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Summary. A fully discrete finite element method for the Cahn-Hilliard equation
with a logarithmic free energy based on the backward Euler method is analysed.
Existence and uniqueness of the numerical solution and its convergence to the
solution of the continuous problem are proved. Two iterative schemes to solve the
resulting algebraic problem are proposed and some numerical results in one space
dimension are presented.
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1 Introduction

We shall consider the numerical approximation of the Cahn-Hilliard equation
(1.1a) u=Aw xeQ,t>0,

(1.1b) w=¥u—yAu xeQ,t>0,

subject to the initial condition

(1.1¢) u(x,0) = ug(x) xeQ

and boundary conditions

(1.1d) Vun=Vw-n=0 xedQ,t>0

with ¥: [—1,1] > IR given by

(12) Y (u) = g[(l +w)ln(l +u) + (1 —w(l —w)] - %”2 '

* CAPES fellow
Correspondence to: C.M. Elliott



40 M.IM. Copetti and C.M. Elliott

Here y, 6 and 0, are positive constants with 8 < 6, and Q2 is a bounded domain in
RY d < 3, with smooth or convex Lipschitz boundary Q. It follows that ¥ has
a double-well form with minima at f and — f where f8 is the positive root of

1 (1+B) 26,
Bm<1~ﬂ>‘9'

The points f and —p are called binodal points and the region where ¥ < 0,
(—us, ug), is called the spinodal interval. Since, for |u| < 1,

0
1—u

YIN(“) = 2 Hc s

we find that

Equation 1.1 was proposed by Cahn and Hilliard [3] to model phase separ-
ation in a binary mixture composed of species 4 and B which is quenched into an
unstable state. Here u represents the local concentration of the species, that is,
u=Xp— X4, |u| =<1, where X and X5, 0 X, X< 1, X, + Xz =1, are the
mass fractions of the components in the mixture, and the mean concentration u,, of
the mixture is a conserved quantity.

When the quench is shallow, that is 6 is close to 6., near u = 0 ~1+u?

1 —u?

and this leads to the usual approximation of the free energy as a quartic polynomial
in the concentration. We remark that in contrast with the quartic approximation
the derivatives of the free energy defined by (1.2) become unbounded at —1 and 1.

The mathematics literature has concentrated on the quartic free energy. For
a review we refer to Elliott [9] and Temam [20]. Numerical simulations are
reported on in (for example) [5], [7], [10] and [19]. See also [8], [11] and [12] for
the numerical analysis.

However when the quench is deep i.e. 8 < 0, the form of the free energy is not at
all like a polynomial. The spinodal points +u, are close to the singular points +1.
Indeed Oono and Puri [17] suggested a well with infinite walls for modelling the
deep quench limit. See [ 1, 2] for a mathematical and numerical analysis. It has been
proved by Elliott and Luckhaus [13] that as 6/6, — 0 the weak solution of the
Cahn-Hilliard equation with the free energy given by (1.2) converges to the free
boundary limit problem studied by Blowey and Elliott [1, 2]. Furthermore explicit
schemes used by metallurgists can easily predict concentration values outside the
interval [—1, 1]. This causes overflow at the next time step. Thus we are lead to
study the mathematical and numerical analysis of (1.1) with the free energy (1.2). It
should also be useful in the analysis of multicomponent diffusion with capillarity
where models of the free energy based on formula (1.2) are used to determine the
complex phase diagrams (see [16] for example).

We write

P = o) — o lul S 1

and set

o) = Yo(u) =gln(i i::) lul < 1.
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The following result concerning existence of a unique solution was proved by
Elliott and Luckhaus [13].

Theorem 1.1. Given uge H* () and § (0, 1) such that ||uy ||, < land‘—é—lljguol <1-6
then there exists a unique solution {u, w} such that u(-, 0) = uy(+) and
ue L*(0, T; HY(Q)) n L*(0, T; H*(Q)) n C([0, T]; L*(Q)),
u,e L*(0, T; HY(Q))),
JtueL*0, T; H'(RQ)),
JweL=(0, T; H\(Q))
J1$WeL= (0, T; LX),
satisfying, for all £€ C[0, T], ne HY(Q),

T
(1.3a) Ié(t)<%<u, n> + (Vw, Vn)>dt =0,
0

(1.3b)

Ot

S@((w — o) + Ocu, ) — y(Vu, Vi))dt =0
with [u| < 1 ae..

We remark that the assumptions on u, allow initial data with values 1 and —1
in regions of non-zero measure and that Egs. (1.3) make sense because \ﬁwe
L>(0, T; H'(2)) and \/tqb(u)eL“’(O, T; L*(Q)). This latter estimate for ¢(u) means
that |u| cannot take the value 1 on sets of non-zero measure.

In the one dimensional case, it results from the Sobolev imbedding theorem
that, for all t > 0, w(+, t) is continuous and ||w(-, t)|, < C. Letting %(t) denote the
point of maximum of u at time ¢ > 0 it follows that yu”(%¥) < 0 and

¥'(u(x)) —wx)=0.
Thus
du(x)) = C4
and
ux)<1.

A similar argument using the point of minimum of u and the fact that
—¢(u) = ¢(— u) yields
lulleo <1 Vt>0.

Let Q be a convex polygonal domain and " a quasi-uniform family of
triangulations of 2, Q = | ),.+1, with mesh size h. Let S* = H'(Q) be the finite
element space of continuous functions on Q which are linear on each te 7"
Denote by {x; }¥", the set of nodes of 7 " and let {x;}I", be the basis for S" defined
by xi(x;) = Jij. _

We indicate by (-, -)" the discrete inner product: Vy, € C(Q)

Nh

6n)' = ;I; I"Gmydx = Y, mix(xi)n(x;)

i=1
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where I": C(Q) — S" is the interpolant defined by I"y(x;) = y(x;)fori=1,..., N"
and m; = (3, x:)"+ | 1» = ((+, )")"'? is a norm on S" which satisfies (see [6]) V7,
nesh

(1.4) Collxll = xln = Cyllxll,
(1.5) m — 'l < Ch gl nlly r=0,1,

where the constants are independent of h. The Poincaré inequality

2l < Cellxly + 106 D) VxeH'(2)

together with (1.4) and (1.5) yields the discrete Poincaré inequality, for h sufficiently
small,

(1.6) lxlla = Ce(lxls + 106 Dln)  VxeS*

with Cp a constant independent of h.

If we assume that " is acute, that is the angles of the triangles, in the case
d = 2, are less than or equal to n/2 and, in the case d = 3, the angle made by any
two faces of any tetrahedron is bounded by =m/2, then, if e W ®(IR) satisfies
a(0)=0and 0 < '(s) £ L, <o for ae. seR, we have (see [6], [18])

(1.7) IVI"a(x) 1> < Lo(Vy, VI"a(x)) VxeS",
Let G": S& — S¥ be the discrete Green’s operator defined by
(1.8) (VG"0, Vy) = (v, )" VyeS",

where St = {yeS": (x, 1)* = 0}. The existence and uniqueness of G"v follows from
the Lax-Milgram theorem and the Poincaré inequality (1.6).
Writing
def
|20 = 1G"¢13
it follows from (1.8) that

lx12h=(G"% 0" = (1, G"0)" .
Finally, let us introduce the H!-projection, R": H*(Q) — S*, defined by
(VR",Vy) = (V,Vy) VyxeS",
(R', 1) = (1, 1) .

It holds that R*» — v in H*(Q) strongly and |R"v|; < |v];.

An outline of the contents of this paper is as follows. In Sect. 2 we introduce the
discrete finite element method for the problem and prove existence, uniqueness and
stability estimates for its solution. Convergence to the solution of the continuous
problem is proved in Sect. 3. In Sect. 4 we present two iterative methods that can be
used to solve the algebraic problem resulting from the numerical approximation.
The results of numerical experiments are presented in Sect. 5.
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2 Numerical approximation

Let k = T/N denote the time step where N is a given positive integer. The finite
element approximation to (1.1) is to find U", W"eS*, n=1,2,..., N, such that
VyeSh

(2.1a) U™, F + (VW™ Vy) =0,
(2.1b) (W 0" = (P (U™, x) + y(VU", Vy) ,
with U° = u), where uf) is some approximation of u, in S*, and

zZn — Zn—l

0Z" =
k

for a given sequence {Z"}N_,.
We observe that for (¥’(U"), y)* to have a meaning it is necessary that
[U™x;)| < 1 for each node x; and this is equivalent to |U"||, < 1.

Remark. Our analysis requires the condition k < 4y/0%. This is a consequence of
the non-convexity of the free energy. Even though it is independent of the spatial
mesh this condition is restrictive because y < 1. One might hope to develop stable
implicit schemes which allow large time steps when appropriate. However for these
non-convex nonlinear partial differential equations this is as yet unrealised.

4
Theorem 2.1. Suppose that k<9—Z and upeS" satisfies 1/|Q|fouf| <1 -9,

lubll, < 1. Then there exists a ucnique solution {U", W"} to (2.1) satisfying
U™y < 1 for each n = 1.

Proof. Uniqueness. Let {U, W'} and {U%, W%} be two solutions of (2.1) and set
2" =U% — U% and z¥ = W — W?%. It follows that z* and z" satisfy

(2.22) (2% 2" + k(Vz",Vy) =0,
(2.2b) (@, )" = (P'(UY) — P'(U3), 0" + 3(Vz", Vy) .

Taking y =z" in (2.2a) and y = z* in (2.2b) and subtracting the resulting
equations yields

, kiz¥|} + 9|z} = (P'(U3) + P'(UT), z)" .
Since

(Y'(ry) — P'(r))ry —ra) = — P (E)r2 — 1) £ 0c(ry — 1)
it follows that
(P'(U3) — ' (UY), 2)" < 027 .
Using equation (2.2a) with y = z* we obtain

02
kiz¥I} +y12"F < 0c(2% 2)* < k;lZ“!f +klz*|3 .
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2
Q—k%)fﬁgo

and, since (z* 1)" = 0, the Poincaré inequality (1.6) implies that |z*|, = 0. This
concludes the proof of uniqueness.

Thus

Existence. Following the work of Elliott and Luckhaus [13] existence of a solution
will be obtained by considering a regularized problem.
For ¢ > 0, ¢ small, we define

$ew) = Vi) + Ocu
¢:(u) = max{— @(1 — ¢), min{¢p(u), (1 — &)} } ,
B.(u) = max{— 1 + ¢, min{u, 1 —¢}},
where ¥,e C1(R),
wo(l—s)——&(l—a)2+£r£+tﬁ(u——1) u>1-¢
Ye(uw) ={ ¥ u|£1—¢
lﬁo(—1+s)——2—°(—1 +e+er,—T,(u+1) u<—1+e¢,

and
2—¢

‘t£=¢(1—8)-—00(1—-8)=g]n< >—90(1—-—8).

We shall consider the regularized problem: find U”, W"eS", n=1,2,...,N,
such that YyeS*

(2.3a) @uL "+ (VW V) =0,
(2.3b) (We, 0" = (PUD), )" + (VUL Vi),
(2.3¢) Ul =ub.
Note that 7, > 0 for ¢ sufficiently small, ¢ is monotone increasing since ¢’ > 0,
Yow) 2 0 lul =1,
Wz ~% st
Y. (u) = —%5 Yu,
Y=z — 6, Vu
and
T, + O.u u>1-—¢
Pe(u) = P(u) lul=1—e¢

-1, +0u u<-—1+¢.

That Yo(u) 2 0 for |u| £ 1 follows from the fact that yo(0) = 0 and the form of
Yo = ¢. Figure 1 shows the graphs of ¥, ¥, ¢ and ¢,.
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Following Elliott [9] the existence of a solution to (2.3) can be shown by
considering the minimization problem: find U e K" such that

(24) FM"U) = min F"(y)

xekh
where

1
g;h = (¥ lh 2 2 _qyn—1 2_
() = (Fe(0, D" + Slxli + 5l — Uz 1=

K" = {xeS" (x. " = (uo, )"} .

It follows from the definition of %" that %" is bounded below in K",
0 y 6
Fhiy)y> _ € Liyl2 > — =€

Let d = infgn # "(x) and {x,} be a minimizing sequence of #" in K", that is
lim,. o Z"(x,) = d. It results from the above estimate and the discrete Poincaré
inequality (1.6) that {x,} is bounded in H*(Q). As a consequence, recalling that K"
is finite dimensional, there exists U e S" and a subsequence {y,} such that

t— U inS*.

Since K" is closed, U € K*, and the continuity of " yields & "(y,) » #"(U) = d.
Therefore, there exists a solution U to (2.4). By the calculus of variations, the
minimizer U satisfies Vy e S"

Y(VU, V) + (PL(U), 0" + (G(u—> x)h ALt =0

k
(7o U), 1)"

where A =
12|

is a Lagrange multiplier. Defining

Uus:=U, W= A— G"oU?)

it follows that {U}, W7} is a solution to (2.3).
We shall now proceed to obtain estimates on U} and W7, independent of ¢, in
order to pass to the limit.

Lemma 2.1. The following stability estimates hold

k & ; k? koZ\ & ;
(2.5) (#.UD D" +3 |W;|%+7(y— 4>z|auzl%+§w:|2§c.
=1 i=1

13

Proof. Choosing y = W7 in (2.3a) and y = dU} in (2.3b) and subtracting the
resulting equations we obtain

kWi = — (Po(UD), UL = Uy~ — (VUL VU = V271

.= 0. . ~
Defining ¥, (u) = ¥, (u) + 3u2 and noting that ¥, is convex we find that

— VN —s) = Fir)(s — 1) — Oer(s — 1)
é 'ﬁs(s) - lII‘~a(r) - ecr(s - r)

< W)~ W) + 5l — 9
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which implies
(U, U2~ U7 S (BUI) — WU, 1)+ 20T - Uz
which yields
KWz + k22100217 + KLaQUIE < (PUz) — U, 1F + R 210Uz

Taking y = 0U} in (2.3a) gives
|0U1 = — (VW?¢, VoUy)

1 k6
< nj2 had n|2
< @l Wi+ rieutt.
Hence
k k? ko?
(Y.(UY) — (U, 1)"+§|W2'If +7<v— ) )IGU?I? + k§6(|U213)§0.

Summing over n and observing that ||uf |, < 1 it results that, for ¢ sufficiently
small,
" . k? kg2 - . Y
wi 2 - _ < oU: 2 Sy 2
=1| c|1+ 2(‘)} 4 >,'=le e|1+2| c'l

n k
('Pe(Us)a l)h + _2‘

13

< (P, (uh), 1)* +§|um%

< 1Q10o(L — o)+ o7) + [ub}

< |Q|<91n(2) + sgln<2 ; 8)) + %Iu'&lf

< C(ub) .

which is the desired estimate. [

0 4
Remark. Recalling that ¥, (r) = — f Vr and the condition k < B_Z we obtain

(2.6 kY IWHi+ Y IUL= Ui+ (U= C.
i=1 i=1
From (2.5), (2.6) and the Poincaré inequality (1.6) we deduce that
U= C,
(P.(U, D' =C,

and the definition of ¥, together with the fact that iy, is positive yields, for
¢ sufficiently small,

1 ryn . ¢
@([Ue — 11+ +[-1-Us, ) < .
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where [v]+ = max{v, 0}. Because

(U= 11+ [ 1= UT])de S o FIMEUS = 100+ (1= UF))dx
Qg lo
—_ n__ 1 n h
— [V =10+ [-1- Uz )
it follows that
1 C
2.7 — [([U; 1], + [-1- U] )dx <—.
IQlQ &

Lemma 2.2. For t, > 0, where t, = nk, we have
(2.8) tIW"|1+th|6U| <C
i=1
Proof. From Eq. (2.3b) we have
@W?, 0" = @PU?), 0" + »(VOUY, Vy)
= (06.(U), 0" — 6:(0U, 0)" + »(VoU?, Vy) .
Taking y = 0U} in the above equation and y = 0W7} in (2.3a) it results
(VW2 VOW?) + (06, (UD), UL + 90U} = 6.|0U% 7.
Using the fact that ¢, is monotone and Eqn. (2.3a) we obtain

1 1 1
2% welt — % Wit + % e = WiTlE + 910Uz < — 60.(VWE, VoUY)

2
c Y
S Z W2 4 L|leun)t.
_2y| 5'1+2' i
Therefore
2

kOC
IWeld = 1w T + kyloUz <

e‘l-

Multiplying by ¢, yields

2

— Oc n n—
tal WeIT — ta [WETHE + ktyy|OUZ|E < sz—yIWalf +klwyhg .
Summing over n we obtain from (2.6)
| Wil + ky 3, 6l0ULR < C + 1, | WEIR .

i=2

Inequality (2.6) with n = 1 yields the result. O

Lemma 2.3. Fort,>0

2

(29) ta) I",(U?) — @5 I (UDdx| <C.
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Proof. Observing that
(P:(UD), x)" = ("¢ (U7) - 0. 1"B.(UT), 0"

and taking y = I"¢,(U") — — [ I"¢,(U")dx in (2.3b) gives
|Ql

(WL',I ¢.(Uz) — jI qbg(U;‘)dx)h

h
(Ihd)s(Un) I ¢a(U )"@jl ¢'e U )dx>

( "B (U?), I" ¢ ( U")-@U ¢.(U; )dX> + (VU VI"$,(UY)) .

The inequality (1.7) implies that y(VU?,VI"¢,(U?) =0 and the fact that
(% D* = (y, 1)Vx € S" yields

I"¢.(U7) —@fl"d)e(U”)dx

<0 (Ihﬁa U; ) I d)e(U )_'_Q_Ifl d)a(U dx)

(W;' ————jW"dx I"¢,(U")dx —

121
<

Using the Poincaré inequality (1.6) and recalling the definition of B, and the
boundedness of |U?|, we deduce that

h
|Q|“ o (U" )dxdx>

2
Wy — — W"dx
|Qlj

+ II"BE(U")I;.>

h ny _ _—
16U — g [ 19U x|

and the result follows from (2.8). O

<C|W:l%+c

In order to prove the theorem we will need the following lemma which has been
proved by Elliott and Luckhaus [13].

Lemma 2.4. Let ve L*(Q) such that there exist positive constants 6 and &’ satisfying

fvdx|<1-9,

{IQI

1 /
??_Isz([v_1]++[—1_vj+)dx<5 .

s <=2

52
Ifé < 16 then

125 | =
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{x:v(x)<—1 +§} <<1 —%)IQL

Letting y = 1 in (2.3a) it results that
(U, D" = (ug, 1)"

and

Qs | =

and noting that (x, 1)* = (x, 1)Vy € S* we obtain

L rurax fubdx| <1-5.

1219 |QI

Thus, recalling (2.7), for ¢ sufficiently small, Lemma 2.4 can be applied for U} in
order to obtain a measure for the sets

{x: Uilx)>1 ——g} ,
{x: Ui(x) < —1 +:S—1} .

Lemma 2.5. For t, > 0 the a priori estimate is satisfied
1" (UD)I* < C.

Proof. Using that I"¢,(U") < max¢,(U") and the monotonicity of ¢, we obtain
from Lemma 2.4

1
1, I"¢,(UM)" I"$ (UM dx + — 1"¢.(U")d
IQl( ¢.(UD)" = l'QiUI é.( )x+|Q|U>jl—% ¢.(U7)dx
5 (1_§>1/2
< ¢e<1 - Z) + WH”%(UQ)”

In the same way we have

1/2
n 4 ( > n

Therefore, using that (a + b)2 < a < + %) + b2< )
8
o (o) <(-)o(-3)
0
(-t

52\ 1 ]
3)@ 1" (U > .
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Observing that

1 h
(UY) I*¢ (UM dx
oy |1 IQII ¢:(U?)
it results, from (2.10), that

5 o2 1
<—+—>,—Q—| 11" UDI? < =

2

2
= i 19U <|Q|§I ¢.(U: )dx>

2

I"¢,(U?) II ¢.(Ug)
Q

ety

For ¢ sufficiently small qSe(l - —) = d)(l - g) and (2.9) gives

4
LI UDIPsC. O

Lemma 2.5 yields, for h fixed,

| 1"¢,(U")| o £ C(h, t,) independently of &
and
|¢.(U2(x;))| < C(h, t,) independently of ¢ .

Furthermore, from (2.8) and the discrete Poincaré inequality, we find that | W}7|, is
bounded independently of e¢. The uniform bounds on U} and W7} imply the
existence of subsequences {U}}, { W7} such that

Ui (x;) > U"(x) ,

Wixi) - W(x:) ,
for U", w"eS*.

Let us fix § so that ¢(1 — ) > C(h, t,). Since
¢:.(r) = ¢(r) forfri=1—c¢,
it follows that for ¢ < f8
[9:(Us(x:))| = C(h, t,) < ¢(1 — ) = ¢.(1 — f) .
The monotonicity of ¢, () implies that
[Ux)| =1 —p foralle<f.

Thus [U"(x;)| = 1 — f and ¢.(UZ(x;)) - ¢(U"(x;)) as ¢ > 0.
The existence of a solution to (2.1) is established by passing to the limit as ¢ goes
to zero in (2.3). O

Theorem 2.2. The sequences {U", W"} generated by (2.1) satisfy the stability
estimates

kY Wi+ Y IU=UT R+ UM =C,

i=1 i=1

11U + ¢, |W"|1+th|6UI =C

i=1

Proof. This result is a consequence of the stability estimates for {U7, Wi}. O
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3 Convergence

1
Given uge HY(Q), |luglloo £ 1, —

o < 1 — §,let us take ub = P"u, where P"u,

J o
. . Q
is the unique solution of

3.1 (P"ug, 1)" = (o, x) VxeS".

Since (ub, 1)* = (uo, 1) it follows that

1 h
— 1-0.
@3] <
Also, because
(uO’ Xl)
h ) =
MO0 =1y

and || ug ||, < 1it results that || uf ||, < 1. Therefore uf satisfies the assumptions of

Theorem 2.1.
For te(t,—,t,), ] £n < N, we define

up(t) = U",

wi(t) = W,

dr(t) =1"¢.(U"),

&) =¢(t-)=E""1 £eC®(0,T),

and denote by 4!, £, the piecewise linear continuous functions on [0, 7] defined by
artt,)=U" n=0,...,N,
Glt))=¢" n=0,...,N—1,
&(T)y=¢&N"".
The stability estimates given by Theorem 2.2 imply that
ul is bounded in L*(0, T; H(Q)),
4% is bounded in L*(0, T; HY(Q)) ,

\ﬂ%az is bounded in L2(0, T; H'(Q))

\ﬂwﬁ is bounded in L*(0, T; H(Q)),
Jtoh is bounded in L*(0, T; LX(Q)) .
Thus there exists {u, 4, w, {} such that, for t > 0,
uel*0, T; H(Q)),
e L*(0, T; H(Q)),
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d A 2 1
\/ia—tueL 0, T; H(Q)),

JweL®(0, T; H(Q)),
{eL>(z, T; LX(Q)),
JHeL=0, T; L(Q))
and for subsequences {uf, df, wi, o1}
ul->u in L*(0, T; H'(Q)) weak-star ,
4t —>a in L*(0, T; H(Q)) weak—-star ,

\ﬂ%ak - \ﬂ% 4 in L0, T; HY(Q)) weakly ,

Jtwh > Jtw in L*(0, T; H'(2)) weak-star ,

ﬁ(ﬁﬁ - \ﬂC in L*(0, T; L*(Q)) weak-star .

Also, as k — 0,
& — & in L2(0, T) strongly ,

d .~ d
a* " a

Defining Qr = Qx (0, T') and observing that

¢ in L%(0, T) strongly .

N ik
ok — il g,y = 2 Nk —ukl?dt
@r)
i=1(@(—-1)k

N
Sk U -UTH
i=1

it results from Theorem 2.2 that 4 = u.
Given ne H'(Q) we set y = R"n and multiply equations (2.1a) and (2.1b) by
k&"~ 1. Summing over n the resulting equations it results

N-1 N
—k 3 (UL 0"+ (U, "N T = (U M+ k Y TNV V) =0,

i=1 i=1
N
kY (W= U +8.U% )" —y(VU, Vy) =0,
i=1
or, equivalently,

T T
(32a)  —[& @)L, 0 dt + (UN, 0"EV T — (ug, 0)E° + [ &(O(VWE, V) dt =0,
0 0

T
(3.2b) § &@(wh — ¢k + Ocut, )" — y(Vul, V) dt =0 .
0
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Rewriting these equations as

T T
— [ & @@, e + (U, "EV T = (ug, )E° + [ &)W, Vi) dt
0 0

T
+ [ &@(Wh, 0 — @b, 0" dt =0,
0

T

§ E@((wh — @k + Ocul, x) — y(Vul, Vy)) dt

0
T
+ Iék(t)((wz - ¢:cl + ecuk’ X)h - (Wz - ¢I'c' + 0(:“29 X)) dt = 0 s
(4]

are recalling the error (1.5) due to numerical integration we have that

T _ T
§ S (@i, 0" — (i, ) de| < CR2 [ |l lly ui ] de
0 0

and
T

j fk(t)((Wﬁ - d’ﬁ + gcuz’ X)h - (Wk - ¢2 + Bcuka X)) dt

0

T T
S Chfllxlo el dt + Ch*Jllxll (lwklly + Oclluilly)de .
0 0

Choosing ¢ such that &(T) = 0, £(0) + 0, using the bounds on u}, \/tw} and /1)
and observing that || x|, remains bounded as k,h — 0 and &Y~ ! — £(T) we can
pass to the limit as k, h — 0 to obtain

T T
(3.3a) — J & O ndt + [ EE)(Vw, Vi) dt — (ue, 1) E(0) =0,
0 0

(3.3b)

Oy

E@(w — L+ 0w, n) — y(Vu, Vi) de = 0
which implies
Cu, ) +(Vw, V) =0 ae.in (0, 7),
w—=C+0.un(—yVu,Vn)=0 ae. in(0, 7).
An integration by parts of (3.3a) gives

@(0) —uo,n) =0 VneH'(Q)
and therefore u(0) = u,.
It remains to show that

(3.4) {=¢w).
Given M > 0, let us define
Fy(v) = max{—M, min{M, v}} ,
dm©) = Fr(¢(v)
bk = {x:|dh(x, )| > M} .

and
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It follows from Theorem 2.2 that for each ¢t

t [ I1gk(x, )P dx S el k(x> = C
Qhk
which yields
I'Qh k[< C
M?

Thus, Vne L*(Q) n HY(Q), T > 0,

ff(t — Fa(@3), m)dt

& — Fu(¢p))ndxdt

T
S Wl Inlle § I (Ipk] + M) dxdt

T QU
T C
SISl llnlle (f [QM M2 | dk || dt + %)
and the boundedness of ¢} in L®(t, T; L*(Q)) yields
sct)(m Fu@bmde| < Pyl il

For 7> 0 4} is bounded in H'((r, T)x Q) and the fact that the injection of
H'((t, T)x Q) into L?((r, T)x Q) is compact guarantees the existence of some
subsequence ujf such that

(3.5) ul > u in L%*(t, T; L*(Q)) strongly .
Observing that

jf(t) Fu(o%) — du(w), n)dt

f (O(Pu () — drr(w), n)de

+ fé(t)((FM(M) — daeuR), n) — (Far(@F) — Pae(uir), n)") de

< Ch| Fa(9i) — dme@) [ Iml 1 +

f E)(Paruk) — Pa(u), n)dt

it results that, since ¢, is Lipschitz continuous and (3.5) holds true,

T
§ EO(Fr(dk) — pp(u),n)dt >0 askh—0.

Therefore

f 06k~ Fulhn ymydt] ask ho0
and
(36) T O ~ bt e < el




Numerical analysis of the Cahn-Hilliard equation 55

Taking n = ¢y (u) we obtain

T
JE@) I em@)>dt] < CR) 1€ +

T
[ €O, du(w))de

Choosing &(t) = 1 and recalling that {e L®(t, T; L?*(Q)) it results that VM > 0

T
[ I dm(u)l?dt < C(r)

which implies
T

flow?dt < C().

T

As M — oo,
dm() = d(u) in L*(z, T; L*(R2)) strongly
and (3.6) gives

{=¢w) on(r,T).

Since 7 is arbitrary (3.4) follows.
Because the limit is independent of the subsequence and Eq. (1.3) has a unique
solution we conclude that the whole sequence converges.

4 TIterative method

We shall now discuss two iterative procedures used to solve (2.1) in the one
dimensional case.

Method I. Representing the solution in terms of the basis functions as
Nh Nh
Ur= Y cixi, W'=Y din.,
i=1 i=1
Egs. (2.1) lead to the following system,

M(c"— " ')+ kKd" =0,

Md" = f(c") + yKc"
where
" ={cl}, d"={d}},

K;; = (Vi Vi)
{flen)}i=(P'(U", x)",
with M;; = m;, M;; = 0 i # j, and the resulting algebraic problem to be solved is
4.1) M(c"— " ')+ kyKM " 'Mc" + kKM~ 'f(c") =0 .
Given c{, an initial guess to ¢", we solved the linear problem for j = 1
4.2) M(c"—c" 1) + kyKM " 'Ke + kKM ™' f(e"-1) = 0.

Provided that k is sufficiently small it is possible to show that the mapping
associated with this iterative scheme is a contraction with respect to |-|,. If
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lle}llo < 1Vj then the sequence {c}};2, obtained from (4.2) converges to the
unique solution of (4.1). Unfortunately, we have no guarantee that ||¢_; ||, <1
implies | c}|l, < 1. However, by decreasing the time step if | ¢}||,, = 1 and com-
puting a new ¢} until | ¢}||, < 1, a sequence {c]} that satisfies ||c]}|l, < 1 was
always generated when || U°|,, < 1. Alternatively, if ||c} ||, = 1 we can truncate
¢} to the binodal values and continue the iteration. The problem here is that we
may not have convergence.

Method II. Let us denote by g the number of nodes of 7%, that is ¢ = N"* and
rewrite (2.1) as

(G"OU"), )" +y(VU"), Vi) + ((U"), )" — 6. (U" )" — A"(1, »)" = 0

('), 1"

where A" =
12|

Given ye S = {yeR?%: 1"My = 0}, the existence of G" defines, implicitly, the
invertible linear transformation 7: S — S by

(4.3) T(y)=y
where j is the solution of
4.4) Ky =My,
1™5 =0
and 1 is the vector with components 1.
As a consequence, given U™~ !, the algebraic problem to be solved is

n__ ,n—1
T(C——kc——) +yMKe" + ¢(e") — 0" — 1 =0,

which can be written as

4.5) T(d‘——;—”———1> + T(yM " *KM "'Ke" — .M ~'Kce") + ¢(c") — "1=0,
where ] o
($e)}i = 51n<1 - 2)
and 1" = I%I 1"M ¢ (c").
Letting v = ) {_, yi;x; We observe that for ¢ > 0
4.6) (v, )" = (VG", Vv)"
< |G|y o]y
< —-[GPof} + 1ol}
2 2
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Let us define the operators A and B,
A: (-1, 1)P-> 1R
A(y) =¢(y),
B: D(B)—> S

B(y) = T(L::_—i> + T(yM ™ 'KM 'Ky — .M ~'Ky),
where D(B) = {yeR%: 1"My = (uf), 1)"}, so that ¢" satisfies
B(c") + A(c")—1"1=0.

It follows from the monotonicity of ¢ that A is monotone and, since
range(l + uA) = R? Yu > 0, A is maximal. If k <%§ then B is coercive: given
z, y€ D(B) and denoting by (-, -) the inner product of R? defined by (z, y) = y"™Mz
it results that

1
(Bz) = B(yhz—y) =@~ PWMT(z—y)—0.(z—y)"M(z—y)

+y(@—»)'K@z—y).
Defining x = Y.{_, z;x:, 1 = Y2, yixi, it follows that

1

(B(z) — B(y),z—y) = %IG"(X — It —0clx —nli +vlx —nli

and the inequality (4.6) yields

1 0. 0.
(B(z) — B(y),z —») =E|G"(x -l —ilG"(x -nli+ <v —{)Ix -nli.

c

k
o the Poincaré inequality yields

Taking ¢ =

(B(z) = B(y),z—y)2Cly —nl 2 C(z—y)"M(z — y))

and therefore B is coercive. 5
A natural iteration to find ¢" and A" is

(4.7a) ¢y + pA(ch, ) =" — uB(ch) + pil,
(4.7b) vy +uB(cjyy) — NI;+11 =cjry — pA(chyy) ,

with x>0 and {Z;}j‘;l a sequence of Lagrange multipliers. Recalling that
I"MB(c", ;) = 0 we find that

- 1
= i 1™™c?, , — 1"Mcl, , + ul"™MA(C], ) -
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We remark that solving (4.7b) is equivalent to solving
K()yy + uB()4 1)) = K(hyy — pA(Cly))
because 0 is a simple eigenvalue of K with eigenvector 1. Equation (4.4) yields

(4.8) kKecly y +u(M —k0 K +kyKM ~'K)ell, | = pMe" ™'+ kK (el , — pA(c", ) -

4
For k < 0—}2) the matrix M — 6.kK + kyKM ~'K is symmetric positive definite,

since in this case the eigenvalues of I — 6. kM ~*K + kyM ~*KM ~ 'K are positive.
It follows that (4.8) has a unique solution.

4 -
Proposition 4.1. Let k < 572—) Given {17, ¢ } the sequence {¢| } %>, generated by the

algorithm (4.7) converges to the unique solution of (4.5).

Proof. We have adapted the proof given by Lions and Mercier [15] where the
algorithm, without Lagrange multipliers, is analysed for more general operators
A and B (see also [14]). -

Let us drop the dependence on n and set c =¢", ¢;=c}, A= 4", 4; = A]. We
define

v=c+ uB(c)— pil,
z=c+ pA(c),

a= A,

v; = ¢; + uB(e;) — pil,
Zj=2¢; —v;,

Zj—Vi+1

2u

a; =

It results that
v+z7=2c,

and the iteration (4.7) can be written as
viv1 = (I — pA)(I + pd)™'z;
=J4 - D)z;
where J4 = (I + uAd)~'. As a consequence we have

Vj+1 +Zj_
2

,,j=A<vf+lT+zf>_

Ji(z;)
and therefore
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The monotonicity of A4 yields

Vivq + 3 1
%“C>=—(zj“z“”j+1+v,”j+1—v+zj—z)

4.9) 0= <a,- —a, i

1
=@(|z,~— Z> = |vjey —v)?).

Also, the monotonicity of B together with the fact that (¢; — ¢, 1) = 0 gives
4.10) 0 = (B(cj) — B(c),¢; —¢)

= vj—cj+71~l——v_c—11,c-—c
J J
U u

1
=@(v,-—v—z,-+z,z,-—z+vj—v)

1
= @(Iv,- —v)? —|z;—z/?)
Equations (4.9) and (4.10) imply
lvj4 1 — v|2 < vy — v|2

which shows that {|v; — v|} is a decreasing sequence bounded below. Adding (4.9)
and (4.10) we obtain

0 < (B(e,) — Ble)¢;— o) + <a,. bt C)

< (lo; = o> = |4, — o)) >0 asj—ooo .

1
u
This yields
(B(c;) — B(c),c;—¢) >0 asj— o0

and, since B is coercive, we conclude that

c;oc asj—ooo . O

To compare the two iterative procedures the simulations described below were
performed using the two methods. When u; was not close to 1 the iterative method
I was faster than method II. However, for u, close to 1 method I required a very
small time step and, in this case, the superiority of method II was evident. Also,
when the initial data took values 1 or — 1, method II always gave a solution while
this was not true for method I since sometimes convergence was not obtained due
to the fact that the iterative process returned a solution which satisfied || o1

S Numerical simulations

A one-phase homogeneous binary mixture with average composition u,, inside the
spinodal interval is unstable with respect to infinitesimally small fluctuations in
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composition and separates into regions of higher and lower concentrations of
A and B. Such a system evolves towards an equilibrium state with phases having
concentrations f§ or — f§ where f is defined in Sect. 1.

Numerical simulations in one space dimension were performed with Q = (0, 1).
Note that (4.7a) may be rewritten as

Choy + HAE,4) = 2} — (¢} + uB(c}) — u31)

and, due to (4.7b), an explicit expression for T is not needed. To start the
computations, as an initial guess to ¢! we took c®if U |, < 1. When ||[U°|, =1
the initial guess to U* was U} defined by

Ul(x;) = U%x;) if —1<U(x)<1,
Ud(x;) = 0.99 fUx)=1,
Ub) = —099  if U(x;)= —1.

Then {1}, c}} was the solution of ¢} + uB(c}) — pAi1 = ¢® — uA(c®). For n 2 2,
{A1,¢1} was {AI"" 1 e" 1}

To solve (4.7a), for each node, the bisection method was used. The Cholesky
decomposition can be employed to find the unique solution of (4.8). If we multiply
Eq. (4.7b) by kM 'K then, as explained by Blowey and Elliott [2], it is possible to
use a discrete cosine transform to solve the resulting system. On the square
Q = (0, L) x (0, L) with a uniform triangulation it requires I" to be the piecewise
bilinear interpolant.

In order to decide which u to take we run one experiment with different values
of u: p =001, u=0.1, u = 1, u = 2. The value that required, on average, fewer
iterations was u = 1. However we cannot be conclusive about this value since,
probably, the best choice would depend on the problem.

In all simulations we let 4 = 1 and the maximum number of iterations, for most
of the experiments, was smaller than 50. The exceptions were the cases with 8 = (.2
and 6 = 0.15 when, for some times, about 250 iterations were needed. However, the
number of iterations required to obtain convergence of the algorithm, in all
experiments, was usually small.

Finally, the simulations were stopped when a solution that did not change for
a long time and whose associated discrete chemical potential was constant up to
4 decimals was obtained.

5.1 Comparison with quartic free energy

As explained in the introduction, if 6, ~ 6 and u is small, the logarithmic free energy
can be approximated by a quartic polynomial. In this experiment we choose
0. =22 and 6 = 2.17 so that 6, ~ 6, and compared the evolution of the system
from an initial condition which was a random perturbation of the uniform state

0 .. .
u = 0 with the evolution when ¥'(u) = §u3 — (6. — B)u. No significant difference
was observed and the error in the maximum norm was smaller than 5.7 x 1073 for

. 1 .
the times computed. We let y =2x 1074 k=1x10"% h= 100 and judged that
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Fig. 1. The solid lines represent ¥ and ¢ and the broken lines represent ¥, and @,

the iterative process converged when |¢} —¢}_, ||, <TOL with TOL = 1x1077. The
results were virtually the same when the initial data was interpolated up to 201 nodes.

5.2 Initial data satisfying | U°| o = 1

We have shown in Sect. 2 that the numerical approximation has a solution even
when |U°|, = 1. We run two simulations with initial data satisfying | U°||, = 1.
In the first experiment the initial condition is a piecewise linear continuous function
which is equal to 1 over an interval I, equal to —1 over an interval J and a random
perturbation of zero on (0, 1)\(I( JJ). In the second experiment, the initial condi-
tion does not assume the value —1. The parameters were 6. =1, 6§ =0.5,
y=5x10"3 k=yand TOL = 1 x 1077 with 0.957 < B < 0.96.

To compute U, 19 iterations were required to obtain convergence in the first
case and 23 in the second one. The subsequent number of iterations was much
smaller in both experiments.

The results are shown in Fig. 2 and the final state is a single-interface solution.

5.3 The limit 92 -0

c

. . . . ... 0
We shall now describe some simulations to investigate the limit 9——->0. It was
remarked in the introduction that Elliott and Luckhaus [13] have shown that the
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Fig. 2a,b. The evolution from initial condition that takes values 1 and —1 in regions of non-zero
measure. The numbers indicate the direction of increasing time; this applies throughout. a t = 0,
0.005, 0.1, 3; b t = 0, 0.005, 0.1, 0.5, 3

weak solution of the Cahn-Hilliard equation with the logarithmic free energy
converges to the weak solution of the free-boundary problem studied by Blowey

and Elliott [1]. It is our aim to compare the results of our simulations for — — 0

with the numerical results obtained by Blowey and Elliott [2]. To this end, we fixed
y = 5x 1073 and 6, = 1 which correspond to the parameters used by Blowey and
Elliott [2] and performed two experiments with the same initial data they have
taken. In both experiments, we obtained, for the smallest 6 considered, a solution
similar to the stationary solution of Blowey and Elliott [2]. We remark that (see
Introduction), for y, 6, and u,, fixed, § increases when 6 decreases.

In the first simulation, the initial condition was a random perturbation of the
uniform state u = 0 and the values of 8 were 0.8, 0.5, 0.35, 0.2. The other parameters
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Fig. 3a—d. The evolution from initial condition which is a random perturbation of the uniform
state u = 0 for different values of . a 0 =08,t=0,2,6;b 0 =05,t=0,0.5, 1, 40; c 6 = 0.35,
t=0,052d6=021:=0,01,2

1
were k=17, h =100 and TOL = 1x1077. In the case of 6 =0.35 the initial

condition was interpolated up to 201 nodes and the results were virtually
the same.
In the second simulation we took 8 = 0.5, 6 = 0.3, 6 = 0.2, 8 = 0.15 and the

L . . 1
initial condition was a random perturbation of u = — 0.6. We let k =y, h = 100

and TOL = 1 x 1077 for the first three values of . When 6 = 0.15, we have
0.999995 < B < 0.999999 and for this reason TOL was decreased to
TOL = 1x 1078

Figures 3 and 4 show the results. In Fig. 3 the “stable” patterns shown in (c) and
(d) could be approximations of steady-state solutions. We run these two simula-
tions for long time and a slightly movement along the interfaces was observed in
case (d) indicating that the pattern will eventually change under longer time scales.
The “stable” pattern shown in Fig. 4c should not remain because it is not an
approximation of a solution of the steady-state equation as described by
Carr et al. [4].
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t=0,04,1;d 6§=0.151:=0,04,0.6, 2
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