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In this article we formulate a numerical method for the simulation of dealloying of a binary
alloy by the selective removal of one component via electrochemical dissolution such that
there is phase separation of the other component at the solid/electrolyte interface. The evo-
lution of the interface is modelled by a forced mean curvature flow strongly coupled to the
solution of a Cahn-Hilliard equation modelling surface phase separation. The method is
based on a triangulated hypersurface whose evolution is calculated as well as the solution
of the Cahn-Hilliard equation by the evolving surface finite element method (ESFEM). The
numerical experiments simulate complex morphology and concentration patterns provid-
ing evidence that the mathematical model may describe the formation of nanoporosity.

� 2008 Published by Elsevier Inc.
1. Introduction

We study surface pattern formation in the dealloying of a binary alloy by the selective removal of one component via elec-
trochemical dissolution in an electrolyte such that there is surface phase separation of the other component. The model was
proposed in order to study the evolution of nanoporosity in the selective electrolytic dissolution of an alloy, [15,16]. A pro-
typical example is that of the etching of silver in an Ag–Au alloy whose surface is immersed in an electrolyte. The dissolution
of silver atoms occurs at the alloy/electrolyte interface while the surface gold atoms diffuse on the surface, agglomerate in
clusters and expose the next layer of silver atoms for dissolution. The result is the growth of porosity into the bulk. The mod-
el developed in [15] comprises an evolution equation for the time dependent two dimensional hypersurface C ¼ CðtÞ
Vm ¼ �Jdiss; ð1:1Þ
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and a surface diffusion equation
_c ¼ Vmcb �rC � Jdiff ; ð1:2Þ
where Vm is the normal velocity of C, rC is the surface gradient, c is the surface concentration of gold, cb is the bulk concen-
tration of gold, Jdiss is the rate of dissolution and Jdiff is the diffusive surface flux. The notation _c is used for the evolving sur-
face material derivative. The rate of dissolution depends on a surface concentration dependent etching rate v0ðcÞ and the
mean curvature of the surface, H, so that
Jdiss ¼ v0ðcÞð1� dHÞ:
The diffusive flux is of Cahn-Hilliard type which allows up-hill diffusion and leads to phase separation so that
Jdiff ¼ �bðcÞrCw;w ¼ �cDCc þW0ðcÞ
where w is the chemical potential, bðcÞ is a mobility, and W is a double well free energy. In Section 2 the model is described in
detail.

Thus we are led to the study of the coupled system of forced mean curvature flow for an evolving surface with the forcing
depending on the solution of the Cahn-Hilliard equation. This is a highly nonlinear system.

In this paper we present a novel computational method for solving a fourth order nonlinear diffusion equation on a com-
plex evolving hypersurface. We choose to solve numerically using an evolving triangulation. The surface evolution by forced
mean curvature flow is treated by the method of [10]. The conservation law for the concentration is then handled in a natural
way using the evolving surface finite element method from [5–7]. During the simulation of dissolution the surface develops a
highly complex morphology and the solution of the diffusion equation exhibits transition layers. Thus it is necessary to ret-
riangulate in order both to preserve quasi-regular triangulations and to adapt the grid to the concentration profile. We refer
to [4,18,20] for previous works on spinodal decomposition and phase ordering on surfaces.

In the numerical experiments we observe results in agreement to results in [15] and to the Monte-Carlo-simulations in
[14]. During the dissolution the surface area of the alloy exposed to electrolyte increases and is decomposed into three sub-
regions: the gold rich portion, CgðtÞ, the gold poor region, CeðtÞ, and the interfacial transition layer, CIðtÞ. The portion, CgðtÞ,
which is almost completely covered by gold stops moving due to the vanishing of the etching rate, v0ðcÞ, in the pure phase.
On the other hand it continues to increase in size as etching takes place in CeðtÞ exposing gold which diffuses uphill towards
CgðtÞ leading to an evolving interfacial layer which increases in length and complexity. Short time simulations reveal spin-
odal decomposition patterns similar to those for flat surfaces and increasing complexity of the surface morphology. We per-
form longer time simulations on small parts of the surface. We observe that the complexity of the surface increases when the
etching rate is sufficiently high suggesting the formation of porosity. This effect does not depend solely on the concentration
distribution in the bulk, but can even be observed when the bulk concentration is constant. There are two mechanisms for
this effect. One is the nucleation of new regions covered by gold inside the portion, CeðtÞ, which is not yet covered in gold.
These form new islands of CgðtÞ separated from CeðtÞ by the transition layer CIðtÞ. The other is caused by the diffusion of gold
in CeðtÞ which accumulates inhomogeneously at CIðtÞ.

The contributions of this paper lie in the development of a computational methodology for the simulation of nonlinear
equations on (and coupled with) complicated moving surfaces and in the numerical simulations which show that the model
describes the formation of complex morphology leading to nanoporosity during surface dissolution.

1.1. Notation

Suppose C is a smooth hypersurface in R3 with normal m. For a function g defined in a neighbourhood of C we denote the
tangential gradient on C by
rCg ¼ rg� ðrg � mÞm; ð1:3Þ

where x � y denotes the Euclidean scalar product and r is the usual gradient on R3. The tangential gradient only depends on
the values of g on C. The Laplace–Beltrami-Operator is the tangential divergence of the tangential gradient:
DCg ¼ rC � rCg: ð1:4Þ
Let l be the conormal vector, i.e. the outward pointing normal of oC tangential to C. The formula for integration by parts
is given byZ Z Z
C
rCg ¼

C
gHmþ

oC
gl; ð1:5Þ
where H is the mean curvature of C, defined by H ¼ �rC � m. It is convenient to observe that
Hm ¼ �DCid; ð1:6Þ

where idðxÞ ¼ x for x 2 R3. The material derivative of a scalar function f defined on a neighbourhood of a time dependent
hypersurface CðtÞ will be denoted by a dot and is given by
_f ¼ of
ot
þ V � rf ; ð1:7Þ
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where V is the velocity of the surface. We are also going to need the following formula for the differentiation of a parameter-
dependent surface integral, see [6] for example,
d
dt

Z
C

f ¼
Z

C
ð _f þ frC � VÞ: ð1:8Þ
In our model we will consider a periodic setting. We call a two dimensional surface R periodic if there is a diffeomorphism
U : R2 ! R that satisfiesUðxþ le1 þ ke2Þ ¼ UðxÞ þ ls1 þ ks2 for all l; k 2 Zand x 2 R2. Here e1 and e2 are the unit vectors inR2 and
s1; s2 2 R3. C will be the image of the unit square C ¼ Uðð0;1Þ � ð0;1ÞÞ. A periodic function g on C satisfies gðxÞ ¼ gðxþ ls1þ
ks2Þ for all l; k 2 Z and x 2 C. Formula (1.5) simplifies for a periodic function g:
Z

C
rCg ¼

Z
C
gHm: ð1:9Þ
1.2. Outline of paper

The mathematical model is formulated in Section 2. The approximation by the evolving surface finite element method is
described in Section 3. The method is based on deforming triangulated surfaces. In order to avoid degenerate meshes it is
necessary to remesh during the computations. This method is based on conformal parametrization and is described in Sec-
tion 4. Numerical experiments are described in Section 5. There is a final concluding section.

2. Mathematical model

2.1. The equations

We consider the etching of a binary alloy occupying the bulk region XðtÞ � R3 by the action of an electrolyte on the upper
two dimensional surface CðtÞ of XðtÞ. To fix the discussion we consider a silver–gold alloy in an electrolyte for which gold is
inert and the silver dissolves. The dissolution occurs at the surface of the alloy and as the silver is etched away a mono-layer
of gold accumulates on the surface and locally inhibits further dissolution. We set 0 6 c 6 1 to denote the surface molar frac-
tion of gold. Denoting by Av the atomic volume, we have that ðAvÞ

1
3
R

CðtÞ c is the volume of gold on the surface. Similarly in the
bulk we set cb between 0 and 1 to denote the molar fraction and it follows that the total volume of gold in the system isR

XðtÞ cb þ ðAvÞ
1
3
R

CðtÞ c. We suppose that there is no diffusion in the bulk so cb is time independent. The etching process on
the surface CðtÞ is assumed to take place in the normal direction according to the surface evolution equation
V ¼ v0ðcÞð1� dHÞm: ð2:1Þ
The normal m is pointing into the bulk domain X. The prescribed etching rate function v0 depends on the concentration of
gold on the surface. We assume that v0 is monotonically decreasing and satisfies v0ð1Þ ¼ 0 so that the etching process stops
in areas where the surface is completely covered by gold. During the evolution of the surface gold atoms are picked up from
the bulk and agglomerate on the surface. For an arbitrary portion MðtÞ of the surface the rate of change of the surface volume
of gold due to the motion of MðtÞwith the velocity V is given by

R
MðtÞ cbV � m. Denoting cb=ðAvÞ

1
3 by c0 and taking into account

the tangential flux q of the motion of gold adatoms on the surface, we arrive at the following conservation law:
d
dt

Z
MðtÞ

c ¼ �
Z

oMðtÞ
q � lþ

Z
MðtÞ

c0V � m:
With the formula for integration by parts (1.5), we obtain
Z
oMðtÞ

q � l ¼
Z
MðtÞ
rC � q:
and the Leibniz formula (1.8) yields
d
dt

Z
MðtÞ

c ¼
Z
MðtÞ

_c þ crC � V
so that
Z
MðtÞ

_c þ crC � V þrC � q� c0V � m ¼ 0:
Since we assume that this equation holds for arbitrary portions MðtÞ of CðtÞ, we obtain the pointwise conservation
equation
_c þ crC � V þrC � q� c0V � m ¼ 0 on C: ð2:2Þ
The model assumes that on the surface there is a diffusive tangential flux of gold adatoms so that we choose
q ¼ �bðcÞrCw; ð2:3Þ
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with the mobility,
bðcÞ ¼ 4Mcð1� cÞ; with M 2 R
and the chemical potential w. The model assumes a regular solution homogeneous free energy
WðcÞ ¼ hcr

2
cð1� cÞ þ h

4
ðc logðcÞ þ ð1� cÞ logð1� cÞÞ; ð2:4Þ
for the binary mixture of gold and electrolyte adatoms in the mono-layer and a Cahn-Hilliard surface free energy functional
EðcÞ ¼
Z

CðtÞ

c
2
j rCcj2 þWðcÞ

� �
; ð2:5Þ
where c is a gradient energy coefficient. Thus the chemical potential w is given as
w ¼ �cDCc þW0ðcÞ: ð2:6Þ
In the expression for the regular solution free energy the parameter h is proportional to the absolute temperature. If h is lower
than the critical value hcr, then W takes a double well form with equal minima at values cg and 1� cg. In the case of a stationary
surface phase separation occurs into two regions corresponding to the electrolyte rich phase where c is approximately 1� cg

and the gold rich phase where c is approximately cg. Those regions are separated by transition interfaces whose thickness is
Oðc1

2Þ.
Thus we obtain the following complete set of equations:

Problem 2.1. Find a periodic evolving surface CðtÞ; t 2 ð0; TÞ and a periodic function c :
S

t2½0;T�CðtÞ � ftg#R, such that the
surface moves with the velocity
V ¼ v0ðcÞð1� dHÞm; ð2:7Þ
and c solves the equation
_c þrC � ðbðcÞrCðcDCc �W0ðcÞÞÞ þ crC � V ¼ c0V � m; ð2:8Þ
with the initial values
cð�;0Þ ¼ cið�Þ and Cð0Þ ¼ C0:
We want to remark that we have formulated the equations in terms of the concentration of gold. Often the Cahn-Hilliard
equations are given in terms of the difference of concentration of the two phases. While this change of variables in the Cahn-
Hilliard equation can be compensated by a corresponding change of coefficients in the equation, Eq. (2.2) would take quite a
different form since in our case only one quantity (the gold) is conserved, while the other (the electrolyte) is not. The con-
servation of gold here reads
d
dt

Z
CðtÞ

c þ
Z

XðtÞ
c0

 !
¼ 0:
2.2. Variational form

The geometric PDE (2.1) degenerates when the concentration on the surface approaches 1. Physically this corresponds to
the surface stopping to move in portions where it is completely covered by gold. In order to maintain this effect in the
numerical simulations we found it convenient to rewrite Eq. (2.1) with the etching rate v0ðcÞ in the denominator of the left
hand side. While this might not be the best way to treat the continuous problem, it works fine for the discretized problem
since the computed concentration is smaller than 1in that case. By multiplying with an arbitrary test function u : CðtÞ ! R3

and using (1.9) we arrive at the variational form
Z
CðtÞ

1
v0ðcÞ

V �uþ d
Z

CðtÞ
rCðtÞid : rCðtÞu ¼

Z
CðtÞ

m �u; ð2:9Þ
where for 3� 3 matrices A;B we set A : B ¼ trðAB>Þ.
The Cahn-Hilliard Eq. (2.8) is split into two second order problems for the concentration c and the chemical potential w.

By integrating with arbitrary test functions g;w and using the Leibniz formula (1.8), we arrive at
d
dt

Z
CðtÞ

cgþ
Z

CðtÞ
bðcÞrCðtÞw � rCðtÞg�

Z
CðtÞ

c0V � mg ¼
Z

CðtÞ
c _g ð2:10ÞZ

CðtÞ
ww� c

Z
CðtÞ
rCðtÞc � rCðtÞw�

Z
CðtÞ

W0ðcÞw ¼ 0: ð2:11Þ
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3. Approximation by finite elements

3.1. Semi-discrete approximation

The numerical scheme is based on solving over a time dependent Lipschitz periodic surface, RhðtÞwith a unit cell ChðtÞ, com-
posed of a union of triangles. This means that for each t there is a piece-wise linear Lipschitz mapping Uh

t : R2 ! Rh that sat-
isfies Uh

t ðxþ le1 þ ke2Þ ¼ Uh
t ðxÞ þ ls1 þ ks2 for all l; k 2 Z and x 2 R2 where e1 and e2 are the unit vectors in R2 and s1; s2 2 R3 are

given. The image of the unit square is denoted by ChðtÞ which is a triangulated surface composed of triangles in the triangu-
lation T hðtÞ. The vertices interpolate Uh

t in such a way that the boundary of ChðtÞ is composed of edges of triangles and there is a
vertex at Uh

t ðð0;0ÞÞ. It follows that ChðtÞ is the image under Uh
t of a triangulation of the unit square ½0;1� � ½0;1�whose vertices

on ð1; �Þ and ð�;1Þ are translates of vertices on ð0; �Þ and ð�; 0Þ.
Translations by multiples of s1 and s2 define an equivalence relation on the surface RhðtÞ. Two vertices X;Y 2 RhðtÞ are

called equivalent, X � Y if there are k; l 2 Z such that their coordinates satisfy X ¼ Y þ ks1 þ ls2. The set of equivalence clas-
ses will be called V and let ~xj; j ¼ 1; . . . ;N with N ¼j V j be an enumeration of the equivalence classes. This equivalence rela-
tion and the relation of the coordinates are preserved during the evolution of the surface. Observe that if a vertex is situated
on the boundary of ChðtÞ, then all equivalent points on the boundary are also vertices of the triangulation.

On the time dependent triangular surface ChðtÞ we set
ShðChðtÞ;RnÞ ¼ fv 2 C0ðChðtÞ;RnÞ j vje is linear affine for each e 2 T hðtÞg; ð3:1Þ

and
Sper
h ðChðtÞ;RnÞ ¼ fv 2 ShðChðtÞ;RnÞ j vðXÞ ¼ vðYÞ if X � Yg: ð3:2Þ
As an abbreviation we will write Sper
h ðChðtÞÞ ¼ Sper

h ðChðtÞ;RÞ. The dimension of this space is the number of equivalence classes
of vertices. A basis is given by the nodal basis functions defined by
/jðxiÞ ¼
1 if xi 2 ~xj

0 else

�
for j ¼ 1; . . . ;N: ð3:3Þ
A crucial fact concerning these basis functions is the transport property [6]:

_/i ¼ 0 for i ¼ 1; . . . ;N: ð3:4Þ
We use mass lumping for L2 inner products on the discrete surface Ch. This was applied to the cartesian Cahn-Hilliard
equation, see [1,2], in order to make the resulting equations easier to solve. We also use it for the additional term accounting
for the accumulation of gold on the surface and for the geometric motion. This assures that a vertex stops moving and no
additional gold from the bulk is agglomerated there if the concentration is very close to 1.

For functions u;v that are continuous on each triangle T 2 T h, we setZ

ðu;vÞhCh

¼
X
j2V

X
T2T h ;j2oT

lim
x!xj ;x2T

uðxÞvðxÞ
T

/j; ð3:5Þ
for functions that are continuous on Ch this reduces to
ðu;vÞhCh
¼
X
j2V

mjuðxjÞvðxjÞ with mj ¼
Z

Ch

/j: ð3:6Þ
The initial given surface is defined by an interpolation of U0ðð0;1Þ � ð0;1ÞÞ where U0 is prescribed.

Problem 3.1. For t 2 ½0; T� find discrete surfaces ChðtÞ and C;W : ½0; T� ! Sper
h ðChðtÞÞ such that for all j ¼ 1; . . . ;N:
d
dt
ðC;/jðtÞÞ

h
ChðtÞ ¼ �

Z
ChðtÞ

bðCÞrChðtÞWrChðtÞ/jðtÞ þ ðc0 V � m;/jðtÞÞ
h
ChðtÞ ð3:7Þ

ðW;/jðtÞÞ
h
ChðtÞ ¼ c

Z
ChðtÞ
rChðtÞCrChðtÞ/jðtÞ þ ðW0ðCÞ;/jðtÞÞ

h
ChðtÞ; ð3:8Þ
and such that
Xt ;
1

v0ðCÞ
g

� �h

ChðtÞ
¼
Z

ChðtÞ
m � g� d

Z
ChðtÞ
rChðtÞidrChðtÞg 8g 2 Sper

h ðChðtÞ;R3Þ; ð3:9Þ
where the coordinates of the vertex xj on ChðtÞ are given by Xðt; xjÞ
3.2. Fully discrete scheme

In the obvious way we consider triangulated surfaces Cm
h associated with the times tm ¼ ms where s > 0 is the time step.

Given Cm
h and Cm

h and Wm
h 2 Sper

h ðC
m
h Þwe calculate Ymþ1

h ;Cmþ1
h and Wmþ1

h 2 Sper
h ðC

m
h Þ. Here Ymþ1

h =s is an approximation to the sur-
face velocity and Cmþ1

h is defined as the triangulated surface whose vertices have coordinates Xmþ1
j ðxjÞ ¼ XmðxjÞ þ Ymþ1ðxjÞ.



9732 C. Eilks, C.M. Elliott / Journal of Computational Physics 227 (2008) 9727–9741
The discretization in time is carried out in a semi-implicit way. First the new surface Cmþ1
h is computed using the concen-

tration from the previous time step to compute the dissolution rate v0. The new triangulated surface is computed with an
implicit discretization of the surface Laplacian over the previous surface as explained in [3,10]. This yields a linear system
of equations for the surface evolution.

Again for the Cahn-Hilliard equation we use a semi-implicit-scheme. The equation is treated on the newly computed sur-
face Cmþ1

h . The mobility is evaluated using the concentration from the previous time step while the nonlinear logarithmic
term is treated implicitly. This has the advantage that the numerical solution of the discrete system has the property that
the concentration takes only values in the open interval (0,1), see [1,2]. The time derivative in Eq. (3.7) is discretized as
1
s
ððCmþ1;/mþ1

j Þhmþ1 � ðC
m;/m

j Þ
h
mÞ; ð3:10Þ
where ð�; �Þhm ¼ ð�; �Þ
h
Cm

h
while all other integrals are computed on the surface calculated in the current timestep. In order to

define the explicitly discretized mobility on the new surface, we define for given Cmþ1
h ; Cm

h

Cm;þ ¼
XN

j¼1

Cm
j /mþ1

j : ð3:11Þ
Here Cm
j are the values of the finite element function Cm 2 Sper

h ðC
m
h Þ at the vertices, i.e. Cm ¼

PN
j¼1Cm

j /m
j .

Algorithm 1 (Fully discrete scheme). Let Cm
h ;C

m 2 Sper
h ðC

m
h Þ be given

� Find the solution Ymþ1 2 Sper
h ðC

m
h ;R

R3 Þ of the linear equation
1
s
ðYmþ1;

1
v0ðCÞ

gÞhm þ d
Z

Cm
h

rCm
h

Ymþ1rCm
h
g ð3:12Þ

¼ �d
Z

Cm
h

rCm
h

XmrCm
h
gþ

Z
Cm

h

mmg 8g 2 Sper
h ðC

m
h ;R

3Þ: ð3:13Þ
� Cmþ1
h is defined by the new coordinates of the vertices Xmþ1

j ðxjÞ ¼ XmðxjÞ þ Ymþ1ðxjÞ.
� Find Cmþ1 and Wmþ1 by solving the linear equations for all j ¼ 1; . . . ;N:
1
s
ðCmþ1;/mþ1

j Þhmþ1 þ
Z

Cmþ1
h

bðCm;þÞrCmþ1
h

Wmþ1rCmþ1
h

/mþ1
j

¼ 1
s
ðCm þ c0mm � Ymþ1;/m

j Þ
h
m ð3:14Þ

ðWmþ1;/mþ1
j Þhmþ1

¼ c
Z

Cmþ1
h

rCmþ1
h

Cmþ1rCmþ1
h

/mþ1
j þ ðW0ðCmþ1ÞÞ;/mþ1

j Þhmþ1: ð3:15Þ
The equation for the surface evolution is linear with a positive definite matrix, and can easily be solved by a conjugate
gradient method.

In order to analyze the coupled equations for the concentration and chemical potential we write them in matrix form. We
define the stiffness matrix S, the mobility weightened stiffness matrix B and the diagonal mass matrix M by
Smþ1
ij ¼

Z
Cmþ1

h

rCmþ1
h

/mþ1
i rCmþ1

h
/mþ1

j

Bmþ1
ij ¼

Z
Cmþ1

h

bðCm;þÞrCmþ1
h

/mþ1
i rCmþ1

h
/mþ1

j

Mmþ1
ij ¼

Z
Cmþ1

h

/mþ1
i dij:
To write the system to be solved in matrix form, we define cmþ1 2 RN by ðcmþ1Þi ¼ Cmþ1ð~xiÞ and analogously for wmþ1. For
the purpose of analyzing the algorithm we define ~bmþ1 2 RN by
~bmþ1
i :¼ 1

Mmþ1
ii

Mm
ii Cm

i þ c0ðmm � Ymþ1;/m
i Þ

h
m

� �
: ð3:16Þ
In this notation Eqs. (3.14) and (3.15) take the form
Mmþ1cmþ1 ¼ �sBmþ1wmþ1 þMmþ1 ~bmþ1 ð3:17Þ

Mmþ1wmþ1 ¼ cSmþ1cmþ1 � hcrM
mþ1 cmþ1 � 1

2

� �
þMmþ1wðcmþ1Þ; ð3:18Þ
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where wðxÞi ¼ h
4 log xi

1�xi

� �
.

3.3. Solving the algebraic system

In order to present an algorithm for solving the algebraic system we define Gmþ1 : Vmþ1 ! Vmþ1 by
Bmþ1Gmþ1x ¼ Mmþ1x and 1>Mmþ1Gmþ1x ¼ 0; ð3:19Þ
where Vmþ1 ¼ fx 2 RN;1>Mmþ1x ¼ 0g and 1 2 RN is the vector whose components are all equal to one. This operator can be
used to eliminate wmþ1 and we get a single equation for cmþ1:
Aðcmþ1Þ þ Bðcmþ1Þ � k1 ¼ 0: ð3:20Þ
Here
A : ð0;1ÞN ! RN

AðxÞ ¼ wðxÞ
B : DðBÞ ! Vm

BðxÞ ¼ Gmþ1 x� ~b
s

 !
þ cðMmþ1Þ�1Smþ1x� hcrx;
where DðBÞ ¼ fx 2 RN j 1>Mmþ1x ¼ 1>Mmþ1~bg and k is given by k ¼ 1
jCmþ1

h
j1
>Mmþ1wðcmþ1Þ. While A is a strictly monotone oper-

ator and B is a coercive operator with respect to the scalar product induced by the matrix Mmþ1 if s < 4c
h2

cr
. To solve this equa-

tion, we use the operator splitting scheme (see [17]), which has been applied to the Cahn-Hilliard equation in the plane with
a constant mobility in [2,12]. In [1] a variant of this algorithm is applied for solving the Cahn-Hilliard equation with a degen-
erate mobility. But the effectiveness of this algorithm depends heavily on using direct methods for solving the discrete Pois-
son equation, which can not be applied in the case of a triangulated surface. So we adapt the iteration in [2]. The operator
splitting scheme yields the iteration
cmþ1
jþ1

2
þ lA cmþ1

jþ1
2

� �
¼ cmþ1

j � lBðcmþ1
j Þ þ lkj1 ð3:21Þ

cmþ1
jþ1 þ lBðcmþ1

jþ1 Þ � lkjþ11 ¼ cmþ1
jþ1

2
� lA cmþ1

jþ1
2

� �
: ð3:22Þ
While this iterative scheme converges, the number of iterations needed to obtain an approximate solution for our case of
a degenerate mobility and small values of h

hcr
is rather high. Changing Eq. (3.22) to
cmþ1
jþ1 þ lBðcmþ1

jþ1 Þ þ l/� cmþ1
jþ1

2

� �
cmþ1

jþ1 � lkjþ11 ¼ cmþ1
jþ1

2
� lA cmþ1

jþ1
2

� �
þ l/� cmþ1

jþ1
2

� �
cmþ1

jþ1
2
; ð3:23Þ
resulted in a significant decrease of the number of iteration. Here /�ðxÞ is the regularized derivative of w, given by
/�ðxÞij ¼
hdij

4xið1�xiÞ
if e 6 xi 6 1� e

hdij

4eð1�eÞ if xi < e or 1� e < xi

8<: : ð3:24Þ
The regularization is needed because otherwise the iterative procedure in general does not converge. A heuristic choice
for e, which resulted experimentally in convergence and produced the solution after relatively few iterations was to take e to
be the maximum norm of the change of cm

j from one iteration step to the next.

4. Mesh smoothing

The motion of the surface leads to variations in the shape of the triangles which may be undesirable. First, the relative size of
the triangles changes as the surface deforms and increases in area. We account for this by coarsening and refining at each time
step according to two criteria. In order to achieve a homogeneous triangulation with respect to the area of the triangles, a tri-
angle is refined as soon as its area exceeds twice the average area of triangles of the initial triangulation. Second, we want to
resolve the interface between the gold rich and gold poor phase on the surface. To achieve this, a triangle is refined as soon as
the variation of concentration on this triangle exceeds 1

10, ensuring that there are at least ten triangles across the interface. Fi-
nally as the surface deforms the angles of the triangulation degenerate. In contrast to the previous cases this is not addressed at
each time step because enhancing this aspect generally involves a more difficult computation which involves relocating ver-
tices on the surface. So we choose an acceptable mesh regularity criterion and then retriangulate the surface completely as
soon as it is no longer fulfilled. The chosen criterion is that the minimum angle of the triangulation is larger than p

9. The basic
idea of the method is to compute the approximation of a conformal diffeomorphism into a domain which can easily be trian-
gulated with a regular reference triangulation. Then the inverse of this map is used to lift the reference triangulation onto the
surface, resulting in a regular surface mesh. One approach to compute the conformal map using holomorphic one forms is
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discussed in [13]. We use a modified approach similar to [11], where it was applied to topological spheres, in order to compute
the mapping directly. The periodic surfaces that we have considered in the previous section are topological tori when the
equivalence relation is taken into account. We will begin by stating some results concerning conformal maps between tori
and then present the algorithm for reparametrizing the surface.

4.1. Conformal mappings for torus domains

A local parametrization X ¼ Xðp1; p2Þ : R2 ! C � R3 of a surface is conformal (angle preserving) if
oX
op1

���� ���� ¼ oX
op2

���� ���� and
oX
op1
� oX
op2
¼ 0: ð4:1Þ
These equations are difficult to solve so we use the observation that the inverse of a conformal diffeomorphism is also
conformal and seek an inverse conformal map W : C! R2. It is known that W is harmonic and that
rCWi � rCWj ¼ kdij; ð4:2Þ
for a scalar function k. It is also known that a manifold diffeomorphic to a torus can be mapped conformally into a flat torus,
that is a quotient of R2 defined by an equivalence relation of the form
x � y if and only if x ¼ yþ ls1 þ ks2 with k; l 2 Z; ð4:3Þ
where it is sufficient to consider the cases s1 ¼ ð1;0Þ> and s2 ¼ ðc; dÞ> with d > 0. We will denote the flat torus defined by
this equivalence relation by Pðc;dÞ. Thus we seek a conformal map W and Pðc;dÞ such that W : C! Pðc;dÞ. In order to achieve this
we set W :¼ A 	U where U : C! Q is a harmonic diffeomorphism into Q :¼ Pð0;1Þ, where
A ¼
1 c

0 d

� �
with c 2 R; d 2 Rþ; ð4:4Þ
and AðQÞ ¼ Pðc;dÞ is chosen so that W is conformal. Note that harmonic mappings from a manifold diffeomorphic to a torus
into the quotient spaces within a given homotopy class are unique up to an addition of a constant vector.

Once U is determined, we use the conformal conditions (4.2) in order to compute ðc; dÞ. Applying the chain rule we get the
following relations between the tangential gradients of W and U:
rCW1 ¼ rCU1 þ crCU2 and rCW2 ¼ drCU2: ð4:5Þ
Thus taking scalar products of those two equations and using (4.2), we get
j rCU1j2 ¼ 1þ c2

d2

� �
kðxÞ

j rCU2j2 ¼ 1

d2 kðxÞ

rCU1 � rCU2 ¼ � c

d2 kðxÞ:
Integrating over C and solving for c and d, we arrive at
c ¼ �
R

CrCU1 � rCU2R
C j rCU2j2

and d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
C j rCU1j2R
C j rCU2j2

� c2

vuut : ð4:6Þ
4.2. Remeshing

We wish to apply this idea in the context of improving the quality of the surface triangulation. Ch is given as a triangu-
lated surface whose vertices are the images of a triangulation of Q. Thus we have the piecewise linear map Uh : Ch ! Q

which is the inverse of the parametrization of Ch. Our goal is to find a map Wh : Ch ! Pðch ;dhÞ which is an approximation
of a conformal map. It then follows that a uniform triangulation T h of Pðch ;dhÞ induces a triangulated surface ~Ch which approx-
imately maintains the angles of T h. In order to achieve this we compute a piecewise linear map Uh 2 ShðC;R2Þ which is dis-
crete harmonic and fixed by
Z

Ch

Uh ¼
Z

Ch

Uh: ð4:7Þ
Then ðch; dhÞ can be chosen analogously to Eq. (4.6), so that the map Wh :¼ Ah 	Uh is approximately conformal. Since we want to
use the triangulation on Pðch ;dhÞ to define the triangulation on the surface, the calculated parameters ch and dh are changed
slightly in order to be able to prescribe a homogeneous triangulation consisting of rectangular triangles on the resulting quo-
tient space. The number of triangles has to be sufficiently high in order to obtain values of ch and dh close to the calculated values.



Fig. 1. Remeshed surface, closeup before and after remeshing.
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On the other hand it should not be to high since the resulting triangulation is rather inhomogeneous and has to be refined. Dur-
ing the computations we used 1000 triangles for the macro triangulation. Note that it is always possible to use a rectangle for the
triangulation, as long as a nonvanishing value of ch is taken into account by using proper identifications on the boundaries.

The macro triangulation on Pðch ;dhÞ can be used to define a triangulation on the surface by defining the vertices of this tri-
angulation to be the preimages of the vertices on Pðch ;dhÞ with respect to Wh. As mentioned above, the resulting triangulation
interpolating Ch is rather inhomogeneous and so it has to be refined again according to the criteria mentioned at the begin-
ning of this section. It is important that during this refinement process the coordinates of the new vertices are not taken to be
an interpolation of the coordinates of the vertices on the triangle to be refined. Rather the coordinates have to be calculated
by finding the preimage of the newly created vertex on Pðch ;dhÞ with respect to Wh.

This leads to the following algorithm.

Algorithm 2 (Retriangulation of the surface). Let Uh : Ch ! Q be the inverse of a parametrization of the periodic surface over
the unit square.

� Compute the approximation Uh :¼ Uh þ eUh : Ch ! Q with eUh 2 Sper
h ðC;R

2Þ of an harmonic mapping by solving
Z
Ch

rCh
eUhrCh

u ¼ �
Z

Ch

rCh
UhrCh

u 8u 2 Sper
h ðC;R

2Þ and
Z

Ch

eUh ¼ 0
� Find the parameters of the parallelogram by computing
ch ¼ �
R

Ch
rCh

U1
h � rCh

U2
hR

Ch
j rCh

U2
hj

2 dh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Ch
j rCh

U1
hj

2R
Ch
j rCh

U2
hj

2 � c2
h

vuut

and change the values slightly in order to allow for a triangulation by rectangular triangles on Pðch; dhÞ. The approximation of
the conformal mapping is then given by Wh :¼ Ah 	Uh.
� Find the interpolation of the inverse of the conformal mapping and use it to map a triangulation on the parallelogram onto

the surface.
� Refine the resulting surface.

Fig. 1 shows an example of a surface to be retriangulated encountered in computational experiments explained in Section
5.2. The left closeup shows the triangulation before, the right one after retriangulation. Even though the perspective distorts
the angles, the improvement can clearly be seen. The mesh before retriangulation seems to be finer across the interface (the
green region). This is a consequence of the triangles being distorted in normal direction to the interface by the algorithm for
the evolution of the surface. Therefore the second criterion for refining induces smaller triangles for the old mesh in this area.

5. Numerical results

5.1. Numerical tests

We begin by describing the performance of the numerical scheme with respect to the amount of work, the accuracy for a
model problem with a smooth solution and the quality of the meshes obtained by using the algorithm of the last section.

5.1.1. Number of iterations for iterative scheme
To test the iterative algorithm presented in Section 3.3 and to find a reasonable value for the parameter l, we carry out

computations on the same system with various values of l. For these tests we run a simulation with a random concentration
on the unit square as initial condition for 100 timesteps. The parameters for the Cahn-Hilliard equation are chosen to be:
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hcr ¼ 1; h ¼ 0:13 and C ¼ 10�3, while for the geometric motion in Eq. (2.1), we choose v0ðcÞ ¼ e�cð1� cÞ and d ¼ 0:1. In a first
series we use the algorithm of Eqs. (3.21) and (3.22), that is without the additional term introduced in Eq. (3.23). Computa-
tions are done for three different values of l, leading to very high numbers of iteration. Values of l higher than 1 show even
slower convergence. The number of iterations in the computation become high as soon as the values of the concentration
come close to the minima of the potential and the singular nature of logarithmic nonlinearity becomes significant.
l
 1
 0.1
 0.01

Average number of iterations
 99,097
 24,141
 8672
In a second series we use Eq. (3.23) instead of Eq. (3.24) and obtain a significantly lower number of iterations, which turns
out to be the better the bigger the chosen value of l was. Nevertheless with respect to overall computational cost, a value of
l ¼ 100 turns out to be best, since the linear system is more difficult to solve for higher values of l.
l
 10,000
 1000
 100
 10
 1
 0.1

Average number of iterations
 12.3
 12.3
 12.9
 23.5
 115.7
 307.9
To further reduce the computational cost per timestep we do not solve the linear system exactly for each step of the iter-
ation but rather reduce the residual by a factor of 100. This has only relatively small consequences on the number of iter-
ations needed but decreases the total computational cost by a factor of about five.
l
 10,000
 1000
 100
 10
 1
 0.1

Average number of iterations
 13.5
 14.6
 16.9
 27.0
 117.9
 524.5
For the remaining calculations we choose l ¼ 100 and do not solve the linear system exactly.

5.1.2. Convergence to exact solution for a surface moving with given velocity
In order to test the algorithm for solving the Cahn-Hilliard equation on a moving surface we compute the numerical solution

for a surface moving with prescribed velocity. Since the motion of the surface is known, just the second part of Algorithm (1) is
used to compute the solution. The surface is given as time dependent graph of a function v over the unit square and the discrete
surface is given by the graph of the interpolation at each timestep, using a fixed grid on the unit square. Since no nontrivial solu-
tions for the homogeneous Cahn-Hilliard equation on a moving surface are known analytically, the inhomogeneous equation is
solved, the right hand side being computed from the given solution. The parameters are chosen to be c ¼ 0:01; h ¼ 0:125 and
hcr ¼ 1 corresponding to minima in the double well potential at about 10�7 and 1� 10�7. The graph is given by
vðxÞ ¼ 0:25 sinð2px1Þ cosð2px2Þ sin p

2 t
	 


; t 2 ½0;1� and the solution is cðxÞ ¼ ð1�10�6Þð0:5þ0:5sinð2px1Þcosð2px2ÞtÞ; t 2 ½0;1�
with periodic boundary conditions. The numerical solution is computed for five triangulations T j; j ¼ 0; . . . ;4 created by refin-
ing a macro triangulation consisting of four congruent triangles on the unit square T 2jþ 6 times by bisection. The time step size
for the computation on the moving triangulation corresponding to T j is given by sj ¼ 22�j10�2, thereby meeting the time step
restriction for all values of j. The quantities
eL2 ¼
XNj

n¼1

sjkcðnsjÞ � eC nk2
L2ðCnsj

Þ

 !1
2

and ð5:1Þ

eH1 ¼
XNj

n¼1

sjkrCðcðnsjÞ � eCnÞk2
L2ðCnsj

Þ

 !1
2

; ð5:2Þ
where Nj is the number of time steps computed for the triangulation T j and eCn is a lift of the discrete solution Cn are com-
puted numerically. These values, the corresponding values of hmax, the maximal length of an edge during the evolution of the
discrete surface, and the experimental order of convergence are listed in the table.
hmax
 eL2
 eoc
 eH1
 epc
0.0946
 0.12632
 –
 0.8301
 –

0.0478
 0.07046
 0.86
 0.4890
 0.78

0.0245
 0.02826
 1.31
 0.1353
 1.85

0.0123
 0.00857
 1.721
 0.0671
 1.01

0.0062
 0.00222
 1.95
 0.0325
 1.04

0.0031
 0.00051
 2.12
 0.0164
 0.99
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Fig. 2. Minimal angle during the evolution of the surface.
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As can be seen in the table the experimental order of convergence approaches a value close to two for the L2-error, while
the order for the H1-error is close to one.

5.1.3. Test of the remeshing algorithm
In order to show the effectiveness of the mesh smoothing Algorithm (2), we start a simulation with the same initial con-

dition and parameters as in Section 5.1.1, except that we compute 500 timesteps. The left side of Fig. 2 shows the evolution of
the minimal angle of all triangles in the triangulation at the corresponding timestep. Since the simulation starts with a uni-
formly triangulated square, the minimal angle is close to 45� for the first timesteps. As the surface deforms it starts to dete-
riorate monotonically until an angle of below 20� is reached. At this point the retriangulation algorithm is used and yields an
improved triangulation. Even though the optimal angle of 45� is not reached any more, the angle of the newly retriangulated
surface is slightly above 35� during the computation.

Refining the triangulation increases the effectiveness of the algorithm. The plot on the right hand side of Fig. 2 shows the
results of a simulation with the same parameters but a triangulation refined two times by bisection and half the timestep
size. The minimal angle of the newly parametrized surface is larger then on the coarser triangulation.

5.2. Computational experiments

The goal of the numerical experiments is twofold. On the one hand we want to show that the algorithm produces reasonable
results for solving the Cahn-Hilliard equation on a surface evolving according to a coupled velocity law. On the other hands the
results of the computations are to be compared with experimental results and results of Monte-Carlo-simulations describing
the system (compare [14]). In all experiments, the scalar etching rate function in Eq. (2.1) is taken to be of the form
v0ðcÞ ¼ vmaxe�cð1� cÞ and we choose d ¼ 0:1. Except for absolute scale, variations in the form of the rate function had little ef-
fect in computational experiments. The maximal velocity vmax is varied in different experiments. In all subsequent experiments
the parameters in the Cahn-Hillard equation are chosen to be h cr ¼ 1:0 and h ¼ 0:125, resulting in minima of the free energy at
concentration values about 10�7 and 1� 10�7 and c ¼ 10�3. The mobility is chosen to be bðcÞ ¼ 4cð1� cÞ resulting in a degen-
erate mobility in the pure phases.

5.2.1. Early stages of surface etching and pattern formation

Example 1. In a first experiment we investigate the early stages of etching into a bulk with random variations in the
concentration of gold. As initial condition for the geometry, we use the x1x2-plane and do the calculations on a square of
sidelength 3. The square is triangulated regularly by 215 triangles which is achieved by subdividing an initial triangulation of
four rectangular triangles. As timestep size we use s ¼ 10�3 and we take vmax ¼ 1:6. The initial condition for the
concentration is chosen as 10�7 on the whole square so that in the beginning gold is almost completely absent on the surface.
To simulate a random distribution of gold in the bulk, the volume below the square is subdivided into cubes of sidelength 0.1
assigning to each cube a random concentration value between 0 and 24. In the first stages of the simulation, gold from the
bulk agglomerates on the surface, which moves with an almost uniform velocity. Because of the inhomogenity of the
concentration in the bulk, phase separation starts to occur. This can be seen in the left side of 1Fig. 3. In this figure the view is
from above the surface and yellow denotes portions of the surface almost completely covered by gold, while the gold poor
regions are blue. At this stage of the computation, the result looks similar to a simulation of the Cahn-Hilliard equation on a
1 For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.



Fig. 3. Simulation on a large square, t ¼ 0:04; t ¼ 0:1 and t ¼ 0:2.
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plane. The geometric motion of the surface has little influence, except for providing for a nonvanishing right hand side for the
conservation law of gold on the surface, since gold from the bulk is accumulating on the surface. While the concrete
appearance of the structure obviously depends on the particular random distribution in the bulk, the lengthscales of the
structure depend only on the particular values of the parameters in the equation.

After the phases have separated, etching still continues in the areas with a small concentration of gold, while the motion
is negligible in regions covered by gold yielding a maze like structure of the surface. The origins of this shape can still be
explained by the initial phase separation which fixed the gold covered regions that proceeded to move into the bulk. So
at this stage the simulation does not necessarily show the mechanisms for the emergence of a nanoporous structure. By
undercutting the gold rich portion of the surface, the area of the surface that is not covered by gold increases. In the last
stages of this simulation new components of the gold rich phase emerge at the bottom of the surface. Additionally the inter-
face separating gold rich and gold poor phases shows no effect of coarsening as for the planar Cahn-Hilliard equation, but
instead becomes more complicated. These two effects can be seen as signs that the model shows increasing formation of
morphological complexity. We explore them in more detail in the following examples. Note however that due to self-inter-
sections the surface is not embedded at later stages, as can be seen in Fig. 4, where the cross sections along the plane parallel
to the x3-axis and the diagonal of the initial condition are shown. The six figures correspond to equidistant times from
t ¼ 0:04 to t ¼ 0:24.

5.2.2. Pit formation
In the following experiments we investigate the evolution in more detail by focusing on the evolution of a single pit etch-

ing into the bulk. As well as having a lower computational complexity this initial configuration has the additional advantage
of postponing the unphysical self-intersections to later times. These simulations can be interpreted physically in two ways.
They can either be seen as a small portion of the whole bulk at later stages of the etching process, that are separated from the
rest by an area completely covered by gold. Because of the vanishing mobility in the gold rich phase, the influence of the rest
of the surface on this part is minimal. The other interpretation is the etching of an isolated pit into an otherwise completely
passivated bulk.
Fig. 4. Simulation on a large square, cross sections along the diagonal for t ¼ 0:04–t ¼ 0:24.
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Example 2. As in experiment 1, we use the x1x2-plane as geometric initial condition, but solving on a square of sidelength
0.5 centered at the origin with periodic boundary conditions. The initial discretization consists of 212 triangles and all
parameters besides vmax and the concentration in the bulk have the same values as in the computation on the large square.

As a first experiment on the smaller square, we take a smoothed version of u0ðxÞ ¼ 1� vB1
5

as initial condition, where vB1
5

denotes the characteristic function of the circle with radius 0.2. This can be thought of as a single circular pit where etching is
possible, surrounded by an area completely passivated by gold. This is depicted in the left hand side of Fig. 5 which again is a
view from above). The concentration in the bulk is taken to be constant with c0 ¼ 12. After a few iterations a circular pit
occurs due to etching. After some time the pit undercuts the plane and the region of low concentration of gold increases in
size but remains circular in shape. For larger values of vmax, a new region covered by gold emerges in the center of the pit
while the part not covered by gold has the shape of an annulus and continues to edge into the bulk. This is similar to the
result of the analogous Monte-Carlo-simulations in [15]. In contrast, for lower values of vmax we do not observe this effect.
The part of the surface not covered by gold rather remains in a circular shape and etches a pit of cylindrical shape into the
bulk. This is in accordance with the experimental observation that the formation of nanoporosity greatly increases above a
certain etching rate. Fig. 6 shows the result at an earlier stage of the simulation and at a later stage, where the difference in
appearance becomes apparent. In order to show the geometric structure of the surface we choose a different perspective and
view the surface from within the alloy. The square in the upper part of the surface is the remaining part of the initial
condition which was covered by gold and therefore has not moved. Since the surface is shown from a direction inside the
bulk, the portion of the bulk etched away is actually inside this surface. The time is chosen inversely proportional to vmax, so
that a uniform etching rate would have resulted in identical surfaces. Fig. 7 shows the cross sections for a higher velocity at
various times. The picture in the middle shows the moment when the structure of the pit changes.

Example 3. This is a second numerical experiment on the small square of Example 2. While still focusing on the formation of
a single pit, we want to start with a nonsymmetrical initial condition. So instead of using the previous initial condition, it is
prepared by starting a simulation with a constant concentration of 10�7 on the surface and than evolving the system for 80
timesteps with a timestep size of 10�3. During this evolution the same parameters as above are used, besides the value of
vmax ¼ 1:6 and the concentration in the bulk, which is given by assigning random values between 0 and 24 to cubes of side-
length 0.05 below the initial surface. Starting with these parameters a single pit evolves which is neither circular nor con-
tained in a plane (see right hand side of Fig. 5).
Fig. 5. Initial conditions for the second and for the last two experiments.

Fig. 6. Etching in a circular pit, t ¼ 0:25 for vmax ¼ 1:0; t ¼ 0:75 for vmax ¼ 1:0 and t ¼ 1:5 for vmax ¼ 0:5.



Fig. 7. Cross sections for example 2 and vmax ¼ 1:0; t ¼ 0:25; t ¼ 0:5 and t ¼ 0:75.

Fig. 8. Constant bulk concentration, t ¼ 0:25 and t ¼ 0:75 for vmax ¼ 1:0; t ¼ 1:5 for vmax ¼ 0:5.
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In the subsequent computation with this initial condition, the bulk concentration is taken to be constant, and vmax is
varied during different simulations. Common to all chosen velocities is that there was no formation of a new component
covered by gold in the the interior of the region etching into the bulk. For low velocities the evolution is similar to the one
above, since the region actively etching into the bulk gets circular. For higher values of vmax, this region changed its shape by
stretching into one direction. So this example shows another mechanism for increasing the complexity of the surface. Fig. 8
shows example for two different values of vmax. The perspective is similar to that of Fig. 6.

Example 4. In a third experiment on the small square, we study the effect of fluctuations of concentrations in the bulk on the
evolution of the surface. So we start with the same initial condition as in the last experiment, but maintain a random con-
centration in the bulk during the whole simulation. At the beginning of the simulation the surface resembles the one of the
last experiment. We still observe a velocity below which the shape of the gold poor region remains circular and returns to
this shape after receiving small perturbations due to varying concentration in the bulk, see Fig. 9.
Fig. 9. Etching for a single pit, random bulk concentration, t ¼ 1:2 and t ¼ 2:0 for vmax ¼ 0:4.

Fig. 10. Etching for a single pit, random bulk concentration, t ¼ 0:3 and t ¼ 0:5 for vmax ¼ 1:6.
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For larger values of vmax, the surface evolves to a much more complicated structure, Fig. 10. The number of components of
the gold poor region on the surface increases, so the total area increases at a much higher rate, even when taking into
account the higher value of vmax.
6. Conclusion

We have presented a novel numerical method for solving a nonlinear diffusion equation on a complex time dependent
surface whose evolution is strongly coupled to the solution of the diffusion equation. The method is based on surface finite
elements and triangulated surfaces. We implement methods to discretize the degenerate nonlinear Cahn-Hilliard equation
and use adaptive grids within the computations. In order to have quasi-regular triangulations we present a method for ret-
riangulating a periodic surface. Numerical simulations of the model for surface dissolution are presented which agree with
the results of previous studies and indicate that the model can simulate the formation of complex morphology including
porosity. It may be useful to consider numerical methods for solving partial differential equations on implicit surfaces, such
as [8,9], in order to simulate the later stages where the interface morphology is much more complicated.
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