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THE CAHN-HILLIARD MODEL FOR THE
KINETICS OF PHASE SEPARATION

C.M. ELLIOTT

1 — Introduction

In this paper we consider the Cahn-Hilliard mathematical con-
tinuum model of spinodal decomposition (or phase separation) of a
binary alloy. The phenomenological model is derived in section one.
The existence theory for the Cahn-Hilliard equation is reviewed in
section two. Various aspects and generalizations are surveyed in sec-
tion three. A finite element approximation is studied in section four
and, in particular, two fully discrete schemes are shown to possess
Lyapunov functionals. Finally in section five some numerical simu-
lations are described.

Consider a binary alloy, comprising of species A and B, existing
in a state of isothermal equilibrium at a temperature, T,,, greater
than the critical temperature 7.. The alloy’s composition is spa-
tially uniform with the concentration, u, of B taking the constant
value u,,. Suppose that the alloy is now quenched (rapid reduction
of temperature) to a uniform temperature 7, less than 7.. Phase
separation takes place in which the composition of the alloy changes
from the uniform mixed state to that of a spatially separated two
phase structure, each phase being characterised by a different con-
centration value which is either u, or uy.

A phenomenological theory describing this is provided by consid-
eration of a coarse grained Gibb’s free energy ¢(u,T) which is such
that for T 5 T, Yle.T) > 0 8nd for T « T d(0.7) € O 10
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just one interval [uf, uf| called the spinodal interval as shown in Fig-
ure 1. Associated with this description is the phase diagram which
is depicted schematically in Figure 2. The spinodal curve 3 is the
locus of points where ¥,,(u,T) = 0. Above the coexistence curve,
«, any uniform concentration is stable. Below the spinodal line the
state (wm,T),) is unstable and the alloy separates into two phases
characterised by the values u, and u, where the line T = T, crosses
the coexistence curve.

A

(e

Fig. 2
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Suppose that the alloy occupies the spatial domain @ ¢ R™ and
is isolated. For convenience we suppress the dependence of 1 on T.
Given that the mass is fixed, isothermal equilibrium is characterised
by minimising the total energy viz

(1.1a) min/ Y (u(x)) dz subject to / u(z) dz = u,, |0 .
9! Q
Introducing the Lagrange multiplier, *, for the prescribed mass
constraint and setting F'(v) = ¢(u)—p* (v —u,,) it is clear that (1.1a)
is equivalent to

(1.1b) min/0 F{u(z)) dz subject to /ﬂu[:z:) a3 = Ty (1]

The solution of (1.1b) can now easily be found by choosing a suit-
able value for u*. First consider T}, > T.. In this case set u* = V' (um)
so that F'(u) has a unique minimum at u = u,, with F(u,,) = ¥(u.,).
Thus the solution of (1.1b) is unique with u(z) = u,,, corresponding
to a spatially uniform concentration. Now consider T}, < T.. The
double well form of ¢(-) implies that there exists two unique values
u, and vy defined by

(1.2) P (ua) = ¥’ (up) = P(up) — P(ua) -

Suppose that u, <u,, <up and set p* = (P(uy,) — Y(ua))/(up — u,)-
It follows that F(-) has two absolute minima at v =u, and u = uy,
with F(u,) = F(up,) and equilibrium configurations consist of

Ua, Iena
1.3a Tl =
(1.30) (7] { b

where 1 = 0, U Qy, such that
(13b) U, |ﬂal Ty lﬂbl = Um !ﬂml "

Note that for un, ¢ [u.,uy| equation (1.3b) cannot be satisfied.
For um > up (up < u,) we set u* = ¢'(u,,) and observe that F(-)
can have at most two minima at « = u,,, @, with u,, > @,,. Since the



38 C.M. ELLIOTT

mean value of the concentration is u,, it follows that the equilibrium
configuration consists of the homogeneous composition u = u,,.

We have just shown that the phase diagram Figure 2 can be ex-
plained by thermodynamics in terms of the minimisation of the free
energy (1.1a). It is a natural wish to model the evolution of an alloy
initially in equilibrivm in the uniform state {(u.,,T}) with T} > T,
which is quenched to a uniform state (v, Ty ) which lies in the spin-
odal region. This new state is not in equilibrium and in particular,
as the above equilibrium theory predicts, the alloy separates into two
phases lying on the coexistence curve. The kinetics of phase sepa-
ration can be modelled using non-equilibrium thermodynamics. We
assume that the system is isothermal. The mass flux is postulated
to be (DeGroot and Mazur [12}])

(1.4) J=—MVWVpu,

where M > 0 denotes the mobility and p the chemical potential
difference between the species A and B which satisfies

(1.5) po=1¢'(u) .

This leads to Fick’s law of diffusion
(1.6) J=-M¢"(u) Vu
and the mass balance law _

d

i 2+ [ | Tom, 4 Q,
(1.7) e L or R
yields the diffusion equation

0]

(1.8) “a': = V(K () Vu)

where the diffusivity K(u) = M " (u).
In order to check that (1.4) is consistent with the second law of

thermodynamics which for isothermal diffusion in a binary system is
(DeGroot and Mazur [12])

d
_ L3 _a¥-m) B0, for ACH,
(1.9) dt[RTSJr/aR( p¥-m) >0, for RcC
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we note that ¢y = e — T'S, where ¢ is the bulk internal energy and S
is the entropy. Since de/dt = 0 it follows that (1.9) becomes

(1.10) f-{f;wrf R
dt Jr ar

or 5
a—l’:+V(uJ)§0, a.e. f1.

Since the left-hand side of the above inequality is equal to
pus+pV-J+Vu-J=-M|Vu|*.

We see that (1.4) and (1.5) are consistent with the mass balance
law and (1.9).

The above development has two obvious drawbacks for T, < T..
First, the equilibrium theory predicts any decomposition of {1 into
two phases as long as (1.3b) holds and this allows a continuum of
equilibrium configurations with complex interface morphology and in
particular interfaces between the phases with arbitrarily large mea-
sure. Second, the diffusion coefficient K(u) is uniformly positive for
Ty, > T but for T, < T, K{u) is negative in the spinodal interval.
Hence the mass balance equation allows forward and backward dif-
fusion and the initial value problem is classically not well posed from
the mathematical point of view.

In order to model surface energy of the interface separating the
phases (also known as capillarity) Cahn and Hilliard 7] modify the
free energy by adding the gradient term ~+|Vu|?/2 where v > 0 so
that the free energy becomes .

(1.11) ¥ = y(u) + % Va?

and ¥(-) is called the homogeneous free energy. Gradients had pre-
viously been used to model capillarity by van der Waals [53]. We
refer also to Hillert [29] where a discrete version was developed. The
Cahn-Hilliard-van der Waals model for the equilibrium description
of phase separation is thus to

(1.12) min/ﬂ{w(u(m))—l—% |Vul*} dz, subject tofnu(:c) dz = uy |Q].
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It is convenient to introduce the generalised chemical potential w,
(1.18) w=¢'(u) — v Au,

so that w is the functional derivative of the energy

(1.14) £ (u) :/ﬂ{w(ungwuﬁ}dm,

i.e.,

(w,v) = ('(u),v) = (¥'(u),v) + v(Vu, Vo),
where (-,-) denotes the L?(Q) inner-product.
The mass flux is again given by (1.4) so that the generalised dif-
fusion equation for this non-equilibrium gradient theory of phase

separation is, Cahn [5],

(1.15) % = (VM Vuw) = V(M V(@'(u) — 'yAu)) L

This fourth order in space, nonlinear time dependent partial dif-
ferential equation is called the Cahn-Hilliard equation. For a closed
system there is no mass flux so that

(1.16a) MVw-n=0 on 90

and for the other free boundary condition we take the natural bound-
ary condition associated with the variational problem (1.12)

(1.16b) YVu-n=0 on N.

The initial boundary-value problem for a closed system is then to
solve (1.15) subject to the boundary conditions (1.16) and the initial
condition

(1.17) u(z,0) = uo(z), =z€N.

The form of uo(z) which is of interest in modelling the quenching
process described earlier is

(118)  uo(z) = um + €(z), [ﬂe(:c)d:c:O, e(z)] < 1.
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Other boundary conditions which are of interest are:

Dirichlet conditions.
(1.19) ulz) = ug(z), w=w,(z), z€an.

Periodic conditions. Q = (0, L)"

(1.20) D)oo = Dulpny, i=1,.

"y

We remark that the second law of thermodynamics becomes, for
any open K C {}

(1.21) %/R{:})(u)-i—%{‘?u]?}+waJ-n§0

and since the left hand side of (1.21) is

/utw—i-f umVu-n—[ Vi{w M Vw) ,
R SR R

inequality (1.21) holds for u solving (1.15) and any of (1.16), (1.19) or
(1.20). For an interesting rational non-equilibrium thermodynamics
theory of phase separation and capillarity we refer to Gurtin |27).
Observe that, in the case of Neumann and periodic boundary
conditions, the solution to the initial value problem satisfies

aé (u) _ ' _ _ 2
(1.22a) o = fn[gb (w)u, + VuVujdz = (w,u) = L)Vw) dz
d
(1.22b) i j;: udr =20, /‘;u{m,t) dxr = /‘; up dz
and, for the Dirichlet problem, with
(1.23a) €p(u) = €(u) — (wg, u)

(1.23b) % énfu) = (w — wy,u,;) = — fn {V{w —wg) dz ,

where w, is defined in {] to be harmonic.
This is in accordance with the requirement for this model of ki-
netics of phase separation that the evolution of a non-equilibrium
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composition is to a composition of lower energy. Indeed it is a natu-
ral question to ask if the time dependent solution to the initial value
problem converges to a minimiser of the energy as t — co.

The simplest form of 1) which has a double well is

(1.242) Plu) = (u? - 7’
(L24b)  G(w) =) =u(w?-FY), ¢'(u)=3ul-p?,

so that the spinodal interval is [~3/4/(3),+8//(3)] and u, = —3,

up = +f. In the mathematical analysis of section 2 and section 4 we
take 1 to be of this form and the mobility M = 1.

Reviews of spinodal decomposition and the Cahn-Hilliard model
may be found in Hilliard [30], Cahn and Hilliard [8], Skripov and
Skripov [50], Gunton and Droz [23|, Gunton, San-Miguel and Sahni
[24], Koch [34], Novick-Cohen and Segel [42] and Penrose [45].

2 — Existence Theory

Let (1 be a bounded domain in R"™ (n < 3) with a Lipschitz

boundary. Let t(-) be defined by (1.24). Global existence of a solu-
tion to the initial boundary value problem (1.15, 1.16, 1.17) i.e. u €

L*(0,T; H'(Q1)), we L*(0,T; H*(Q)) and du/dt € L*(0,T; (H(£))")
such that

(2.1a) (%‘;ﬁ,n) +(Vw,Vn) =0, Vne HY(Q)
(2.1b) Y(Vu,Vn) + (6(u),n) = (w,n), Vne H(Q)
(2.1¢) u(0) =uo € H'Y(Q)

is an immediate consequence of the fact that £(u) is a Lyapunov
functional, see (1.22a),

(2.2) Ew)+ [ Twfdr = (u) |
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with |- [; = [[D? - |[12(q); where we also take advantage of the non-
negativity of ¢, that L* < H!(Q) and that (v — u,,1) = 0. This can
be made rigorous by appropriate use of a Faedo-Galerkin method.
Similar considerations apply to the cases of periodic conditions and
Dirichlet boundary conditions. Existence of a more regular solution
is proved in Elliott and Zheng [21] and Nicolaenko and Scheurer [40].
See also Nicolaenko, Scheurer and Témam |39] where a more general
polynomial form of ¢ is assumed and periodic boundary conditions
for n < 3 and Neumann conditions for n = 1 are considered. The
tool for obtaining estimates on higher order derivatives is Sobolev
interpolation inequalities. We show here how some estimates may
be obtained in a more direct way.

For convenience let 91 € C*. Set {e;} to be the eigenfunctions

(23) “AGJ + €; = AJ’ €5, z €N =0 on 9f) 5

|
)Y
so that e; € C*(11), {e;} is an orthonormal basis for L?(f}) and {e:}
is an orthogonal basis for H!((1) with (e, e;)min) = A6y, Note
that e; = 1/|Q|"/2. Set V™ to be the span {e;}7y. The Galerkin

approximation for the Neumann case is: Find {um,wn} €V x V™
such that

du,, ’
(2.4a) (—dt—,ei) = (Awpm,¢), 1=1,2,..m
(2.4b) (W, &) = Y(Vup, Ve;) + (l8a)sB): =12 0am
(2.4¢) um(0) = P™uyg

where P™ is the projection defined by

(2.52) Prv=) (v,e)e; = Em:(” ij“)m 3
and

(2.5b) W™ eavmy = [P eqraymy =1 .
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Clearly (2.4) is a system of first order ordinary differential equa-
tions for the coefficients of u,, = 2_; ¢je; and thus (2.4) has a unique
solution local in time. Note that

W) = gut+ 3 (- 28Y) |
so that

1 1 a4 }_u 2
(2.6) gu - ﬂ < P(u) < ar T ﬁ

Therefore from the fact that, as in (1.22&),

7 E(um) = —|walf ,
we obtain the estimate
@7) Llum® + 5 lun®life + [ o) dr <
ﬂ2

2 J’“E' um (0 )|§+leum(0)|[14 <C.

Bearing in mind the convergence properties of P™ u, to ug in H 1(0)
we obtain from (2.7) an estimate of the left hand side uniform in m

and t. We use C generically to denote a constant independent of m
and t.

It is easy to see that
(2.8) Wy = =Y DUy + P P(uy,) .

Hence the following hold

dw, du - dtt
(2.92) 5 = VAT 4 P (¢ ) -
du dVu
J —T=A T =VAuw,, .
(2.9b) % Wy 5 T w

Multiplying (2.9a) by du,,/dt € V™ and integrating we obtain

(dwm dum) = ldum

dt ’ dt

(¢( m)dum dum)

dt ’ dt
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and since dw,,/dt € V™, we obtain from (2.9b) that

(dw_m i“_m) _ _liﬁw 2
dt > dt /24t ™
therefore the following equation

1d
2 ;:Elwmﬁ Gl |Awmﬁ +3 (u’fn Awgy, Awm) = ﬁz |Awm|0
= —8*(Vw,,, VAw,,)

holds. Hence we obtain the estimate

2"twrzrwzg‘itw'rz'r
(210) Jum(@t 7 | |awn(r) dr < [0+ [ jun(r)it dr

In order to estimate |w,,(0)|; we assume that

o
(2.11) Aug € HY(Q) and 5“;0 ~0 on dQ .
L
It follows that
(2.12&) ol Auo = I P Up

and, in H'(Q),
(2.12b) lim Aun,(0) = JBm AP™ug = lim P™ Aug = Aug .
It follows from (2.4b) that
Wi = (Wm, = Awm) = YV AUR, V) + (¢ (tm) Viim, Vior)
yielding
|wm (0)1 < 7[Aum(0)]1 + (|6 (um(0)) || [um (0)]1 -

Hence we obtain from (2.10) and (2.7) that

(2.13) (£ + ”y/: (Awn(r) dr < C |
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Since

(wmﬂl) = (qs(um)s 1) < .62 Hum[(U C {(um“i“ >

it follows from the Poincaré inequality

(2.14) olo < C |Jols +1(v,2)l], VveH'(D),
that
(2.15) ()11 + /Gt e ol B e €00

Furthermore (2.8) implies that

TNAUR(E)]o < Jwn(t)]o + |P™ p(wn(t)o ;

since
l‘tb(“m)‘o < Humniﬁ 3 ﬁz ium‘g
and L°(Q?) — HY(Q), n < 3, it follows that

(2.16) At £ C .
Finally we observe that
YV AUy = —Vw, + VP™$(u,,) ;
since
[P™ ¢(um)1 < [B(tm)l < 8 |tmllie [umls + 87 [umly
and L*(Q1) — H*(Q1), n < 3, it follows that
(2.17) [Aun(tih £ C .

These estimates imply the existence of a solution to the Cahn-
Hilliard equation with initial data uo € HL(R) = {v € H(D) :
dv/dv =0 on 9N} and Auy € H(Q) such that

u € L%(0,T; H*(Q)) N C[0,T; Hy(Q)),

(2.18)
ue € L*(0,T; H'(Q)), w € L*(0,T; H*(Q)) ,
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and

(2.19) lu(®)llao@) + lw®)llm@ < C, Vi

3 — Miscellaneous Considerations
3.1. The linear Cahn-Hilliard equation

Setting u(z,t) = um +€en(z,t) + ... to be the solution of (1.15) we
obtain the following approximate linearised equation for n:

(3.1a) ne = —7 A% + " (um) An, zEN,
o, dA

(3.1b) égzo, a_:-:o, zedn .

(3.1¢] n(z,0) =no(z), z€Q.

In one space dimension 1 = (0, L) a solution is

(3.2a) (2, t) = i Ay g cos(km:/L)

k% x?

T () + 25

(32b) Wi = 12

Thus if u,, lies in the spinodal interval and v is sufficiently small
the amplitude of a finite number of long wavelength perturbations
will grow exponentially in time; for k* < —L? V' (um) /v = (k)2 In
particular the maximum growth rate is for the wave number k —
k./+/2.

Initial studies of the validity of the Cahn-Hilliard model for spin-
odal decomposition were based on this linear stability analysis; see

Gunton, San-Miguel and Sahni [24] and Gunton and Droz [23] for
Teviews.
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3.2. Asymptotic long time behaviour

The stationary problem associated with (2.1) is: find {u*,w*} €
H'Y(Q) x R such that

(3.3a) —YAu '+ o(u)=w", z€0Q,
du*
3.3 =0 1

(3.3¢) [ﬂ w*{z)dz = [ﬂ wolz) dz .

Clearly u” is a critical point of £(-) varying over the set K =
{ve HY(Q): fyvdr = [yuodz} and w* is the Lagrange multiplier
associated with the prescribed mass constraint. One solution of (3.3)
is

(U'Ov 1)

(3.4) T = —I*nl—

=M, w =¢M).

It is easy to see that if /4 > B C, where C, is the Poincaré
constant in (2.14) then the solution is unique. However in general for
7y small there will be multiple solutions. In particular Zheng Songmu
55| has shown in one space dimension that if |M| < 8 and 4 is
given by (1.24) then there are a finite number of solutions and when
M = 0 there are 2 Ny + 1 solutions where Ny < § L/(m\/7) < No+1.
Explicit formulae for solutions were obtained by Novick-Cohen and
Segel [42].

The estimates (2.18, 2.19) obtained in section 2 allow the use of
results in continuous dynamical systems, see Témam [52], to make
some statements concerning the behaviour of u(z,t) as t — oo, see
Zheng Songmu [55].

Denoting by S(t) the solution operator to the initial value prob-
lem (2.1), it follows that S(t) is a continuous nonlinear semigroup
and the orbit U, S(t) uo is relatively compact in H%(0). Thus the
w-limit set of ug,

(3:5) w(uo) = {ve HL(Q): Ita st lim u(t,) =v in o)},

t, —00
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has the properties

1) w(up) is compact and connected;

2) S(t)w(uo) C wlug), Vt > 0;

3) £(v) is the same constant Vv € w(uo);
4) If v € w(uo) then v solves (3.3).

It follows that if the set of solutions to (3.3) are discrete then

w(uo) consists of just one element u* and
Jim u(t) =u" .

This is the case in one dimension as explained above.

Much more information concerning the asymptotic behaviour for
large ¢ has been obtained by Nicolaenko, Scheurer and Témam [39]
(see also Témam [52]). In particular they derive results about the
structure of attractors and the inertial manifold.

A detailed formal asymptotic study of the Cahn-Hilliard equation
during the later stages of phase separation has been made by Pego
[44]. One of the many interesting features of the paper is the deriva-

tion of a formal relation between the Cahn-Hilliard equation and the
Stefan problem.

3.3. The stochastic Cahn-Hilliard-Cook equation

The theory developed by Cahn (5] and Cahn-Hilliard [7] leading
to the nonlinear Cahn-Hilliard equation (1.15) does not take into
account thermal fluctuations in composition. The theory of Cook
[10] introduces a stochastic source, namely

(3.6a) u = —yA*u + Aglu) + €,
where
(3.6b) E(&(z,t) £(z',1)) = —eAb(z — ') §(t — ') .

Langer [35] has also developed a statistical theory of spinodal de-
composition leading to a Fokker-Planck equation from which the
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Cahn-Hilliard-Cook equation (3.6) can be derived. Equation (3.6a)
is known as the ‘model B’ equation in critical dynamics, Hohenberg
and Halperin [31].

An existence theory for the initial value problem associated with
(3.6a) and the smoother noise term

(3.6¢) E(&(z,t) €(2',t")) = —ek(z,2") 6(t — '

has been developed by Elezovic and Mikelic [15].
Numerical simulations for the stochastic equation (3.6) have been
performed by Petschek and Metiu [46], Elder, Rogers and Desai [14]

Rogers, Elder and Desai [48] and Milchev, Heermann and Binder
137].

3.4. The limit v — 0: equilibrium

It has been of great interest to mathematicians in recent years
to consider the relation between (1.12) and (1.1a). Does the limit
as ¥ — O of minimisers u. of (1.12) select solutions of (1.1a) with
‘minimal interface’? Carr, Gurtin and Slemrod [9] studied the one
dimensional version of (3.3) and in particular proved that

1) Solutions of (3.3) with more than interface (i.e. non-monotone)
are not local minimisers of &£(-);

2) For v sufficiently small £(-) has a unique minimiser which has
one interface (note that u(L — xz) has the same free energy).

More generally, for multidimensions and general ¢, Modica [38]
has shown that the limits of minimisers as ¥ — 0 minimise the
measure of the interface between the two phases. We refer also to
Alikakos and Simpson [1], Sternberg [51], Gurtin [26], Gurtin and
Montano (28] and Luckhaus and Modica [36].

A numerical study of the one dimensional steady state problem
has been performed by Eilbeck, Furter and Grinfeld [13] who were
particularly interested in the implications for the transition between
spinodal decomposition and nucleation.
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3.5. The limit v — 0: evolution

Nonlinear forward-backward diffusion equations of the form (1.8)
will not in general possess classical or even weak solutions. Héllig
[32] and Héllig and Nohel [33] considered the equation

(3.7a) vy = @(vs),
(3.7b) v(0,8) = v;(1,¢) =0, wv(z,0) = vo(z) ,

which is closely related to (1.8)

(3.8a) ut = ¢(u)zz = (P"(u) us).
(3.8D) u(0,t) = u(1,t) =0, wu(z,0) = uy(z) ,
by = 9.

Héllig [32] showed that if v)(z) takes values in the spinodal inter-
val then (3.7) has infinitely many weak solutions and if furthermore
Vo is not analytic, then it does not have a solution with v, being con-
tinuous. Numerical experiments, Héllig and Nohel [33] and Elliott
[16], show that certain finite difference approximations of (3.8) dis-
play phase separation. It is shown in Elliott [16] that these explicit in
time finite difference approximations converge to a ‘measure-valued’
solution. However one would like more information about the limit.
It is natural to consider the limit as ¥ — 0 of solutions to the evolu-
tionary Cahn-Hilliard equation (1.15)

3.6. Other forms of the energy

— In the presence of a gravitational field the energy functional
may be modified to, see Shiwa [49],

E{n) = [ﬂ{gb(u) + % |Vl — fu] dg

This has been studied from the mathematical and numerical
point of view by Copetti [in preparation).
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— The energy functionals
E(u) = /ﬂ[w(u) + a|Vul] de
Ef{n) = /ﬂ[?,b(u) + % Vul* + [Vuf] dz

have been studied by Elliott and Mikelic [20]. The term « |Vu)|
can be used to penalise interfacial energy; see also Visintin
[54].

— A model suggested in Oono and Puri [43] is to replace the
smooth Gibb’s free energy 3 (u) by

1
I (u) — Euz ;

where
e, is=l

I"(u):{o, lu| < 1.

This leads to a non-standard parabolic variational inequality
which has been studied by Blowey [in preparation].

3.7. Stefan problem with surface tension

The Stefan problem with surface tension for the diffusion of heat
in solidification of metals has been modelled by the so called Phase
Field equation, Caginalp [3]:

(3.9a) Tus=~vAu—¢(u) +w
(3.9Db) wy +Au, = K Aw |

where w is the temperature and u is a phase or order parameter with
u, and uy, defining the solid and liquid phases. We observe that the
Cahn-Hilliard equation is a particular limit of (3.9). The connection
between the Cahn-Hilliard equation and the Stefan problem with
surface tension has yet to be fully explored. Certainly the coarsen-
ing (or Ostwald ripening) of dendritic structures in solidification is
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similar to the coarsening process in the later stages of spinodal de-
composition. We refer also to Gurtin [25], Visintin [54] and Luckhaus
and Modica [36]. Caginalp [4] has also proposed replacing (3.92) by
the Cahn-Hilliard equation (1.15) itself.

4 — Numerical Analysis

In this section we shall consider the finite element approximation
of the initial value problem:

Find {u(z,t), w(z,t)} such that
du
4.1 s e N
(1.12) S =hv,
(4.1b) w = —yAu+ ¢(u) + f(z) ,
for ¢ > 0 in a bounded domain 2 C R" (n < 3) subject to the initial
and boundary conditions

b/

(4.1c) wle, B) = uglz), zeEf

du Jw
4.1d = Rl — 1, t>0,
el dv v S

where 011 is sufficiently smooth.
For definiteness we assume that %(:) is the polynomial of degree

4

(4.20) B(r) =5 (0~ B
so that

(4.2b) P"(r) > -B%*, Vr.

Let us consider a quasi-uniform family of triangulations T" of Q
with boundary elements being allowed to have one curvilinear side
so that 0 = U,eqr 7. Associated with T? is the finite element space
St e HY(N)

(4.3) St ={x € C°@): x|, € P, 1€ T},
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where P, denotes the set of polynomials of degree less than or
equal to m. The following continuous in time Galerkin approxi-
mation was first proposed by Elliott, French and Milner [19]: find
{uP(z,t), wh(z,t)}: [0,T) — S* x S* such that

(4.4a) (—g;,x) + (Y, V) =0, Yxest
(4.4b) VU VX) + (6" + £,x) = (vt x), VYxeSh
(4.4c) u"(z,0) = ug(z) ,

where u? € S* is a suitable approximation to Up.

In the case f = 0, Elliott, French and Milner [19] proved global
existence of solutions to (4.4) and in the practical case of peicewise
linear elements together with numerical integration they obtained
various optimal order error bounds. It is the purpose of this section
to extend their analysis to fully discrete schemes based upon time
discretising (4.4). We consider the following schemes:

(S1) Find for each n > 1 {U",W"} € S*x S* such that forn > 0
(4.5a) (B:U", x)* + (VW™ Vx) =0, VYyeS*
(4.5b) (W™, x)" =4(VU™,Vx) + (6(U™), x)" + (f, x)*, VxeSsh

and

(4.5¢) Iyl

(S2) Findfor eachn > 1 {U",W"} € S*x S* such that forn > 0

(4.6a) (B:U", x)" + (VW™ Vx) =0, VyeSh

(4.6b) (W™, x)* = 4 (VU2 Vx) + (U™, U™), x)* + (£, x)",
YaxsSh

and

(4.6¢) B =y,

i
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Here we have used the notation

Vn+1 —_yn 1
V" = el i/ - - (vt vny
where At is the time step and
P(r) — ¥(s)
(4.7) b(r,s) = Feg ! TS
P'(r) , P =8

Clearly &5(1’, s) is a second order approximation in |r — s| to )
and thus we expect that (4.6) is a second order in At perturbation of
the Crank-Nicolson scheme (S3) which is (S2) with (4.6b) replaced
by
(4.5

(Wn-i-l, X)h :’Y(VUn+1/2,VX) + (¢)(Uﬂ+1/2), X)h + (f’ X)h> vxe Sh.

Furthermore we have used the notation (-,-)”* for an inner prod-
uct on S* (and C(0)) which is either the L?(Q) inner product or an
approximation to the L*({1) inner product using appropriate numer-
ical quadrature based on nodal values. (e.g. mass lumping for linear
triangular elements) It is convenient for our purpose here to assume
that |- |, = ((-,-)*)*/? is a norm on S* and that

(4.9a) (x,v)h = 1% v,l)h , Vx,ve S,
(4.9b) Ixlx < C(Ixl + 106 1)) -

The scheme (S2) was proposed by Qiang Du and Nicolaides [47]
for the one dimensional Cahn-Hilliard equation with Dirichlet bound-
ary conditions. They obtained optimal error bounds for computa-
tions on a finite time interval provided that At < C h%. The latter
condition was needed for existence and uniqueness of the discrete
solution. In the following we shall show that schemes (S1) and (S2)
are well defined for At < At* where At* depends only on the par-
tial differential equation and not on h. Furthermore we consider the
asymptotic behaviour of {U",W"} as n — oo.



56 C.M. ELLIOTT

A standard conforming finite element Galerkin method for the
fourth order equation

Uy = —y Afu 4+ Ad(u)

requires that the approximating space be in H? (22). In one space
dimension error bounds were obtained by Elliott and Zheng [21]
and numerical computations were performed by Elliott and French
[17]. Another possibility is the use of non-conforming finite elements;
see Elliott and French (18] for a two dimensional analysis. See also
French and Nicolaides [22] for a finite difference scheme.

Proposition 4.1. The sequences {U",W"} generated by (S1)
and (S2) satisfy:

(4.108.) (Una 1)h = (u(};sl)h
(4.10b) (S1) Ve >0, EMU™) - EMU™) + AL (1 —€) W2 +
1 At B* n+1 n2
ty - R <o,

(4.10c) (S2) EMU™) — EMU™) + At|WH 2 =0 |

where

(4.11) EM00) = 5 X+ (00, 1) + (/,0"

Proof: The conservation equation (4.10a) is an immediate con-
sequence of taking x = 1 in (4.5a) and (4.6a). Let us first consider
(S1). Taking x = W™ in (4.5a), and x = (U™! — U™) in (4.5a
4.5b) yields
(4.12a) (U™ — g, wrth)h L AWt 2 =0
(412b) (Wn+1,Un+1 _ Un.)h _ ’Y(VUR_H,V(UHH o Un)) —

e (¢(Un+1), Un+1 . Un)h e (f, Un+1 . Un)h

(4.12¢) U™ — U} = —At (VW™ V(U™ - Um))
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Recalling the condition ¢"(r) > —f%, Vr € R, it follows from a
Taylor expansion that

(r_5)2<ﬁ—2(r—3)2.

(413) ¢(8) iy ‘(b('r) _'_w!(r) (T . S) _ _wff(z) R

2
Combining (4.12a) and (4.12b) we obtain

(4.14) 5h(Un+1) - £h(Un) i AthnHﬁ 4 % 17 jta Unﬁ b

= ($(U™) — (™), 1)" + ($(U™), 0" — g

ﬁz At ﬁZ

S # |Un+1 %, Un|2 oy oy (VanLl’ VUrH-l . VUn) ’
2 i 2

where we have used the properties of (-,-)*, (4.13) and (4.12c). In-
equality (4.10b) is an immediate consequence of (4.14). In the case
of (52) a similar but simpler argument is used. Taking y = W"tl in
(4.6a) and x = U™ — U™ in (4.6b) yields

(4.15a) (U™ — g, Wty 4 (Wt = g
(4158) (U™ — W= Ty D gz

- (&(Un, Un+1)’ Un+1 _ Un)h 4 (f, Un+1 _ Un)h .
By definition

(416)  (d(Un,Um),um — U™ = (p(U) — p(um),1)"

and (4.10c) follows by combining (4.15a) (4.15b). u

We now prove that there exist sequences {U™, W"} satisfying (S1)
and (S2) and that these sequences are unique for At sufficiently small
but independent of A.

It is convenient to introduce a discrete Green’s operator approx-

imating the inverse of the Laplacian with Neumann boundary con-
ditions defined by:

(4'173') 91’\11 € E(Sgasél) ) Soh = {X € 8% (]-s X)h = 0}
(4.17b) (VGrv,Vx) = (v,x)", VxeS*
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and which satisfies

(4.18) bedin = 105 = (8", 20" = (o 8% 51" .

The existence and uniqueness of Gfiv solving (4.17b) follows from
the discrete Poincaré inequality (4.9b)

Theorem 4.1. There exists {U",W"} satisfying (S1) and (S2).
Furthermore if At < At*

4
(4.19a) for {S1) A= —Eg—
and
. O
(4.19b) for (82) At =7

then the sequences are uniquely defined. |

Proof: We first prove the results for the scheme (S1). Consider
the variational problem

(4.20a) (V.P.) min JM¥) = JME) .
XEKHh
where
(4.20b) K* = {x €' §*; (x -U™1)*=0}
and
h . ok 1 _ ryng2
(4.20c) JYx) = &*(x) + o K b e BN

Since J*(-) is continuous and, using the non-negativity of (),
i T
od 2 pih 1R 2 o kil ~of.  vyest,

1t follows that there exists a solution to (V.P.). Such a minimiser is
a critical point of J*(-) satisfying,

0= (YU, Vx)+(8(0), )" + (£ )"+ (6" (5 ) ox) = AL 00",
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where ) is the Lagrange multiplier for the constraint (4.20b). By
comparison with (4.5a), (4.5b) and (4.17) setting

Un+1 - U', Wn+1 =\ — gh(

R
At )’

we find that {U™"!,W"*1} solve (4.5a) and (4.5b).
In order to prove uniqueness, set ¥ and 8" to be the differences

of two possible solutions {U™** Wn*1} By subtraction it follows
that

(4.21a)  (8V,x)" + At(VEY ,Vx) =0, Vye st

(4.21b) (8%, %)% —A(V8Y,Vx) = (9(UF*) — $(UF*), x)" .

Taking x = 6" in (4.21a) and x = 6Y in (4.21b) and using the
mean value theorem to obtain

(r =) (6(r) = ¢(s)) =" (2)(r — 5)* > ~F*(r - 5)*,
we have that
Y]0Y)2 + ALY 2 < B2(6Y,0Y) = — At B(ve’,ve%)
< Aeg 1010 < S0 B0 0U + A" 2
Uniqueness is an immediate consequence of the above inequality
and the observations that (§V,1)* = 0 and that the discrete Poincaré

inequality (4.9b) holds.
We turn to scheme (S2). Choosing ¥” so that

(4.22a) (I () (=) = 6(x,U")(z), ¥ (x)(z) >0,

and setting

(422)  TH00) = LIxE + (200 )" 4 o

2.8
Al
& 17 (VU”,VX) + (fa X)h ’

X~ Uﬂﬁh
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we may use the same argument as above to show the existence of
{UL, Wntl} satisfying (4.6a) and (4.6b).

In order to prove uniqueness, set Y and 6" to be the differences
of two possible solution {U™, W'} for (i = 1,2). By subtraction
it follows that

(4.23a) (8Y,x)" + At (VY ,Vx) =0, VxecsSt,
(4.230) (0¥,%)" = 2 (V6, V) + ($(U™,U*") - (U™, U5+, x)
Observe that (using standard finite difference notation)

(B(r,s1) — $(r,52)) (51 ~ 52) =
_ 1 (IP(Sl) —9(r)  P(s2) — ¥(r)

S1 — S2

o i Sy —
=P [s1,7,82) (81 — s2)°

_ ,"DH (Z)
2

(SI - 32)2 3

where 2 lies in the smallest interval containing s;, r and s;. Since
P"(z) > —F% Vz € R, it follows that

. . B
(4.24) (45(7',81) — &(r, 32)) (51— s2) > o (51 —s3)% .

By consideration of (4.23) and (4.24) we obtain condition (4.19b)
for uniqueness of solutions to (S2) using an identical argument to
that employed earlier for the scheme (S1). »

Numerical schemes for solving a nonlinear evolution equation over
a long time interval should simulate the asymptotic behaviour of
the underlying equation. Schemes (S1) and (S2) possess a similar
asymptotic behaviour as that described in section 3. Let C), be the
set of critical points of £*(x) = I |x[} + (¥(x),1)" + (f, x)" over the
set K" = {2 8% 1) = (ud,1)%}.

Thus U* € €, if U* € K" and

(4.25) Y(VU*,Vx) + (#(U*), x)* = W*,x)*, Vxest,
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where W* € R..

Theorem 4.2. Let At < %At” and {U",W"} be the uniquely
defined sequences from either (S1) or (S2). Then there exists a se-
quence {U™ W™} which converges to {U*,W"*} € C), x R solving
(4.25). Furthermore if C, consists of isolated points then the whole
sequence converges to the same limit {U*,W*} € C; x R.

Proof: The proof depends upon the estimate of Proposition 4.1
which shows that £"(-) is a Lyapunov functional for schemes (S1)
and-(82). We deal only with (S2) as the proof for (S1) is similar.
Implicit use will be made of the fact that S" is finite dimensional
so that the bounded sets are compact and norms are equivalent.
Summing (4.10c) over n yields

EMU™) + ALY W = 7 (up)
j=1
and since .
oy 2 Ton - o)
it follows that

(4.26) Uri+ At wWii<cC, Vn.

=1

Noting that U™ € K" and the discrete Poincaré inequality (4.9b),
it holds that (|[U"|p + |U™|;) is uniformly bounded. Hence there
exists a subsequence {U™ } converging to a U* € K*. Furthermore
it follows from (4.26) that lim,_. |W"|; = 0 and thus from (4.6a)
that lim,.. U™ — U™1|, = 0. Therefore lim,, ., U™ = U* and
since &5(, ) is continuous it follows that

lim ¢(U™,Um+) = ¢(U*) .

np—00
Taking x = 1 in (4.6b) and passing to the limit implies
im (W",1) = (¢(U),1)* + (f, 1) = W", )", W eR;

ﬂp—"w
hence lim W™ = W* .

np—oo
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We can now pass to the limit in (4.6b) and obtain (4.25).
In order to prove the last statement we require the inequality, the
proof of which we postpone,

(4.27) | — v <l -0, Vn,

for some || - ||, where 4 > 1 is independent of n but may depend on
At and h and U* € C), is any limit point of {U"}. Set

B(U*¢) = {X €St ||x -~ U < e}

and let U* be the only element of Cy, in B(U*,26). Let {U™} be a

subsequence of {U"} such that {U"} € B(U*,6/u). It follows from
(4.27) that

{Ur=tt} € B(U*,6) .

Thus either there exists an infinite subsequence {U™} € B(U*,6)\
B(U",6/u) or not. If not then this implies that the whole sequence
converges to U*, If there exists such an infinite subsequence then
there is a limit in B(U*,6)\ B(U*,6 /1) which contradicts the unique-
ness of U* in B(U*, 26).

We now turn to the proof of (4.27).

Set §) =W* —W™ and §Y = U* — U". It follows that from (4.6)

and (4.25) using similar arguments to those employed in the proof
of uniqueness that

(4.28a) At 1% |2 + |9

n+1 1
i h
ST oty (Wf{ 6%,,) — (o(U -) — (U, U™, U* — U™
and
(4'28b) |9n+1 h % |9U|h |0n+1 e ¥ At |9n+1 |9

Since S” is finite dimensional the estimate (4.10c) implies that

UL~ < C, Vn where C may depend on k and At. Thus a calcu-
lation reveals that

(4.29a) [6(U*) - $(U™, U”“)|<C(|9Ul+lﬂn+1)

n+1il -

(4-29b) - (‘ib(U*) o ‘?’(UnaUnH)!egﬂ) L |9U|h |9n+1|h ‘|’ |8n+1 h*
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Since ) .
(6%, 1) = (¢(U*) — $(U™,U™1),1)

and noting the Poincaré inequality (4.9b) we may combine (4.28)
and (4.29) in order to obtain (4.27).

5 — Numerical Simulations

There have been numerous computational studies of the Cahn-
-Hilliard model for phase separation in one and two dimension. These
numerical experiments display many features of spinodal decompo-
sition found by experimental studies of alloys and tend to support
the view that the Cahn-Hilliard theory qualitatively models spinodal
decomposition.

Numerical experiments in one space dimension with initial com-
positions being perturbations of a uniform state in the spinodal in-
terval [u?, uy] show that the concentration rapidly evolves into a ‘fine’
grained structure with interfaces separating ‘grains’ defined by the
uniform values u, and uy, i.e. phase separation. The scale of these
patterns in the very early stages is in line with the linear theory
of Section 3.1 See Elliott and French [17] and Copetti [in prepara-
tion]. After this rapid evolution into a phase separated structure, the
coarse grains grow and shrink as interfaces migrate and disappear.
This coarsening process takes place on a longer time scale; indeed the
larger the grains the slower the coarsening process. It is very easy in
numerical computations to mistake a slowly evolving non-stationary
pattern for a steady state.

Numerical experiments in two dimensions also display these two
features of rapid phase separation followed by a slower coarsening
process. Furthermore the morphology of the interfaces is more in-
teresting; the typical pattern for spinodal decomposition is a highly
inter-connected fat spaghetti like structure which contrasts with the
separated growing blobs associated with nucleation and growth. In
Figures 3 a,b,c,d,e,f,g and 4 a,b,c,d,e we show two dimensional pat-
terns for spinodal decomposition obtained by Copetti [in prepara-
tion]. A finite difference simulation was performed on the Cahn-



64 C.M. ELLIOTT

-Hilliard equation with periodic boundary conditions, v = %, d(u) =
! (u® — u) and the initial condition being a random perturbation of
the state u = 0.

In Figure 3 the black dots denote phase B. In figure 4 the con-
centration is plotted against (z;, z3).

ACKNOWLEDGEMENT - I wish to thank J.F. Blowey and M.I.M. Copetti for
their assistance in the preparation of this paper.
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Fig. 3b: t = 2400.

Fig. 3c: t = 4800.
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