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Summary. A semi-discrete finite element method requiring only continuous 
elements is presented for the approximation of the solution of the evolution- 
ary, fourth order in space, Cahn-Hilliard equation. Optimal order error 
bounds are derived in various norms for an implementation which uses 
mass lumping. The continuous problem has an energy based Lyapunov func- 
tional. It is proved that this property holds for the discrete problem. 
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w 1. Introduction 

We shall consider a finite element approximation of the Cahn-Hilliard equation 

~ u  
(1.1a) tom=Adp(u)-~A2u xef2, t > 0  

subject to initial and boundary conditions 

(1.1 b) u(x, O) = Uo(X) xef2, 

0u 
(1.1 c) Ov - ~v (q~(u)- v A u )=0  x~aO,  t>O 

where Q is a bounded domain in ~ " ( n < 3 )  with a sufficiently smooth boundary 
OO, v is the outward unit normal vector along df2, V is a prescribed positive 
constant and q~(-) is the cubic 

(1.1d) 4~(u)= Ip'(u); 
U4 u3 70 2. 

r , ~>o. 
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This is a generalised diffusion problem for u(x, t) the concentration of one com- 
ponent of a binary mixture. It is used to model the phase separation which 
occurs upon the quenching of such a mixture into the spinodal region; for 
example see Langer (1971) and Novick-Cohen and Segel (1984). 

It is known Elliott and Zheng (1986) that if the initial data uoeH~(f~) 
-{q~H2(~2): ~tt/Ov=O on 0~2} then (1.1) has a unique solution for all time. 
A standard conforming Galerkin finite element method requires that the approx- 
imation space be contained in H~Z(~?); see Elliott and French (1987) for computa- 
tions in one space dimension. Another possibility is the use of nonconforming 
elements, Elliott and French (1989). In contrast, we propose here a splitting 
method based on H 1 elements. Let us introduce w, the chemical potential, defined 
by 

w=c~(u)--~Au. 

If follows that (1.1 a, c) may be rewritten as 

Ou 
(1.3a) - - - A w = O  xeO, t>0 ,  

0t 

(1.3 b) - y A u + q S ( u ) - w = O  xeQ, t>0 ,  

Ou ~?w 
(1.3c) - - = 0 ,  = 0  x~0~,  t>0 .  

Ov Ov 

Clearly (1.3) represent a natural splitting of (1.1) into two coupled problems 
which are second order in space. Integrating (1.3a, b) against test functions 
r /el l  1 (f2) and using (1.3c) we obtain 

Ou 
(1.4 a) ( ~ - ,  q ) + ( g  w, F q) = 0, 

(1.4b) ~(Vu, Vrl)+(4)(u)-w, q)=0, 

where (., .) denotes the L2 (f2) inner product. 
Let us now consider a quasi-uniform family T h of polygonal decompositions 

of f2 (by triangles or rectangles, with boundary elements being allowed to have 
one curvilinear edge) with characteristic parameter hc(0, 1). Associated with 
T h is the finite element space V h ~ H 1 (0), 

(1.5) V h = {Xe C~ Zl,eP,,, ~eT h} 

where I'm is the set of all polynomials of degree no greater than the positive 
integer m. The splitting method is: find {u h, wh}: [0, T] --+ V h x V h such that 

(1.6 a) (u~, Z)+(Vw h, V~)=0 VZe V h, 

(1.6 b) y(Vu h, VZ)+(g)(Uh)--wh, z)=O V z e V  h, 

(1.6c) uh(O)=u~, 

where Uho e V h is a suitable approximation to u0. 
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N h V h If {Hi}i= l is a basis for and 

Miy = ( H i ,  Hi) '~" mass" matrix 

Kgj=(V H~, V Hj) "stiffness" matrix 
then 

N h Nh  

uh(t) = ~', ci(t) Hi ; wh(t) = Z di(t) Hi 
i = I  i - t  

where c and d solve the initial value problem 

dc 
(1.7a) M ~ t  + K  d=0 ,  

(1.7b) ?Kc_+f(c)=Md_ 

with 

(1.7c) { f ( c ) } ,  = (4~(uh(t)), x,). 

Equations (1.7a) and (1.7b) can be combined to give 

(1.8) M ~ t + ? K M -  ' K_c+ K M -  I f (c)  = 0. 

577 

dc 
(1.9) ~tt + yAZc-+ A ~- (e)=O 

where A = M -  1 K and ( -  A) is the finite element approximation of the Laplacian 
and ~ ( e ) = M - I f ( c ) .  Algorithms for the numerical solution of (1.9) should not 
depend on the formation of the full matrix M -  1. In the case of piecewise linear 
finite elements V h = S h, 

(1.10) S n= {x6C(f2): ZI~6P1 z6Tn}, 

w i t h  T h being a simplicial decomposition of f2, a lumped-mass numerical integra- 
tion rule for the L 2 inner product leads to a diagonal mass matrix viz: 

Nh 

(1.11a) (Z, qP = ~ m,z(xl)q(xi) g, tteC(O), 
i = l  

(1.1 lb)  M u = m  i , Mij=O i=l=j, 

Since the matrices M and K are positive definite and 4)(-) is defined by (1.1d), 
it follows that the initial value problem for (1.8) has a unique solution on some 
time interval, possibly depending on h. Observe that (1.8) is, in essence, a discreti- 
zation of (1.i a) of the form 
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N h where {xl}~= i is the set of simplex vertices and 

(i.12a) [(Z, rl)h-(x, rl)I<fh2llz]lx II~lll v z , ~  Sh, 
( l . t2b) I(x, rl)h-(z, rl)l<fh2IIzlll [Ir/lI2 VxeS h, r/~n2(f2), 

(1.12c) ColZlo<lZt,=((x,z)h)�89 vxeS*, 

(1.12d) l(Z, ~/)h--(Z, r/)I < Ch[hlrll2 + iI r/II x] IZIo Vz~S h, r/~H2(f2), 

(1.12e) ]rl-glh<fEh21rll2+lrl-Zlo] VzeS*, r/En:(f2). 

We shall prove in w 3 that the following splitting method is O(h 2) accurate: 
find {u h, Wh}: [0, T] ~ S  h x S h such that 

(1.13a) 

(1.13b) 

(ut h , ~)h + (V w*, Vx)=O V ~ S  ~, 

~,(Vu h, VZ)+(ck(u*)--w h, Z)*=O Vz~S h, 

(1.13 c) u h (0) = u~ 

where u~eS h is a suitable approximation to Uo. 
In w we show that the discretization methods (1.6) and (1.13) have the 

desirable property of inheriting interesting features of (1.1); namely the existence 
of a Liapunov functional, global existence in time and, in the case of 72 < 0, 
finite time blow up. 

The analysis of (1.13) depends upon error bounds for an H ~ projection and 
an L 2 projection both of which are defined with numerical integration. These 
bounds are proved in the Appendix, together with a justification of (1.11) and 
(1.12). 

Finally we note here, for convenience, the inverse inequalities 

(i.14a) [glo, o o < C ~ l n ~ ) )  1 / 2 / / 1 ~  Ilxllx, n=2,  

(1.14b) Ixlo, oo < Ch-  3/2 Ixlo, n = 3, 

< C  
(1.14c) I[ z tll =~-  Izl0 

which hold for all z~S  h. 

w 2. Properties of the Numerical Method 

It is known that the solution of (1.1) satisfies, (cf. Elliott and Zheng 1986), 

(2.1a) f u(x, t) dx = S Uo(X) dx, 
f~ f~ 

d F(u)+lwl~ =0,  t > 0  (2.1 b) d~- 
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where 

F(u)=  2 lul ff + (O(u), 1). 

(2.1 c) If 72 > 0 then (1.1) has a solution for all t. 
(2.1d) If y2<0  and --F(u0) is sufficiently larger then there exists a T* such 
that lim lu(t)10 = oo. 

t ~  T* 

The functional F(-)  is an energy functional based upon the free energy O(u) 
and the interfacial energy 71Vu[2/2. It is of physical importance. Simulating 
qualitative features of nonlinear evolution equations is a desirable attribute 
of discretization schemes. The purpose of this section is to show that (1.6) and 
(1.13) possess properties similar to (2.1 a, b, c, d). It is sufficient to consider expli- 
citly only the case (1.13). 

The conservation of mass property (2.1a) follows immediately by taking 
)~= 1 in (1.13a), viz. 

d uh 
25 ( , 1 7 = 0  

implies that 

(2.2) (uh(t), 1) h =(u~, 1) h. 

Let 

(2.3) v~(z)= 2 Izl~ + (•(x), 1) h 

so that the equation 

d Fh (uh) = 7 (V u ~, V u, ~) + (q~ (u~), u,"? 
dt  

holds and taking Z = ut h in (1.13 b) yields 

(2.4) 
, 4  

F h (u h) = (w h, uh) h = _ I whl 2, 
dt  

where we have used ~ = w  h in (1.13a). 
It remains to prove discrete equivalents of (2.1c, d). This is achieved in the 

following two lemmas. 

Lemma 2.1. I f  72 > 0 then u h is defined in f2 • [0, T]  for  any T > O. 

Proof. Integrate (2.4) in time to obtain 

(2.5) 
T 

F h ( u h ) +  ~ I w h ] 2 d t  = Fh(u~) .  
o 
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Since ])2 > 0 we have 

~ b ( s ) > - C o  for all seN. 
so that 

Fh(un) = 2 lu*]lz +(~k(uh)' 1)h> ~ luh[~-C 

where C is independent of u h. Using this in (2.5) yields the relation 

T 

luh(T)I~ + ~ Iwh(t)[Z~dt<=C + Fh(u*o)- (2.6) 
0 

Since for constant q the equation (q, 1)h=0 is equivalent to r/=0, the usual 
proof for the Poincare inequality yields the existence of C such that 

(2.7) II~lll~CEIrtl~+t(rt, 1PI-I V~eHl(g2). 

(Indeed using (1.13a) it follows that for h sufficiently small the constant C in 
(2.7) may be taken to be independent of h.) It follows from (2.6) and (2.7) that 
uh(t) is bounded in H 1(f2) independently of t. Since uh~S h this implies that 
luh(t)[o, o~ is bounded independently of t (but possibly depending on h). From 
this fact we deduce the global existence of a solution to (1.8). [] 

Lemma 2.2. I f  72<0 and --Fh(u h) is sufficiently large then there is a time T h 
such that lim [uh(t)[o= ~ .  

t ~  T ~ 

Proof  Without loss of generality we may assume that (u~, 1)h=0. (If this is 
not the case then we study ~ih= U h -  (U~, 1)h/[ 1 [h-) From this assumption we have 

(2.8) (uh(t), 1)h=0 Vte[0, T] 

where [0, 7"] is the interval on which there exists a solution. Let W: [0, T] --*S h 
be the solution of 

(2.9) (VW, VZ)=(u  h, Z) h V z ~ S  h 

with (IV,, 1)=0. From the relation above and (1.13a) we have 

Wt  = - -  wh -~- (W h, 1)/If2l. 

Taking X = Wt in (2.9) yields 

1 d 
2 dt  ]WI~ = (17 W~, V W ) =  - ( V  w h, V W ) =  - ( u  h, Wh) h. 

Noting (1.13 b), this becomes 

1 d 
(2.10) 2 dt - - -  I W l  ~ = - ~ l uhl21 - ( 4  (uh), u~) ~ 

= - 2 F h (u h ( t))  + (2 ~ (u h ) - q~ (u h ) u h, 1 )h. 
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Since Yz < 0 there exists C > 0 such that 

72 4 1 = 4 s  4 (2.11) 2 0 ( s ) - O ( s )  s = - ~  s - ~  ~, s ~ > - - -  - c .  

Furthermore the Cauchy-Schwarz inequality implies that 

(2.12) ((uh) 4, 1) h ~ [uhl~/l 11 h. 

Since, from (2.7) and (2.9), we have that 

(2.13) IWl~ <Cluhlh, 

inequalities (2.10), (2.11) and (2.12) imply that 

d 
(2.14) ~ -  ] W[~ z > K I W]~-- 4 F h (u h ) -  C 

where K and C are is a positive constants. Provided ( - - 4 F h ( u ~ ) - - C ) > O ,  the 
differential inequality (2.14) implies finite time blow-up for [W[~ and hence by 
(2.13) of ]u h[h. [] 

w 3. A Second Order Splitting Method 

In this section we derive optimal order error bounds for the piece-wise linear 
approximation (1.13) with lumped mass integration. We will use the "projec- 
tions" {t7 h, #h}: [0, T] ~ S  h • S h defined by: 

( v ~ ,  h , v z ) = ( - A w + 6  h , z )  h v z e S  h, 
(~h-w, 1)=0, (-Aw+f~,lp=0, 

(3. i a) 

(3.1 b) 

and 

(3.2a) 

(3.2b) 

~(v,7 h, v z ) = ( , ~ h - 0 ( u ) - a ~ , z )  ~ VzeS ~, 
(0h-u, 1)=0, (~-0(u)-a~,l)h=0. 

Thus {fib, ~h} satisfy discrete Neumann problems and because of the numerical 
integration the real numbers {6~, 6~} are needed to ensure compatibility. Projec- 
tions of this form were used previously for the heat equation by Johnson and 
Thomee (1983). It is convenient to use the error decomposition: 

(3.3 a) u h - u - O" + p" =- (u h - ~h) + (fib _ U), 

(3.3 b) w h - w =- 0 w + pW = (w h _ ~n) + (~h _ W). 

Lemma 3.1. I f  {u, w}  are su f f i c i en t l y  s m o o t h  then,  f o r  re[0, T], 

( 3 . 4 )  I D [ p " l o + h [ D [ p " l x  < C h  z j = 0 ,  1, 2 . . . . .  

(3.5) ID[pWlo+hlDJ ,  p W l l < C h 2  j - -0 ,1 ,2 ,  ..., 
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and, for n < 2, 

(3.6) ]Oip"ro.o~<Ch2(logl/h) "-~ j = 0 ,  1,2, . . . ,  

(3.7) lDJtP~lo.o~<ChZ(log l/h) "-~ j = 0 ,  1,2, . . . ,  

where C is independent  of h and t and D1 = (tg/O t) J. 

Proof The  key to these er ror  bounds  in Theorem A.1 of the Appendix.  First 
we prove the bounds  for p~. No te  that  since (A w, 1)=0,  

ID1,5~[< CI(D[(A w, 1) hI = CI(AD[ w, 1)h--(ADI w, 1)l 

(3.8) <_~Ch 2 IIDI Awtl2, 

where we have used (1.12b). The  bounds  (3.5) and (3.7) are now a direct conse- 
quence of  Theorem (A.1). 

Not ing  that  

((a(u)-w, 1)=y(A u, 1 )=0  
and from (3.1 b), 

(DI O h, 1) = (Dr ~ w, 1)=(Dr ~ ~b (u), 1) 

we find that  

(3.9) 

Ioi 6~ I _-< c IOi(~ h -  4,(u), 1)hi 
=CI[(Dj  ~h, 1)h--(D/~h, 1)] + [(Dj ~b(u), 1)-(Dj qS(u), 1)h][ 
< c h ~ [II O ~, ~h It ~ + It Oj 4~ (u)I[ ~3- 

It follows from (3.9), (3.5) and (3.2a) that  

where 

and 

( V ~h, V ~) : ( --  A u, ~)h d(- (~ ,  Z) h, 

? 

IDi (~lh < C h 2. 

The inequalities (3.4) and (3.6) are now a direct consequence of Theorem 
(A.1). [ ]  

Remark 3.1. In L e m m a  3.2 we will need the bound  [~th[0, 0o < C for h sufficiently 
small. Fo r  n < 2  this follows from (3.6). Fo r  n = 3  we have, using the inverse 
norm inequali ty (1.14b) on the subspace S h 

< Ch 2 + h- 3/2 irchu_ t~th 1o + lu, lo, 
< C(h 2 + h ~/2) + ]ut]0. 

where 7~h: C(~)--+S h is the piecewise linear in terpola t ion operator .  
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Lemma 3.2. There exist constants C independent of  h, u h and w h such that if 
II uh (') II ~ is bounded independently of  h then, V t ~ to, T], 

(3.10) IO"lff + i [OWlh z dr <= Ch 4 + IO"(O)lh z, 
0 

i .2 (3.11) l o . l ~ + l o w l ~  + ElO, Ih +lOW[~] d~ 
0 

< C h 4 +  IIO"(O)ll~ + IOw(O)lff. 

Proof From (1.13a) we have for each )~S h 

(0~, zp + (v 0 w, vz)= -(~f,  zP - ( v ~  ~, vz) 
= ( - pi', z P  - (u,, z)  h + (~ w -  ~] ,  z)  ~ 

and since u, = A w we have 

(3.12) (0~, Z)n+(VO w, VZ)=(--pT--fhl,  Z) VX esh. 

Subtracting (1.13 b) from (3.2 a) we obtain 

(3 .13 )  (O~,Z)*-?(go" , VZ)=(d)(Uh)--d)(U)--Oh2,Z) h g z e S  h. 

Taking Z=0" in (3.12) and Z=0~/7 in (3.13) and adding the resulting equa- 
tions yields 

1 d iO,,l# § [OWl f f__ (_pF_ ,~h  ' o.)h+(4~(uh)__4KU)__O% ' o.)n/~" 
2 d t  

Using the bounds for " h Pt,&l and 6 h proved in Lemma 3.1 and the Lipschitz 
continuity of qS(-), together with the assumption on 11 uh(')l] ~o, we obtain 

d ]O,l~+lOWl2<_C[h4+lO,[~] (3.14) d-t - 

and an application of Gronwall's lemma yields (3.10). 
Next, take Z = 0 ~ in (3.12), ;~= 0t in (3.13) and subtract the resulting equations 

to yield 

y d  
- ( -  p, - a , ,  o ' ) *  + ( , ~ -  4,(,,") + 4,(u), o~')" (3 .15)  [ 0 ~ i ~ + ~ 1 0 , [ ,  ~ -  . . 

C [h 2 IOW]h + h 21071. + t0"lh 1071a]. 

Differentiating (3.13) with respect to t we obtain 

(3.16) (O~,z)h-y(VO~, 17Z)=([q~(uh)--(a(u)],--6~,t,Z) h Vz~S h. 
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Taking Z=O w in (3.16); Z=yO7 in (3.12) and adding the resulting relations we 
obtain 

l d  
+ ~ 1 0 ,  I~ = ( - T p ,  - ~ , ,  0,)  + ( [ 4 ~ ( u ) -  ~ ( u ) ] , - , ~ . , ,  0~p .  ,,~w,2 u 2 . h . h h 

IIY [h 2 dt 

Noting that 

[ ~  (u) - 4, (~")3 = ~ '  (u) [ . ,  - a,  ~] + ( ~ '  (u) - ~ '  (u")) a~ 

, h ~h ~h h +4~ (u)(u )(u,-u,), 

the bounds for fi~,P", Pt, " fib, and 6h2,, obtained in Lemma 3.1 and Remark 3.1 
can be used on the right-hand side of (3.17) to obtain 

1 d 
(3.18) - - - - 1 0  w [h..l_.~[Otlh.~C[h2 u 2 2 [0,[h+h" 2 IO~lh+lO,[hlO~[h]. 

2 d r  

Adding (3.15) to (3.18) and using the inequality 2 a b < g a2+ b2/g in the obvious 
way yields, for t~ [0, T], 

~z  d lO, t z+d fo~ i2<C[h4+lO,[2  (3,19) lO~'Ih2 + 10 f , + ~  + 10~l~] 

where C depends on T, u, y and l[ u h II oo but is independent of h. The estimate 
(3.11) is now a direct consequence of (3.19), (3.10) and Gronwall's inequality. 

Theorem 3.1. I f  

(3.20) 

then 

(3.21) 

i f  

(3.22) 

then 

(3.23) 

(3.24) 

and if n<2,  

(3.25) 

lu(O)- uh lo ~ f h 2 

Ilu-- uhlIL~t, 2~ + Ilw--whllL~<L~ f h 2, 

II~h(0)--u~l, < C h  2, I~h(O)--wh(O)lo<fh 2 

h [lu--uhIIL~<L2~ + IIw--whlIL~tL2~ + [lUg--U, IIL2tL~)~fh 2 

Il u - -  uh]ILoo(Hl)'JV ll w - -  whllL 2(H,) ~ f h 

Ilu--uhlIL~(L~)+ llw--whllL2(L~)~Ch2(ln 1/h) "-1 
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Proof The theorem is a direct consequence of Lemmas 3.1 and 3.2. Initially 
we assume Ilu*(')l[~ is bounded independently of h on f2x [0, T]; however, 
by a standard argument, we may use (3.21) and (3.23), a posteriori, to show 
this assumption holds. (See Thomee 1984, pp. 154-155.) [] 

Corollary 3.1. I f  Uho=sh(0) then the error estimates (3.23)-(3.25) of Theorem 3.1 
hold. 

Proof Since 5h(0)-u~=0, we need only derive the second estimate of (3.22). 
Taking Z= 0w(0) in (3.13) we have 

I ~h(0) - wh (0)l~ = I 0w(0)l~ = (4 , (~  ( 0 ) ) -  ~ ( U o ) -  6~, 0w(0)p 
o r  

I ~ h ( 0 ) -  Wh(0)lo < C(Ip"(0)[o + I•h(0)l < C h e 

by the estimates of Lemma 3.1. [] 
A more practical approximation of the initial data is obtained by the 

HI-projection. Define PI*: H 1 (f2)--,Sh by 

(3.26a) (V(P1 h v - v ) ,  V)0=0 V;~eS*, 

(3.26b) (ph v, 1)=(v, 1). 

Recall that 

(3.27) Iv-P1 h Vlo + h l v -  Pl* v[1 <= Ch z IIvl12- 

Corollary 3.2. I f  Uao=P1 h Uo then the error estimates (3.23)-(3.25) of Theorem 3.1 
hold. 

In order to prove this Corollary we need the following lemma. 

Lemma 3.3. I f  v~H~(f2) then 

( 3 . 2 8 )  I(v,z)-(v,)Oh[<fh21lvHzl)~[o V z e S  h. 

Proof Setting 

so that 

we obtain 

~ = z - - M ,  M=(Z,  i)/[~[ 

(~,1)=0 and [M[<=[Z[o/[f2[ 1/2 

I(v, z ) -  (v, z)~l < I(v, ~)-(v,  ~)~[ + IMI l(v, 1)-(v,  1)~1 
__< [(P1 h v, )~)-- (P~ v, ~)h I 

+ l(~- P? v, ~ ) - ( v -  p~ v, ~)"1 

+ C  h211 vii2 tzlo" 

Applying (1.12a), an inverse norm inequality and (3.27) to the second term 
of the above inequality we obtain 

(3.29) [(v, Z)-(v, Z)h[ =< [(Px n v, ~) -(P~ v, ~)h I + Ch z I1 v I12 IZlo. 
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Defining ph,/~heSh by 

(3.30a) (Vp h, V2)=(~, 2) 

(3.30 b) (V p h, 17 2) = (~, 2) h 

it follows from Theorem A.1 of the Appendix that  

(3.31) IP-/Sh[o < ChZ[~[o . 

Furthermore  

VA~S  h, (ph, 1)=0, 

V2eS, (fib, 1)=0, 

C.M.  Elliott  et al. 

I(P1 h v, ~ ) - ( P h  v, ~)hl = I(Ve~ h v, V(p h -  ph))l = I(Vv, v(p h -  t~h))l, 

and an integration by parts, using the fact that  veHZ~(f2), yields 

I(P~ h v, )~)_ (ph v, ~)hl--I(A v, ph _ t~h)t < Ch 2 IA rio I)~1o. 

This last inequality, together with (3.29), proves the lemma. []  

Proof of Corollary 3.2. Rewriting (3.2a) at t = 0  we obtain 

( p w  _ ~ , z)h 
(3.32) (V tih(0), 17)0 = (-- A u o, Z)h+ -~ V z ~ S  h 

Y 

and rewriting (3.26a) at t = 0  using the fact that  uoeH2(f2) we obtain 

(3.33) (VP~huo, V Z ) = ( - A u o ,  Z) VzeS h. 

Thus referring to the proof  of Theorem A.1 and taking V=Uo, vh=tTh(0), Z h 
= p h  Uo, f = - - A  Uo and g = ( p w - 6 ~ ) / y  we obtain the first inequality of (3.22) 
using the known bounds on pW and 6~. To finish the proof it is sufficient to 
prove 

(3.34) w(O)-  wh(O)Lo < C h 2 

since 
~v h ( 0 )  - w h ( 0 )  = p w + w ( 0 )  - w h ( 0 ) .  

V z e S  h 

Introducing Po h: H 2 (f2) ~ S h defined by 

(3.35 a) (Po h q -  7, Z) h= 0 

which satisfies, (see Appendix) 

(3.35b) 

we set 

IPo h r / -  r/[ h + IPo h r/-r/[ o < Ch 2 [r/] 2 

(3.36) r = w ( 0 ) -  q~ (uo), ~h = wh(0)_ po h q~(ph Uo). 
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Note that 

I q~(Uo)-- Po a q)(P~ Uo)[o _<-I(~ (Uo)- Po " ~(uo)lo + [Po a q~ (Uo)- Po a q~(pa Uo)]o 

< c h ~ I(~ (uo)l 2 § C tPo " (~ (Uo)- 4,(P," Uo))l. 

__< C h 214' (Uo)l 2 + ci4,  (Uo)- q~(Ph uo)lh 

C h214,(Uo)12 + C luo-  P? uolh 
~ C h  2 

where we have used the approximation properties of Po h and P1 h and the inequali- 
ties (1.12c, e). Hence (3.34) is a consequence of the estimate 

(3.37) [4 -- 4hlo _-< Ch 2. 

By definition the following equation holds: 

(4 h, Z) h= (wh(O)- Po h (;b (P1 h Uo) , z)h= (W h (0 ) -  (;b (P~ Uo) , Z) h 

= ~(vP, ~ Uo, vz)=~(Vuo, vz)=(4 ,  z). 

Setting E h = ~h_ po h r it follows from the equation above that 

IEhlo 2 < CIE"Ig = ( 4  h, Eh) h --(Po h ~, Eh) h =(4, Eh)-- (~, Eh) h 

<=ChZ[Eh}o 

because ~ = --Td uo~HZ(f2) and Lemma 3.3 holds. Since 

1~-~ lo -<14-Po  ~ 41o+1/~1o 

we finally obtain (3.37). []  

Appendix 

Lumped Mass Integration 

We wish to define a numerical integration scheme which satisfies (1.11 a, b) and 
(1.12a, b, c, d, e) in the cases of f2 being an open interval in ~ ,  a rectangle in 
IR 2 and a convex domain in lR"(n = 2, 3) with a smooth boundary. The convexity 
of f2 is assumed for ease of exposition. There exists O h being the union of 
simplices belonging to a quasi-uniform triangulation such that either f2h=---Q 
when O is an interval or rectangle or f2hcf2 and the distance between 0f2 

h the linear and 0Y2 h is bounded by Ch 2 when OQ is smooth. Denoting by rt~ 
interpolation operator on z, the numerical integration scheme is defined by 

(A.1) (Z,r/) *=  Z trc)(Zrl) dx VZ, r/~C("O) 
~c~h'c 

which clearly satisfies (1.i1). The inequalities (1.12a, b,c) are well-known for 
f2 being an interval or polygon. Otherwise we need to estimate ~ Ztl dx. How- 
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ever, for all ~/eH~(O), the following inequality holds, see Barrett and Elliott 
(1987a; Lemma 3.2). 

(A.2) [qlo.a\~h < C h [h l~l[a.~ + lq[o.o~h] < C h ll q ll x,n 

which implies that, 

(A.3) ~ zqdx<Ch211zlJ~ lirtlJ~ VZ, r/~H'(,-Q). 
f~\ f~h 

The bounds (1.12a, b) immediately follow. Inequality (1.12c) follows from (l.12a) 
and the inverse inequality (1.14c). 

The error bound (1.12d) is a consequence of the definition (A.1) and the 
interpolation error bound on each triangle, viz. 

I (z.q)-(z.r = Z j 'Ez,-=~(z~)-Idx§ J' z~/,/x 

<Ch2[ Z Izrll2.~+llzlJ~ Ilnll,]. 

Expanding the semi-norm lZq[2, ~ and using the inverse inequalities (1.14a) yields 
(1.12d). Finally the inequality (1.12e) follows by noting that 

I~/- Zlh = It?r/-- Z[h < C Jr?r/-- Z[o < C [LT? r/-- ~/Io + It/-- ZLo]- 

(A.5) 

(A.6) 

and g satisfies, 

Finite Element Approximation of a Neumann Problem with Numerical Integration 

We consider the approximation of the following semi-definite Neumann prob- 
lem: let vEH 1 (0) 

(A.4) (Vu, V q ) = ( f  I1) VtI~H 1 (f2), 

where f cH2(Q)  is given and (f, 1)=0. The finite element problem is to find 
vh6S h such that 

(Vv h, V x ) = ( f  +~,Z) h Vx~S h, 

(vh--v, 1)=0 

(A.7) (d ~, 1) h= - ( f ,  1) h. 

Condition (A.7) guarantees the existence of a unique v h satisfying (A.5) and 
(A.6). We now present the approximation theorem. See Barrett and Elliott 
(1987b) for similar results. 

Theorem A.1. I f  

(A.8) Jglh < Ch2 
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then the error bound 

(A.9) [v--Vhlo q-hlv--uh]l <= Ch 2 

holds. Furthermore,  f o r  n < 2, we have 

(A.10) [I v - v h II ~o < C(log 1/h)"- 1 h 2. 
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Proo f  By standard arguments the finite element Galerkin approximation z h e S  h 
such that 

(A.11) ( Vzh, V;0 = ( f  ;0 VxeS h, ( z * - v ,  1)=0 

satisfies 

(A.12) Iv -- Zh]o -}-hlv--zh[1 <--_ C h  2 lvl2 

and 

(A.13) ] l v - zh l l oo<Ch2( ln  1/h) 1/2 llvll2- 

(Note that H2(f2) regularity for v follows from the assumptions concerning sg). 
Comparing z h and v h we note that 

( V ( z  h - vh), v z) = (f, z ) -  (f, z) ~ -  (6, x) ~ 

<= Ch2 llfl[z I[;~ 1[1 +lglh [~lh 

< C h 2  II;~111, 

where the estimates (1.12b, c) have been used. Since the mean value of (zh--l) h) 
is zero, we have by Poincare's inequality I I zh-- V h [I 1 < C I z h -  vh[1 �9 Taking ;(= z h 
- -v  h in (A.14) yields 

Nzh--vhll ~=Ch 2. 

The error bounds (A.9) and (A.10) are now an immediate consequence of (A.12), 
(A.13) and the subspace Sobolev inequality (1.14a). 

Discrete L2-Projection 

We shall prove the bounds (3.35b). Observe that, by the projection Eq. (3.35a), 

I~-Po  h ~/Io s IPo h ~-;~1o + I z -  ~1o. 
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F u r t h e r m o r e ,  t he  i n e q u a l i t y  

1,1- P0 h ,71o_-< IP0 ~ , 7 -  zl0 + Ix-,11o 
__< c leon ,7 -  zln + I z -  trio 

-_< Cl-I , / -  zlh + I , / -  Zlo] v z ~ s  h 

h o l d s .  C h o o s i n g  Z = 7zh~/ y ie lds  (3 .35b)  u p o n  n o t i n g  (1 .12e)  a n d  t he  i n t e r p o l a t i o n  

e r r o r  b o u n d .  
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