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Phase separation in a binary mixture is described by the nonlinear evolutionary
Cahn-Hilliard equation. In this paper, we discuss the physical background of the
equation and describe its solution by the Galerkin finite element method. Some
theoretical results are presented and computationally verified.

1. Introduction

IN this paper we study the behaviour of the solution u(x, t) of the nonlinear
evolution equation

u, + yD4u = D2(p(u) (0<x<L,0<t), (l.la)

where

<p(u) = Yiu3 + Yxu1 + you, (1.1b)

subject to the boundary conditions

DM = y&u - D(t>(u) = 0 (x = 0, x = L) (1.1c)

and initial condition

u(x, 0) = uo(x). (l.ld)

Here D = d/dx, y is a prescribed positive constant, and yo» ylf and y2 are given
constants. This initial-boundary-value problem arises in the study of phase
separation in binary solutions; cf. Novick-Cohen & Segel (1984). In Section 2 of
this paper, we motivate the study of (1.1) by describing its application to phase
separation, and we discuss some mathematical results concerning u{x, t). For
other applications, we refer to Cohen & Murray (1981), Hazewinkel, Kasshoek,
& Leynse (1985). See also Gurtin (1986) and Modica (1987).

The solution possesses interesting asymptotic behaviour and spatial structure.
This is studied numerically in Section 4, using a finite element Galerkin method
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described in Section 3. In Section 5, future research directions on this problem
are discussed; in particular, the idea of metastability is addressed.

Throughout the paper, the norms of L°°(/), L2(/), and H'(I) are denoted by
11*11., ll'llo, and || —1|,. The seminorm ||D*u||0 is denoted by |v|,.

2. Phase separation and the Cahn-HilHard equation

Let M be a binary mixture composed of two species XA and XB. Below a
critical temperature Tc, thermodynamic equilibrium corresponds to a coexistence
of two phases, one phase rich in species XB and the other phase rich in XA. Let
u{x, i) denote the (appropriately scaled) concentration of species XB. Associated
with the mixture is a Ginzburg-Landau free energy W(u, T) which, for T <TC,
has the double-well form shown in Fig. 2.1.

Fio. 2.1. Free energy.

The interval (u'm, ub) is said to be the spinodal interval; u\ and ub are spinodal
points and are denned by the condition 3?W/3u2 < 0 in (u\, u'b) and d^W/du2 > 0
outside the interval [uj, uf,]. Gose to the two local minima are the binodal values
wa and ub, which are the two unique points where the supporting tangent touches
the curve. We can show that these values define piecewise constant functions that
minimize the free energy functional

F(w) = f W(v, T) dx (2.1a)

over all concentration distributions satisfying the prescribed mass constraint

\uAx = ML, (2.1b)
h

provided that

(2.1c)
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FIG. 2.2. Special case

This is clearly true if W has the special shape in Fig. 2.2.

For general W, let

W(v) = W{v) - av

where or is a fixed constant. Note that

if

F(v) = F(v) - aM

F(v) = I W(v) dx.
h

For fixed a, minimizing F is equivalent to minimizing F. Choosing a equal to the
slope of the supporting tangent line makes W have the same shape as the function
in Fig. 2.2. Piece wise constant functions that satisfy (2.1b) with values at the
minima of W will minimize F(v). These critical points are the binodal points
described above; they are also determined by the conditions

ub-ua
•= a.

The spinodal region is unstable, states to the left and right of the binodal points
are stable, and the remaining intervals are metastable. Suppose that the mixture
Ji has been prepared to have an initial state with a spatial composition taking
values in the spinodal interval. The mixture will evolve from this unstable
nonequilibrium state to an equilibrium configuration consisting of two coexisting
phases with a spatial pattern composed of 'grains' rich in either XA or XB. Such
an evolution process is called phase separation and, when it takes place in the
spinodal region, it is called spinodal decomposition; see Cahn (1961), (1962),
Langer (1971), Gunton, San-Miguel, & Sahni (1983), and Koch (1984). It then
slowly loses some of these grains, tending toward more stable patterns; this
process is called ripening or coarsening.

The first continuum model of this phenomenon is due to Cahn-Hilliard (1958),



100 C. M. ELLIOTT AND D. A. FRENCH

who considered an isothermal system and proposed the generalized diffusion
equation

u, + DJ = 0, (2.2a)

where the mass flux / satisfies

(2.2b)

and a is a local chemical potential defined to be the functional derivative of the
extended Ginzberg-Landau free-energy functional

dx. (2.3)

The second term in this integral is a phenomenological quantity representing the
interfacial surface energy due to spatial inhomogeneities in the concentration.
Equation (2.2) is supplemented by the boundary conditions

D(<Fu-yD2u) = 0 (x = 0,L), yDu = 0 (x = 0, I) (2.4a,b)

and initial condition

luo(x)dx = ML. (2.5)

Equations (2.4b) are the natural boundary conditions for finding critical points of
3f(-) and equations (2.4a) are zero mass flux conditions which imply that mass is
conserved:

\u(x,t)dx= \ uo(x)dx = ML (r>0). (2.6)

The simplest form of W having the double-well potential is

W(u) = kY2U4 + hYiu
3 + hoU2, (2.7)

where y2 > 0 and the quadratic

V"(U) = 3Y2U
2 + 2YIU + YO (2.8)

has two real roots: the spinodal values u' and uf,. We identify

<H«) = ¥ " ( " ) (2-9)

so that (1.1a) is the Cahn-Hilliard equation (2.2), and assume that <f> has three
real roots with the property that W is strictly convex at its two local minima.

The initial-boundary-value problem (1.1) was studied by Elliott & Zheng
(1986) and Zheng (1986). The existence of a solution locally in time is proved by
standard Picard iteration. Global existence results are obtained by proving a
priori estimates for the appropriate norms of u. We introduce the notation

H2
E(/) = {f, € H2(/): D17 = 0 {x = 0, L)}

and assume that u0 e H|(/) .
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THEOREM 2.1 Under the above assumptions on <£(•) and UQ:

(i) There exists a unique solution to (1.1) for each T>0 such that

u e L2(0, T; H\D), u, e L2(0 , T; L2(/)).

(ii) / / u0 e !€*(/) D H|(/) and D ^ e H l C O , then the solution to (1.1) is a
classical one.

(iii) For any initial data, the solution u{t) converges as t—>°° to a solution of the
steady-state problem.

ytfu = <f)(u) - a (0<x<L),

= 0 (x = 0, L), (udx = ML

where o e R is to be determined.
(iv) The solution of problem (2.10) is equivalent to finding critical points of

&(u) over the space of functions in H\Q) whose mean value is M.
(v) The solution will converge in H|(/) as t^*^ to the uniform state u = M,

provided that any of the following conditions hold:
(Cl) y > L2/*2 and ||uo||2 is sufficiently small.
(C2) \M\ is sufficiently large.
(C3)

Du

I
is sufficiently small, f(wo) > ^m for all x, lPm is either of the local minima o
on R, and M is sufficiently close to um, where Wm = W(um).

Proof. Results (i) and (ii) were proved by Elliott & Zheng (1986) with yo= - 1 .
However their proof remains the same for general y0. The result (iii) concerning
the asymptotic behaviour of u(t) as f—•<» was proved by Zheng (1986) using the
idea of the a>-limit set. That (2.10) is the steady state of (1.1) follows from setting
u, = 0 and integrating with respect to x twice, using the zero mass flux condition.
The constant steady-state chemical potential a is determined by the prescribed
mass condition. Result (iv) is Lemma 3.1 of Zheng (1986).

It is clear that u = M is a solution of (2.10), and (v) lists sufficient conditions for
the convergence of u(t) to M as t—»°°. The sufficiency of (Cl) was proved by
Elliott & Zheng (1986) and that of (C2) by Zheng (1986). Indeed, if M is
sufficiently large, then (2.10) has the unique solution u = M.

To verify (C3) we use the useful fact that &(u) is a- Lyapunov functional. A
simple calculation reveals

= - \ (yD3u - Dcp)2 dx.
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It follows that, for all t,

\ W(u) dx +1 \u\\^ \ <F("o) djc + y- |Mol? (2-11)

and, from the Sobolev imbedding theorem and the Poincar6 inequality,

j W{u) dx + °1 \\u - M\U<j W(u0) dx+^ \u\l

Using the triangle inequality, this becomes

I 2 2

where um is a local minimum of *F and fm = W(um). (See Fig. 2.1.)
We can make e as small as we like by requiring M to be close to um and the

first derivative of u0 is small. If we take u0 so that

e<\cy{um-u\), J [ <F(u0) - ^m] dx > 0,

then, from (2.12), we claim that

ll«(«,0-"mil-<«-.-«£• (2-13)
for all t.

To see this, note that ||Mo~"mlloc<um-«b. so (2.13) holds by continuity at
least for a short time. Suppose the inequality is first violated at t* > 0:

||u(«,f*)-um||003s«m-Ub. (2.14)

On [0, t*), we have

so \cy ||u(», 0 - Mm|U « e < \cy(um - u\), i.e.

which contradicts (2.14).
Condition (2.13) implies f " ( a )>0 for all t. Multiplying equation (l.la) by

u — M and integrating with respect to x yields

where (•,•) is the standard L2(/) inner product. Since \\u -M\\0^c \u\2,
Gronwall's inequauty gives \\u - M||0 « e~a \\u0 - M\\o, which proves (C3) D

Remarks. (1) The steady-state problem is equivalent to finding the critical points
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of the functional 9{v) over {H\l) : Dv = 0 {x = 0, L), j,v dc = ML}. However,
when y = 0, we have the problem (2.1) which has a continuum of solutions
consisting of piecewise constant distributions with the constants being either u» or
ub, and with the prescribed mass conditions (2.1b) holding. It follows that we may
expect, for small y, steady-state solutions with an oscillating structure. See also
Elliott (1985) for the numerical solutions of a related evolutionary problem with
y = 0.

(2) The behaviour of solutions to (2.10) was analysed in Carr, Gurtin &
Slemrod (1984). They showed that

(i) If y is sufficiently small, then 9{u) has a unique minimum function Uy,
which is monotone (its reversal Wy(-x) has the same free energy);

(ii) all nonmonotone solutions of the steady state problem (2.10) are saddle
points of &(u);

(iii) steady solutions are periodic in the sense that all lengths along the x-axis
of transitions, from peak to trough or vice versa, are equal.
Statement (ii) guarantees that, at any nonmonotone solution ii of (2.10), there

is a direction v so, for a0 sufficiently small, we have

&(u + av) < 9{u) (0 < a =e a0).

Since 9 is a Lyapunov functional there is initial data u0 lying in any H1

neighbourhood of u for which the solution of the dynamic problem (1.1) will stay
bounded away from u.

(3) Zheng (1986) has shown (See also Carr, Gurtin & Slemrod (1984)) that, if

then the steady-state problem has exactly 2N0 +1 solutions. We note that one
solution is u = 0 and that, if u(x) is a solution, then -u{x) is also a solution.

(4) Under conditions (Cl), (C2), and (C3), phase separation does not take
place.

(5) If we consider (1.1) with y 2<0, then Elliott & Zheng (1986) have proved
that, if - y (u 0 ) is sufficiently large, then there exists a T* >0 such that

i.e. the solution blows up in finite time.

3. Numerical method

Let Sr
h be the piecewise polynomial spline space

S'h = {X e a~\I) :x\l,e Pr_,(/y) (j = \,..., / ) } ,

where r > 3 is an integer,

is a partition of / = (0, L) with lt = {xHX ,xf), and Pr-i(Ij) denotes the set of all
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polynomial functions on It of degree less than or equal to r — 1. Define

§r
h = {XeSr

h: D*(0) = DX(L) = 0), h = max (x, - xHl),

and let

arss/il min (x.-x,.^) ,
\i*/«y /

where we assume that, for a family of partitions, a is fixed.
The approximation scheme using a Galerkin method in space and an implicit

midpoint time discretization is: find {U"}^^ such that U" e §1, and

V j e ^ (3.1a)

with

£/° = K8, (3.1b)

where u% is an appropriate approximation to u0. In (3.1) we have used the
notation

d,Vn = k~\Vn+1- V), Kn+i = §(K"+1 + V"), k = T/N

for sequences {V} . Note that, since x — 1 belongs to §r
n, (3.1) implies that

U/",l) = (u8,l) (« = 0 , . . . , A 0 , (3.2)

in analogy with (2.6) for the continuous equation. Further, since <p is con-
tinuously differentiable, (3.1) will have a unique solution for k sufficiently small.

We observe that (3.1) is an implicit midpoint rule for the numerical integration
of the ordinary differential equations resulting from the finite-element Galerkin
semidiscretization in space; optimal-order error bounds for this semi-
discretization method were obtained by Elliott & Zheng (1986). In the following
paragraphs we analyse the convergence of the fully discrete scheme (3.1). A
useful tool in the analysis is the elliptic projection Ph : H|(/)—*§r

h defined by: for
v e H|( l ) , the function Phv is the unique solution of

(D2/*!; - D2u, D2x)=0 V*eSji, (*,l) = 0, (3.3a)

[r\v, 1) = (v, 1). (3.3b)

The existence of a unique Phv satisfying (3.3) follows from the Lax-Milgram
theorem and the Friedrichs-Poincar6 inequality

(3.4)

It follows as in Elliott & Zheng (1985) that

\\PhV-v\\0^Ch2\\v\\3 (r = 3), \\Phv-v\\0^Chr\\v\\r (r&4). (3.5a,b)

THEOREM 3.1 Suppose that the solution u(t) of (1.1) is sufficiently regular for a
given T>0 and that the solution of (3.1) satisfies

(n=0 , . . . , JV) ; (3.6)
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then

lit/"-u(rB)||o«c(||i*8-Hollo+ * S H^llo+ f llfttollods
\ y-o Jo

+ k<f[\\um(s)\\2o+\\ua(s)\\l]ds), (3.7)

where tn = nk, p" = Phu" - u(tn), and Phu" = Phu(tn). The constant C depends on
Y,0N, T, and \\u(t)\\<» forte [0,T].

Proof. We use the standard error decomposition:

U" - «(/„) = [ £ / " - Phu"] + [Phu
n - u(tn)] = 6" + p".

To obtain (3.7), we estimate 6". Using (3.1), we have

W , X) + Y&e»+i, &X) = [<p(ir+l) - 4>(u(tn+i)), D2*)

- O.Pf.u" - u,(tn+i), X) ~ Yl&lhu(tn+1) + \u{tn) - u(tn+i)], tfX).

Setting x = 0n+K the above becomes

0,6", 0"+*) + y | |0-+ l | | i« [\\<KU"+i) ~ 0(«(»B+1))llo +

\\d,PhU
n - U,(rn+i)||0 + Y\\Htn + 0 + MO ~ «a , + j)ll2]l|0n+iH2- (3-8)

Using the Schwarz inequality, we obtain

(9,9", 0n+*)« C(A + h + hf, (3.9)
where the I's are the three terms in the first factor on the right-hand side of (3.8).
Es t imate /3: .. ,m+l ,m+i ..2

h = Y\\\ ( S - tn+i)ua(s) ds - (s - tn+i)un(s) ds\\

Estimate lx:
/i = ll<

where C is dependent on fiN and ||w(fn+j)IU. Then

A « C[||0n+i||o + |(||p"+1|lo + IIPJO) + \\\u{tn+l) + \u(tn) - H(rn+1)||o].

The last term is estimated in the same way as /3.
Finally we consider I2.

I2^\\d,PhU
n - d,u(OWo+\\dlu(tn)-Ul(tn + i)\\0

= k~l ||pn + 1 - p-||o + I I ^ -^M^H. , ) " U(tn)) ~ U,(tn + i)\\0

- tn+h)
2um(s) ds - I (s - tn+02um(s) ds

'"+l \\Pl(s)\\l ds) + * * [ p ||«m(j)||g ds)
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With these estimates, (3.9) becomes

where

*>n = \\pn+1\\l+ \\Pn\\2o + k3(ri\\ua(s)\\2
2+ \\um(s)\\2

0ds) + *-1f+ ' \\p,(s)\\2
0ds,

which yields

1 + Ck
\\en+1\\l^Y-£-k\\d

n\\l +ckwn.

Iterating this inequality, we have

i-o

Noting that

we obtain (3.7).
We consider the application of (3.7) to finite-element spaces. If r = 4, so that

5? consists of C2 piecewise cubics, then

and thus (3.7) would become

\\U" - u(tn)\\0^C(h* + k4+ ||uS - «o||g)l. (3.10)

If r = 3, so that 5* consists of C1 piecewise quadratics, then

||p"||0'SC/i2||«||3,

and thus (3.7) would become

||IT - u(tn)\\0^C(h4 + k4+ ||uS - uo||g)l. (3.11)

The initial data «3 for the numerical scheme was obtained from UQ by the
L2-projection P°h, defined by

[P°HU-UO>X) = 0 VXeSr
h.

With this approximation of the initial data, (3.10) becomes an O((hs + kA)ty
bound and (3.11) is O{{h* + A:4)*).

Remark. Although Theorem 3.1 shows that our method will converge optimally,
it does not guarantee accuracy unless we make h small. Reviewing the proof, we
note that C is proportional to y~l. Since y is small, this weakens the estimate.
Another loss comes from the constant's dependence on the derivatives of u.
Recall that we expect u to tend to separation patterns with sharp interfaces where
u will possess large derivatives in x.
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The implementation of (3.1) requires the solution of a nonlinear system of
equations at each time step. To solve these, a predictor-corrector method was
used; the correction step was repeated until the successive iterates converged.

All the calculations were done on a VAX 780 with double-precision arithmetic.
(Floating-point error is approximately 1-0 xKT14). The iterations to solve the
nonlinear system on each time step were judged to have converged when the
difference between successive iterates was less than approximately 1-0 x 10~7.
Stepsize was adjusted automatically by the program; generally 4-5 iterations were
used on each time step.

To obtain the predicted solution W"+l from IT, we solve the following
modification of (3.1):

r ' i r + 1 - ir, x) + bYl&(wn+1 + if),
+ tt(p'(Un)D(Wn+1 + U"), DX) = 0, (3.12)

where Un is used to linearize. For the correction steps we find U"+1, for
/ = 1, 2,. . . , by the equation

l + u"), o2x)
+ hU")D(U?+l + IT), DX) = 0, (3.13)

where we set U%+1 = Wn+1. Given a basis for Sr
h, both (3.12) and (3.13) lead to

5.00
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3.00

2.00

1.00

-1.00

- 2 . 0 0 •

-3.00

FIG. 3.1.
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linear systems of equations which can be solved provided k is sufficiently small.
We used B-splines as basis functions for the spaces Sr

h.
To conclude, we remark on the choice of the finite-element space Sr

h. As
discussed in Section 2 when y is small, the steady-state solution is very close to a
piecewise constant function. In this situation, we expect that the spline space with
the lowest degree of smoothness is preferable, and this supported by Figs 3.1 and
3.2, which show the concentration u plotted as a function of x for several times
with the direction of increasing time being defined by the arrow. In both, we
computed the solution of (1.1) with y = 0-005, L = 6-0, and the initial data a
ninth-degree polynomial with mean value M = 0. The same mesh, 40 nodes, and
time step At = 0002 were used in the computations. We used C2 cubics in Fig.
3.1 and C1 quadratics in Fig. 3.2. We believe the wiggles near the corners in Fig.
3.1 result from the difficulties C2 functions have in approximating a function that
is nearly piecewise constant. The quadratics in Fig. 3.2 handle this better.

4. Numerical results

In this section, we illustrate the discussion of Section 2 using the results of
numerical experiments performed with the method described in Section 3. In all
experiments, C1 quadratics were used.
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4.1 Asymptotic Convergence to the Steady state u = M

Choosing the free energy W to be

V(u) = hu*-W> (4.1a)

we find that the binodal points are

u .= - / 3 , ub = / 3 , (4.1b)

and the spinodal points are

u\=-\, ub=l. (4.1c)

Because W is symmetric about u = 0, we have the binodal points corresponding to
the absolute minima of W, i.e. Wm = <P(u.) = ^(ut) .

We will perform computations to support statement (v) of Theorem 2.1 using
the free energy W and a ninth-degree polynomial

p(x) = x\x-L)\x-ro) + Mo,

for initial data with r0 = 2-2. . . ; here, L is the interval length and MQ is picked so
that

f p(x)dx =f
The results of two experiments are shown which exemplify conditions (C2) and
(C3). We let L = 6-0, and use a mesh with 240 nodes with a time step of 0005 in
each. The concentration u is plotted for various times and with differing
parameters in Figs. 4.1 and 4.2.

Figure 4.1 displays the results when the mean value M of u0 is sufficiently large.
We expect that, when M lies in the stable region, to the right or left of the
binodal values, the solution of (1.1) will tend to its mean value M. In this
experiment, we took y = 0-0005 and

Uo(x)=Ap(x) + M, (4.2)

where M = 3-0 and A is picked so that

I K - M | U s 2 . 7 . (4.3)

The time spacing in the plots of Fig. 4.1 is roughly 0-5 and the last one was at
t = 2-7.

Figure 4.2 shows an experiment made while studying (C3) (See Remark 3).
Here we took y = 0-005 and UQ as in (4.2), except with M = 1-7 close to the
minimum of W. The function u0 does not satisfy the requirements of our theorem,
because the fluctuations are too large; however, it is interesting to see that u(-, t)
still converges to the constant function M. Plots were made at time intervals of
roughly 0-4 till t = 7-6.

4.2 Spinodal Decomposition

In our numerical experiments we observed that, if the initial data had mean
values in the spinodal interval (ui ,ub) , then phase separation took place. The
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solutions tended to nearly piecewise constant functions exhibiting a fine-grained
structure when y is small, with grains being identified by the binodal values ua

and ub. In all the computations of this section, we stopped the time-stepping once
a pattern was reached that appeared to be stable. One can observe that, except
for Fig. 4.3, all the 'stable' patterns are nonmonotone functions and are not
periodic; thus they are not steady-state solutions. We therefore do not expect
them to remain. In Sections 4.3 and 5 we will address these inconsistencies.

In all the experiments, C1 quadratics were used and initial data had mean value
zero. We took

with binodal values ± / 3 in each diagram, except Figs 4.5 and 4.6, where

W(u) = JK4 - \u2,

with binodal points at ±1.
Table 4.1 summarizes the parameters used.

TABLE 4.1

Fig. Time step (At) Nodes

4.
4.

4.5,
4.7,

3
4
4.6
4.8

002
007
003
003

0001
0001
001
002

80
80

120
100
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Figure 4.3 shows the evolution from u,,(x) = cos inx; Fig. 4.4 shows the
evolution from the polynomial in (4.2) with A set so that ||uol|oo =* 0-5. The pattern
shown at / = 40 remained, except for a slight movement till t = 60-0.

The pairs of figures 4.5-4.6 and 4.7-4.8 show evolution from random initial
data. The pattern in Fig. 4.6, which is u at t = 72, was obtained at / = 8. The
pattern in Fig. 4.8, which is u at t = 232, was obtained at / = 8 also.

1.00 -

I 0

1.00 •

FIG. 4.5.
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u(x)

1.00 • t= 72.01000
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FIG. 4.6.

4.3 Linear Combinations of Van Der Waal's tanh Solution:

In numerical experiments, we observed that the solution u(t) tends to, and
remains at for a long time, patterns that are nearly piecewise constant (Figs 4.4,
4.6, and 4.8). Since these are generally not periodic (in the manner Carr, Gurtin,
& Slemrod (1984) describe), they are not solutions of the steady-state equation,
and thus we do not expect them to be stable. These patterns we classify as being
metastable. In the case ^(u) being symmetric about u = 0, we can obtain explicit

3.00ru(x)

2.00

-1.00

-2.00

FIG. 4.7.
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formulae for a class of nearly piecewise constant functions that almost satisfy the
steady-state equation. Numerical experiments indicate that this class of functions
exhibits metastability.

Consider the steady-state equation (2.10) with a = 0:

Yun=q>{u), (4.4)

where

Van Der Waal's tanh solution (See Novick-Cohen & Segal (1984) or Langer
(1971)) satisfies the equation (4.4) but not the Neumann boundary condition;
however, its first derivative at the endpoints is very small, particularly if y is
small.

We shall study special linear combinations of these tanh solutions that nearly
satisfy the equation (4.4). In a numerical example, we will verify that these
functions are exceedingly stable. By making the transformation

v(z) = m~l[u(ez) + m],

where e = (y/yim2)^ equation (4.4) becomes

u" = <j>(t;) ( 0 < z < L / e ) , (4.5)

where <p(u) = (t> — 2)(u — l)u. The functions

1 ± tanh [2~\z - §)]

satisfy (4.5). For £ < t], set

Se.,(z) = tanh [2"*(z - §)] - tanh [2"*(z - r,)]-
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We will show that

f (z) = S Ssmfc) + (I " tanh [2"i(z - »?o)]} + (1 + tanh [2"*(z - £.)]} (4.6)

satisfies (4.5) except for a small error.
Consider

If v satisfies (4.5), then w = v - 2 satisfies (4.7). Note that

X£(z) = tanh [2~i(z — £)] — 1, K,(z) = —tanh [2~i(z — r/)] — 1

are solutions of (4.7), and the product XjX̂  is small as long as £ < r\. A short
calculation shows that, if w(z) = X5(z) + K,(z), where | < t], then

H>" = (w + l)(w + 2)w + E(z),

with \E(z)\ =s8 |X5(z)Xf)(2)|. Transforming back to (4.5), we have

4n = V(Jen) + ^(z).

If u(z) is given by (4.6), we can show that

v" = q>(v) + E(z),

where

\E{z)\ =£ 8n \ha(z)kp(z)\, P — a = min \£, — r/y|.
'./

Transforming these results to equation (4.4) we have that
n - l

u(x) = 2^ yTai(x) — ^(x)] + \rn — 7io(x)] + [^ (JT) + tn\ — m

satisfies

where \6{x)\ ^ 8nYi \[Tp(x) - m)[Tq{x) - m]\, with

q - p = min \b, - at\, a, = %,/e, b, = rji/e,

To(x) = m tanh [m(iy,/y)l(x - a)].

EXAMPLE. Let <p(u) = %u3 - u so m = / 3 and let

W X̂J = ^ J — lUb) ' \*LO ~ *2U3) ~ •J~>

For 6 we have the bound

\6(x)\ «16 |{tanh [(2y)"i(x - hL)] - 1} {tanh [(2y)"l(x - \l] - 1]



116 C. M. ELLIOTT AND D. A. FRENCH

Take L = 6 and consider the bounds for <5 for several y at x = 1-5:

)| =£ 16 |tanh [(2y)"i(0-5)] - 1|2.

TABLE 4.2

Bound for 5(1.5)

005
0-02
0-005

010
3 x 10-3

1-3 xlO"7

To verify that these approximate solutions are candidates for a class of metastable
patterns, we ran several numerical experiments where the initial data uo(x) was
set as a linear combination of tanh solutions. .

Figure 4.9 shows the plots for u(t) at t = 0, 5, 10, . . . , 60, where

uo{x) = -Tx(x) + T2{x)-TA{x)-J3, q>(u) = W-u, L = 6, y = 002.

A mesh with 120 nodes was used, and a time step of 001. Except for a slight
movement along the interfaces, u(t) has remained on the given tanh solution.

In Figs 4.10-4.14 we show the long time evolution of u. We had parameters

uo(x) = -T2.5(x) + r5 .5(x)-y3, <p(u) = W-u, L = 6, y = 0-03.

A mesh with 100 nodes was used and time step 0-02. The plots shown are u(f) at
t = 0, 28, 124, 148, 160.

Note that u(t) has hardly changed from t = 0 to r = 28 and, except for the

3.0Oru

2.00

1.00

-1.00

-2.00

1.00 2.00 3.00 4.00 5.00 6.00 *

FIG. 4.9.
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interface at JC = 5-5 falling a small amount, it is remarkably unchanged at t = 124.
The final graphs show the transition to the monotone solution.

4.4 Finite-Time Blow-up

It was shown in Elliott and Zheng (1986) that, if y2 < 0 and the initial data is
sufficiently large, then the solution of (1.1) will blow up in finite time. The
numerical solution also exhibited this behaviour.

We studied the case when y2
 = —0-2, Vi = 0, y0 = 1, y = 0-5 and

uo(x) = Ap(x).

where A was picked so that ||woll» — 5-5, which was large enough for the
numerical solution to blow up. Figure 4.12 is a good representative of the shape
of the numerical solution in this example, although, in the computations when we
varied the mesh refinement and time step size, we obtained blow-up times and
plots which were slightly different.

This, of course, is not unusual for a blow-up calculation.

5. Future directions

In the numerical experiments exhibiting phase separation, for initial data with
mean composition in the spinodal interval, we observed two characteristic
processes. First there is a comparatively rapid transformation of the initial data to
a fine-grained, usually nonperiodic, structure. See Figs 4.4, 4.6, 4.8, and 4.9.
These structures are metastable in the sense that they persist for a long time
without apparent change. This transformation is evidently spinodal decomposi-
tion. The second process is a very slow transformation to a coarse-grained
structure monotone in x. See Figs 4.11-4.13. In this process, akin to nucleation,
the composition of a grain is unchanged but the width slowly increases.

An interesting mathematical problem related to metastability is the following:
Identify metastable configurations, and obtain estimates on the length of time
that u remains in a neighbourhood of a particular metastable solution. Weinber-
ger (1985) proved theorems of this type for a parabolic system of equations.

We performed several long-time computations where u0 had a random
structure. In all of the calculations, u(t) did not reach the monotone solution in a
time scale on which we could compute. These calculations generally took a long
time on the VAX and thus we were limited in how far we could refine our mesh
and time step. Figures 5.1-5.12 show a sample computation.

In this experiment, W(u) = ^u4 - W, Y = 003, L = 60, the mesh had 100
nodes and the time step was 002. We computed the free energy on each time
step and found it decreased as expected: see Table 5.1.

It is interesting to consider u,. Figures 5.8-5.12 display u, computed by the
formula

where If ~u(*, nAt). In Table 5.2 we note the maximum value of u,.
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We decided to stop the calculation at f = 600, because neither u nor u, had
changed from t = 404 to t = 596.

This last computation suggests the following numerical-analysis questions:
What is the long-time accuracy of the numerical method? Does the approximate
problem have the same stability properties as the continuous problem?

3.00 r

2.00 •

1.00-

-1.00 -

- 2 00

f=4
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TABLE 5.1

Fig. Time

5-1
5-2
5-3
5-4
5-5
5-6
5-7

0
4
232
376
384
404
5%

302
-1-85
-2-54
-2-56
-3-31
-3-52
-3-52

TABLE 5.2

5-8
5-9
5-10
511
5-12

0-
0-
0-

8-5
8-5

0062
135
844
xlO"'
xlO"*

Acknowledgements

The authors are grateful for useful conversations with N. Owen and H.
Weinberger.

This work was partly supported by the National Science Foundation, Grant No.
DMS-8501397, the Air Force Office of Scientific Research, and the Office of
Naval Research.

REFERENCES

CAHN, J. W. 1961 On spinodal decomposition. Acta Metallurgica 9, 795-801.
CAHN, J. W. 1962 On spinodal decomposition in cubic crystals. Acta Metallurgica 10,

179-183.
CAHN, J. W. & HILUARD, J. E. 1958 Free energy of a non-uniform system. I. Interfacial

free energy. / . Chem. Phys. 28, 258-267.
CARR, J., GURTIN, M. E., & SLEMROD, M. 1984 Structured phase transitions on a finite

interval. Arch. rat. Mech. Anal. 86, 317-351.
COHEN, D. S., & MURRAY, J. D. 1981 A generalized diffusion model for growth and

dispersal in a population. / . Math Biology 12, 237-249.
ELLIOTT, C. M. 1985 A Stefan problem with a non-monotone constitutive relation. IMA J.

appl. Math. 35, 257-264.
ELLIOTT, C. M., & ZHENG SONGMU 1986 On the Cahn-Hilliard equation. Arch. rat.

Mech. Anal. 96, 339-357.
GUNTON, J. D., SAN-MIGUEL, M., & SAHNI, P. S. 1983 In: Phase Transitions and Critical

Phenomena (Domb, C , & Lebowitz, J. L., Eds). Academic Press, pp. 267.
GURTIN, M. E. 1986. On phase transitions with bulk, interfacial and boundary energy.

Arch. Rat. Mech. Anal 96, 243-264.



128 C. M. ELLIOTT AND D. A. FRENCH

HAZEWWKEL, M., KAASSHOEK, J. F., & LEYNSE, B. 1985 Pattern formation for a one
dimensional evolution equation based on Thorn's river basin model. Econometric
Institute, Erasmus University Report # 8519/B.

KOCH, S. W. 1984 Dynamics of First Order Phase Transitions in Equilibrium and
Non-equilibrium Systems. Lecture notes in Physics. Springer Verlag.

LANGER, J. S. 1971 Theory of spinodal decomposition in alloys. Ann Physics 65, 53-86.
MODICA, L. 1986 Gradient theory of phase transitions with boundary contact energy

(Preprint). SFB Bonn.
MODICA, L. 1987 Gradient theory of phase transitions and minimal interface criterion.

Arch. Rat. Mech. Anal. 98, 123-142.
NOVICK-COHEN, A., & SEGEL, L. A. 1984 Nonlinear aspects of the Cahn-Hilliard

equation. Physica (D) 10, 277-298.
WEINBERGER, H. 1985 On metastable patterns in parabolic systems. IMA preprint #164.

University of Minnesota.
ZHENG SONGMU 1986 Asymptotic behaviour of the solution to the Cahn-Hilliard

equation. Technical Report Series, Center for Applied Mathematics, Purdue Univers-
ity #25 (1986). To appear in Applicable Analysis.


