{1}{4}} \| u(t) - u^h(t) \|_{\infty} + \| u(t) - u^h(t) \| \leq C_T(u) h^r \quad \forall \ t \in (0, T]. \quad (4-11)$$

If $u_0^h = P^h u_0$ then

$$\sup_{t \in (0,T)} \sum_{j=0}^{2} h^{j} |u(t) - u^{h}(t)|_{j} \le C_{T}(u) h^{r}, \tag{4-12a}$$

$$\left\| \frac{\partial u}{\partial t} - \frac{\partial u^h}{\partial t} \right\|_{L^2(0,T;L^2(I))} \le C_T(u) h^r, \tag{4-12b}$$

$$||u(t) - u^h(t)||_{\infty} \le C_T(u) h^r \quad \forall t \in [0, T].$$
 (4-12c)

Proof. Our method of proof is based on the error decomposition

$$u - u^h = \theta^h + e^h$$
, $\theta^h \equiv u - P^h u$, $e^h \equiv P^h u - u^h$ (4-13)

(cf. Wheeler [1973], Thomée [1974] and Wahlbin [1975] for linear parabolic equations) and the following proposition regarding the projection P^h .

Proposition 4.2. For

$$v \in H_E^2(I) \cap H'(I),$$

$$\sum_{i=0}^2 h^j |v - P^h v|_j \le Ch' ||v||_r$$
(4-14a)

and if $v \in H_E^2(I)$, then

$$||v - P^h v||_{\infty} \le Ch^r ||v||_{W_{\infty}^r(I)}.$$
 \square (4-14b)

We assume Proposition 4-2 for the moment and postpone its proof to the end of this section. It follows from (4-14) and the assumption concerning the regularity of u that

$$\sup_{t \in (0,T)} \sum_{j=0}^{2} h^{j} |\theta^{h}(t)|_{j} \le C_{T}(u) h^{r}$$
 (4-15a)

$$\left\| \frac{\partial \theta^h}{\partial t} \right\|_{L^2(0,T;L^2(2))} \le C_T(u) h^r \tag{4-15b}$$

$$\|\theta^h(t)\|_{\infty} \le C_T(u) h^r \quad 0 \le t \le T. \tag{4-15c}$$

We obtain (4-15b) by applying proposition 4.2 with $v = \partial u/\partial t$.

Hence it remains to obtain the corresponding appropriate bounds for e^h . Observe that, by (4-7a) and (4-3a), for all $\chi \in \mathring{S}_k^r$ and $(\chi, 1) = 0$

$$\left(\frac{\partial e^h}{\partial t},\chi\right) + \gamma(D^2 e^h, D^2 \chi) = \left(-\frac{\partial \theta^h}{\partial t},\chi\right) + \left(\varphi(u) - \varphi(u^h), D^2 \chi\right). \tag{4-16}$$

Taking $\chi = e^h$ in (4-16) we obtain the inequality

$$\frac{1}{2} \frac{d}{dt} \|e^h\|^2 + \gamma \|e^h\|_2^2 \le \left\| \frac{\partial \theta^h}{\partial t} \right\| \|e^h\| + C \|u - u^h\| \|e^h\|_2$$
 (4-17)

where the continuous differentiability of $\varphi(\cdot)$ and the *a priori* L^{∞} bounds on *u* and u^h have been used. It follows from (4-17) that

$$\left\|rac{d}{dt}\|e^h\|^2+rac{\gamma}{2}\|e^h\|_2^2\leq C\Big\{\|e^h\|^2+\| heta^h\|^2+\left\|rac{\partial heta^h}{\partial t}
ight\|^2\Big\}$$

and by Gronwall's inequality that

$$||e^{h}(t)||^{2} + \int_{0}^{t} |e^{h}(\tau)|_{2}^{2} d\tau \leq ||e^{h}(0)||^{2} + C_{T}(u) h^{2r}$$

$$\leq C_{T}(u) h^{2r}$$
(4-18)

where we have used (4-15a, b) and the observation that

$$||e^h(0)|| \le ||u_0 - u_0^h|| + ||P^h u_0 - u_0||$$

with (4-10) and (4-14a) holding. Of course in the case $u_0^h = P^h u_0$ we have that $e^h(0) = 0$.

Taking $\chi = \frac{\partial e^h}{\partial t}$ in (4-16), we obtain

$$\left\|\frac{\partial e^h}{\partial t}\right\|^2 + \frac{\gamma}{2} \frac{d}{dt} |e^h|_2^2 \leq \left\|\frac{\partial \theta^h}{\partial t}\right\| \left\|\frac{\partial e^h}{\partial t}\right\| + \left(\varphi(u) - \varphi(u^h), D^2 \frac{\partial e^h}{\partial t}\right)$$

and after integrating with respect to t,

$$\frac{1}{2} \int_{t_1}^{t} \left\| \frac{\partial e^h}{\partial t} \right\|^2 d\tau + \frac{\gamma}{2} \left| e^h(t) \right|_2^2 \leq \frac{\gamma}{2} \left| e^h(t_1) \right|_2^2 + \frac{1}{2} \int_{t_1}^{t} \left\| \frac{\partial \theta^h}{\partial t} \right\|^2 d\tau$$

$$+ \int_{t_1}^{t} \frac{d}{dt} \left\{ (\varphi(u) - \varphi(u^h), D^2 e^h) \right\} d\tau$$

$$- \int_{t_1}^{t} \left(\varphi'(u) \frac{\partial u}{\partial t} - \varphi'(u^h) \frac{\partial u^h}{\partial t}, D^2 e^h \right) d\tau.$$

$$(4-19)$$

Label the last two terms on the right-hand side of (4-19) as I_1 , and I_2 . Then using the boundedness of u^h and u,

$$|I_{1}| \leq C(\|e^{h}(t)\|^{2} + \|\theta^{h}(t)\|^{2} + \|e^{h}(t_{1})\|^{2} + \|\theta^{h}(t_{1})\|^{2}) + \frac{\gamma}{4} (\|e^{h}(t)\|_{2}^{2} + \|e^{h}(t_{1})\|_{2}^{2})$$

$$\leq C_{T}(u) h^{2r} + \frac{\gamma}{4} |e^{h}(t)|_{2}^{2} + \frac{\gamma}{4} |e^{h}(t_{1})|_{2}^{2}$$

$$(4-20a)$$

where the bounds (4-18), (4-10) and (4-15a) have been used. Turning to I_2 we find that

$$|I_{2}| \leq \int_{0}^{t} \left\{ \left\| \left(\varphi'(u) - \varphi'(u^{h}) \right) \frac{\partial u}{\partial t} \right\| + \left\| \varphi'(u^{h}) \frac{\partial e^{h}}{\partial t} \right\| + \left\| \varphi'(u^{h}) \frac{\partial \theta^{h}}{\partial t} \right\| \right\} |e^{h}|_{2} d\tau$$

$$\leq \frac{1}{4} \int_{0}^{t} \left\| \frac{\partial e^{h}}{\partial t} \right\|^{2} d\tau + C_{T}(u) \int_{0}^{t} \left\{ \left\| e^{h} \right\|^{2} + \left\| \theta^{h} \right\|^{2} + \left\| \frac{\partial \theta^{h}}{\partial t} \right\|^{2} + |e^{h}|_{2}^{2} \right\} d\tau$$

$$\leq \frac{1}{4} \int_{0}^{t} \left\| \frac{\partial e^{h}}{\partial t} \right\|^{2} d\tau + C_{T}(u) h^{2r}$$

$$(4-20b)$$

where we have used the differentiability of $\varphi(\cdot)$, the boundedness of u^h and $\partial u/\partial t$ and the error bounds (4-18), (4-10) and (4-15). It follows from (4-19) and (4-20)

that

$$\int_{t_1}^{t} \left\| \frac{\partial e^h}{\partial t} \right\|^2 d\tau + \gamma |e^h(t)|_2^2 \le \gamma |e^h(t_1)|_2^2 + C_T(u) h^{2r}. \tag{4-21}$$

In the case $u_0^h = P^h u_0$ we have from (4-18) and (4-21) (taking $t_1 = 0$) that

$$\|e^{h}(t)\|^{2} + |e^{h}(t)|_{2}^{2} + \int_{0}^{t} \left\|\frac{\partial e^{h}}{\partial t}\right\|^{2} d\tau \leq C_{T}(u) h^{2r}. \tag{4-22}$$

Otherwise (4-21) and (4-18) imply that

$$\gamma t |e^{h}(t)|_{2}^{2} \leq \gamma \int_{0}^{t} \{|e^{h}(\tau)|_{2}^{2} + C_{T}(u) h^{2r}\} d\tau
\leq \gamma C_{T}(u) h^{2r}.$$
(4-23)

Since

$$|e^h(t)|_1^2 \le |e^h(t)|_2 ||e^h(t)||$$

and

$$||e^h(t)||_{\infty} \leq C ||e^h(t)||_{1}$$

it follows from (4-18), (4-22), (4-23) and (4-15) that (4-11) and (4-12) hold.

Proof of Proposition 4.2. The projection property of P^h yields

$$|v-P^hv|_2 \leq \inf_{\substack{\chi \in \mathring{S}_k^r \\ (\chi-\nu,1)=0}} |v-\chi|_2$$

and noting that

$$D^{2}(\chi - (\chi, 1) + (v, 1)L - v) = D^{2}(\chi - v), \qquad (4-24)$$

together with the approximation (4-2) (p = 2, s = t) we obtain

$$|v - P^{h}v|_{2} \le Ch^{r-2} \|v\|_{r}. \tag{4-25}$$

The L^2 -norm of the error is bounded by use of the usual duality argument. For any $\eta \in L^2(I)$, let $z \in H_E^2(I)$ be the unique solution of

$$(D^2z, D^2\xi) = (\eta, \xi) \quad \forall \xi \in H_E^2(I), \quad (\xi, 1) = 0$$
 (4-26a)

$$(z, 1) = 0. (4-26b)$$

It follows from (4-26) that

$$||z||_4 \le C(|z|_2 + |z|_4) \le C ||\eta||.$$
 (4-27)

Equations (4-7a) and (4-26a) yield

$$(v - P^h v, \eta) = (D^2 (v - P^h v), D^2 z)$$

= $(D^2 (v - P^h v), D^2 (z - \chi)) \quad \forall \ \chi \in \mathring{S}_k^r \quad \text{and} \quad (\chi, 1) = 0$

and, hence using (4-24), (4-27) and (4-2) we obtain

$$(v - P^{h}v, \eta) \leq |v - P^{h}v|_{2} |z - \chi|_{2}$$

$$\leq Ch^{r} ||v||_{r} ||z||_{4}$$

$$\leq Ch^{r} ||v||_{r} ||\eta||,$$

so that

$$||v - P^h v|| \le Ch^r ||v||_r.$$
 (4-28)

Therefore, noting the inequality (1-11), we have proved (4-14a). It remains to prove the L^{∞} bound. First observe that by (4-7a)

$$(D^{2}P^{h}v - D^{2}v, \eta) = 0 \quad \forall \eta \in S_{k-2}^{r-2}, \quad (\eta, 1) = 0$$
 (4-29)

and since

$$(D^2P^hv-D^2v,1)=0$$

we have that D^2P^hv is the L^2 projection of D^2v in S_{k-2}^{r-2} . It follows from the L^∞ error bound for the L^2 projection, due to DOUGLAS, DUPONT & WAHLBIN [1975], that

$$||D^{2}(v - P^{h}v)||_{\infty} \le Ch^{r-2} ||D^{2}v||_{W_{\infty}^{r-2}(I)}.$$
(4-30)

Using the dual problem (4-26) with $\eta \in L^1(I)$ so that

$$||z||_{W_1^4(I)} \le C ||\eta||_{L^1(I)},$$
 (4-31)

we have

$$(v - P^h v, \eta) = (D^2(v - P^h v), D^2 z)$$

= $(D^2(v - P^h v), D^2(z - \chi))$ (4-32)

$$\leq \|D^{2}(v-P^{h}v)\|_{\infty} \|D^{2}(z-\chi)\|_{L^{1}(I)} \quad \forall \chi \in \mathring{S}^{r}_{k'}(\chi,1) = 0.$$

It follows from (4-24), (4-2) with p = 1 and s = 4, (4-30), (4-31) and (4-32) that

$$||v - P^h v||_{\infty} \leq Ch^r ||v||_{W_{\infty}^r(I)}.$$

Remarks. 1. The assumption (4-9) is not a restriction. By a standard argument (see Thomée [1984; p. 154]) we may use the error bounds (4-11) or (4-12) in order to justify (4-9) a posteriori for any T > 0 such that (2-1) has a solution.

2. The smoothing property of the linearized differential operator is responsible for the L^{∞} error bound in (4-11) for any t > 0 despite there being no assumption on the initial L^{∞} error.

Acknowledgement. This work was partially supported by the National Science Foundation, Grant No. DMS-8501397 and the Air Force Office of Scientific Research and the Office of Naval Research. Zheng expresses his thanks to J. Shatah and F. Bernis for their very helpful discussions.

References

- R. A. Adams, Sobolev Spaces, Academic Press, New York (1975).
- J. W. CAHN & J. E. HILLIARD, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.
- J. CARR, M. E. GURTIN & M. SLEMROD, Structural phase transitions on a finite interval, Arch. Rational Mech. Anal. 12 (1984), 317-351.
- D. S. COHEN & J. D. MURRAY, A generalized diffusion model for growth and dispersal in a population, J. Math. Biology 12 (1981), 237-249.
- J. Douglas, Jr., T. Dupont & L. Wahlbin, Optimal L^{∞} error estimates for Galerkin approximations to solutions of two point boundary value problems, *Math. Comp.* **29** (1975), 475–483.
- M. HAZEWINKEL, J. F. KAASHOEK & B. LEYNSE, Pattern formation for a one dimensional evolution equation based on Thom's river basin model, Report #8519/B, Econometric Institute, Erasmus University (1985).
- S. KLAINERMAN & G. PONCE, Global small amplitude solutions to nonlinear evolution equations, *Comm. Pure. Appl. Math.* 36 (1983), 133-141.
- J. L. LIONS & E. MAGENES, Non-homogeneous boundary value problems and applications, Vol. II, Springer-Verlag (1972).
- A. NOVICK-COHEN, Energy methods for the Cahn-Hilliard equation, IMA Preprint # 157, (1985).
- A. NOVICK-COHEN & L. A. SEGEL, Nonlinear aspects of the Cahn-Hilliard equation, *Physica* 10 (D) (1984), 277–298.
- G. I. SIVASHINSKY, On cellular instability in the solidification of a dilute binary alloy, Physica 8 (D) (1983), 243–248.
- V. Thomée, Some convergence results for Galerkin methods for parabolic boundary value problems, in *Mathematical Aspects of Finite Element Methods in Partial Differential Equations*, ed. C. de Boor, Academic Press (1974), p. 55-84.
- V. THOMÉE, Galerkin Finite Element Methods for Parabolic Problems, L. N. M. # 1054, Springer-Verlag, Berlin (1984).
- L. Wahlbin, On maximum norm error estimates for Galerkin approximations to one dimensional second order parabolic boundary value problems, SIAM J. Numer. Anal. 12 (1975), 177-187.
- M. F. Wheeler, A priori L^2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723-759.

Department of Mathematics Purdue University West Lafayette, Indiana

(Received March 17, 1986)