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Abstract

We show by using formal asymptotics that the zero level set of the solution to the Cahn-
Hilliard equation with a concentration dependent mobility approximates to lowest order in
€ an interface evolving according to the geometric motion,

V= —— A, (0.1)

where V' is the normal velocity, A; is the surface Laplacian and & is the mean curvature of
the interface, both in the deep quench limit and when the temperature 6 is O(e%), a > 0
where ¢? is the coefficient of gradient energy. Equation (0.1) may be viewed as motion by
surface diffusion, and as a higher order analogue of motion by mean curvature predicted by
the bistable reaction-diffusion equation.

1 Introduction.

The Cahn-Hilliard equation

u=-V-J (1.1a)
J=-M@u)Vw and w = —yAu+ V'(u) (1.1b)

arises as a phenomenological model for isothermal phase separation in a binary alloy, see Cahn
[6],[7] and Hilliard [17] for a derivation, [23, 14, 21, 31] for general analysis, and the reviews
given in [10, 22]. Here u is the difference in the mass fraction of the two components of the alloy,
hence —1 < u < 1 and the extreme values 41 correspond to the pure components. The mass
flux is J and w is a generalized chemical potential. The homogeneous free energy for a mean
field model of a mixture at a fixed (scaled) absolute temperature is



U(u) = g{(l +u)in(l+u)+ (1 —u)In(l —u)} + %(1 —u?). (1.2)

Equations (1.1) hold for (z,t) € 2x (0, Tl where © is a bounded open domain in IR™ (n = 1,2, 3).
As considerable work has been done on the one-dimensional case [24, 15, 2], and since it is only
in the context of higher dimensions in which geometric motion of the interface is seen, we shall
restrict our attention to IR (n = 2, 3). We supplement (1.1) with no-flux and Neumann boundary
conditions

n-J=n-Mu)Vw=0 (1.3a)
n-Vu=0 (1.3b)
on 0F), and thus mass is conserved
d
— = 0. 1.4
o[ (14)
For 8 below a critical temperature 6..;; = 1, ¥ has the form of a double well potential with
absolute minima at the binodal values uy = —u_ = () where () is the (unique) positive
root of 2 8(8)
I, 6 1.
- (15)

where ¢(r) =In(1+r) —In(1 — r).
The non-negative function M (-) is the mobility, which we take to be

M(u) =1—u? (1.6)

and remark that the concentration dependence in the mobility appeared in fact in the derivation
[6, 17]. See also [8, 30]. We further remark that in many physical situations atom movement
is confined to the interface region. Interface or surface diffusion dominates when the mobile
species are found only at the interface, either because there is little of the required disorder in
the abutting phases, or the density of mobile species is very low, as it might be in a vapor or
poor-solvent phase. We note that existence of a weak solution to (1.1), (1.2) and (1.6) has been
recently proved in [11].

The purpose of this paper is to employ formal asymptotics to derive an equation of motion
for the interfaces separating the +3(6) phases of the alloy. In particular, by assuming the
temperature 6 to satisfy 6(¢) = O(e”), @ > 0, and by rescaling the time ¢ — €2¢, and setting

v = €2, we show by formal asymptotics that as € — 0, Q has the decomposition

Q= Q) UL Lo (1)
such that

ur B(0) for x € QY () and w=-p3(0) for z € Q7 (1)

and Q! (t) corresponds to a narrow interfacial region of thickness ¢ which contains T'.(¢), the zero
level surface of u. Furthermore, I'.(f) approximates a surface I'(¢) which evolves according to
the equation of motion

V=-——A. (1.7)



Here V' is the normal velocity of I'(t), k is the mean curvature of I'(t) and A, is the surface
Laplacian. This equation was first proposed by Mullins for the motion of the surface of a crystal
when all mass transport is by curvature driven diffusion along the surface, and has recently been
examined in a more general mathematical and physical context, [20, 8, 30, 9, 12]. In the case of
the evolution of closed curves in the plane, local existence for (1.7) has been proven and results
for the global behaviour when the initial data is close to a circle have been obtained, [12].

This equation of motion is in contrast to the case in which M (u) = 1 and the temperature
6 is independent of €, where it has been shown first by formal asymptotics (Pego [25]) and later
analytically by Alikakos, Bates and Chen [1] (in the case of that ¥(-) is a smooth potential,
e.g. U(u) = 1(u? — a?)?) that on a time scale 7 = ¢t the motion of I'.(¢) is determined by the
Mullins-Sekerka free boundary problem

Aw=0 for 2 € Q\T,, V=—[n-Vw! and w|p, =« for z €T, (1.8)

where []T denotes the jump across T'.
Our equation (1.7) gives rise to a (local) geometric motion and can be compared to motion
by mean curvature

V=ok (1.9)

which has been derived by Rubinstein, Sternberg and Keller [27] as a limit of the Allen-Cahn
equation [3],
w=—aw w=—yAu+ V' (u). (1.10)

As there is a rich literature on the A-C equation and motion by mean curvature, we refer the
reader to the reviews [29, 16], and the references contained therein. Here we wish only to
remark that both equations (1.7) and (1.9) are curve shortening (as is the motion prescribed
by the Mullins-Sekerka free boundary problem (1.8) ), however (1.7) is mass conserving, while
(1.9) is not.

The outline of this paper is as follows: Section §2 presents a number of preliminary properties
of the Cahn-Hilliard equation. Afterwards, in Section §3 it is demonstrated that equation (1.7)
may be obtained by formal asymptotics in the deep quench limit, and in Section §4, the equation
(0.1) is again obtained to lowest order in the case in which § = O(¢%), @ > 0. After a few short
summary remarks in Section §5, an Appendix is given in Section §6 in which a derivation for
the variables needed for the inner expansion is presented.

2 Preliminaries.

The system (1.1) with boundary conditions (1.3) give rise to an initial value problem for the
degenerate parabolic equation

=V - AM (u)V{—yAu+ ¥ (u)}}. (2.1)
Solutions of (2.1) satisfy the energy equation
9 d
/ M(u)|Vwl?de + L&(u) = 0, (2.2)
Q dt



where £ is the gradient energy functional

£(u) E/Q{%|Vu|2—|—\ll(u)}dac. (2.3)

It follows that solutions for large time should approach critical points of the gradient energy
functional that satisfy

—yAu4+V(u)=w 2€Q, n-Vu=0 z€0Q
(2.4)
Joudr = [quodz =m, w:ﬁfQ\Iﬂ(u)dw.

As non-minimizing critical points can be shown to be linearly unstable, solutions can be expected
to approach minimizers of £. In the limit ¢ — 0, minimizers can be characterized as satisfying
U'(u) =0 a.e., a minimal perimeter condition for the interface, and

1 1
w = 56/{/ U2 (u) du+ o(e), (2.5)
—1
see [18, 19, 28, 4]. We assume in this paper that at long times, our solutions should roughly
mimic the characteristic features of minimizers.

In Section §4, we assume that ¥ = € and that § = 8(e) = O(¢®), « > 0, and we study the
long time approach to layered steady solutions of (2.1) which satisfy

[ B e QF
u= 4, v eQ, (2.6a)
and
Q=0fuQlua- (2.6b)

where Q! has a narrow thickness a(¢) = O(¢). Here 3, = 3.(8) is the positive root of (1.5) and
satisfies

B, =1-T.5.T.

(The terminology T.S.T. stands for transcendentally small terms in e.) Hence, in our asymptotics
for this case, we assume the decomposition (2.6b) to be valid, (2.1) to hold throughout 2, and
(2.6a) to hold at least through the first few orders in the outer region; i.e.

u(z,t) = £8, + O(e™) for 2 € QT UQ. (2.7)

I

-, we obtain results

for some m > 3. Moreover, we find that w = O(¢) throughout €2, and in Q
supporting the predictions of (2.5).

For fixed € we call the limit # = 0 in (1.1) the deep quench limit. In the case M (u) =
was shown by Elliott and Luckhaus [13] that one recovers in the limit the problem:

w =V -{M(u)Vw} (2.8a)

w4 yAu+u € Iy q7(u) (2.8b)



which was studied by Blowey and Elliott, [4, 5]. Here 91;_; 11(:) is the subdifferential of the
indicator function I;_y 1] for the interval [~1,1]. The structure of solutions to (2.8) is such that

u € CY(Q), Qis decomposed into Q = QF (1) UQL(t) U QS (t) and
lul <1, w=—-yAu—-u zeQlt (2.9)

u=+1 2 e QF ). (2.10)

Equation (2.8a) holds everywhere in . In Section §3, we shall assume the existence of a deep
quench limit to (1.1) and (1.3) with M (u) = 1 —u?. In this instance, equation (2.10) is an ansatz
in QY UQ-(¢) and (2.8a) and (2.9) hold in QI(2).

3 Interfacial motion in the deep quench limit.

In this section we consider the derivation of an equation for the interface motion in the context
of the deep quench limit problem (2.8). Thus we suppose that there exists an annular domain
Q! (t) with outer boundary T'F(¢) and inner boundary T'Z (). The domain is decomposed such
that

Q=0 uQHuar@), (3.1)
O0F(t) =0QuUTH(), 09-(t)=0r;,
where

u(z,t) =+1 2 € Q) (3.2a)
Eup =V (M(u)Vw) 2 e QL) (3.2b)
w(t) = —EAu—u z e Q) (3.2¢)
im o 2 (3.2d)

soTE@)  On
lim M(u)a—w =0. (3.2¢)

r—TE(1) on

We assume that there is a unique smooth zero level surface of u and denote it by I'“(t) = {2 =
¢e(s, t),s € S}, see Appendix. The coordinate transformation described in the Appendix is
employed with the scaling

p=r/e (3.3)
where r is the variable normal to T'“(¢).
It is assumed that there exist expansions

u(z, t;€) =Ulp, s, t;€) = U° + eU' + EU? + O(e?) (3.4a)
w(z, t, €)= Wi(p, s, t;e) = eW' + EW? + EW? + O(e) (3.4b)
Be(s, 1) = ¢ + e + 20* + O(%). (3.4¢)
From (6.3) it follows that if ¥ (z, t) = U(p, s, t) then
8¢ _ T@S 1 ad
TR
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1
Vot = (Jos) Wy + —0,Vod

1 1
Apth = AU+ =W, Aud + =T,
€ €

Furthermore it follows from (6.2) that

o 1 2
~ =V 4+ eV +0O(e)
Axdezmo—l—eml—l—(’)(ez)

Vl,de = Ig

where VO, kg, and ng are respectively the normal velocity, mean curvature of and unit normal
to [°(t). We recall that (J,s)TV,.d = 0.

We proceed to derive expansions for the equations (3.2 b,c) written as

AU = eV - (M(U)VW) (3.6a)
W=—-AU-U (3.60)
and holding in the domain Q7 (¢) which is described in the transformed coordinates by
p€ (Y (s, 1), Y (s, 1)) se€b. (3.7)
Here we suppose that ['*(t) are described by the graphs
p=YE(s,t) = YE(s, 1) + Vi (s, 1) + O(?) s€ 8. (3.8)
Thus the boundary conditions (3.2 a,d,e) imply that
lim U%p, s, t) = +1, lim Ud(p, s, t) =0, lim Ul(p, s, t) =0 (3.9a)
p—Y; p—Y; p—Y;

lim {M (U)W, }(p, 5, t) = 0, lim {U'M"(U°)W, + M(UYW;}(p, 5, 1) =0 (3.90)

p—Y, p—Y,

3.1 Zero Order

It follows that to zero order equations (3.6 a,b) become

— oyl 071770
0=MUNW, + MU YW, U, (3.10a)
0="Uy, +U° (3.100)
Equation (3.10b) with boundary condition (3.9a) has the unique monotone increasing solution
U%p, s, t) =sin(p) |p|< g (3.11b)
VE = ig. (3.11b)

Clearly (3.10a) implies that (M(U°)W)), = 0 and hence M (U)W} = a(s, t). And from the
boundary condition (3.9b), we require a(s, t) = 0. Thus for p € (Yy,Y5),

1 1
W,(p, s, t) =0, Wi(p,s,t) = pu(s,t). (3.12)



3.2 First Order
The equations are (using (3.12)):

0\ 1A/ 2 0\ 1172770
0= MUYW,, + M (U YW, U, (3.13a)
w'=-u), - x'U) - U". (3.13b)
It follows from (3.13a) and an argument identical to the zero order case that
W2(p, s, t)=0 pe (Yy,Y5). (3.14)
The problem for determining U" is thus

LU = U;p—|—U1 = —,u—kOU/? =f,p€(—x/2,7/2)

Ul(i%,s, 1) = 0.

For this to be solvable we require the right hand side f to be orthogonal to the kernel of L
subject to homogeneous boundary conditions. Since the kernel is simply span {US}7 we multiply
(3.13b) by U/? and integrate. This yields the compatibility equation for u(s, ),

™/

2
0771 1
U,(U,,+U")dp

( 1t)/7r/2 00 d O/W/2 0% dp +
s, = —K
. o 0P —7/2 o P —7/2

—7/2
which yields

w(s, t) = —%HO. (3.15)

Here we have used the boundary conditions (3.9) and the equation (3.10b).
3.3 Second Order
The equations are, using (3.12) and (3.14)
—UVO = MUY (W, + AW + M (UYWIUY (3.16a)
2 _ 2 2 1770 077l
We=-[U, +U"+Ad U, + Ad" U, . (3.16b)
It follows from (3.16a) that
—UVO = (M(UYW)), + M(U°) A W°

and integrating with respect to p from —x /2 to x/2, we obtain

/2 /2
_92vVY = / MU AW dp = / (1 —sin?p)dp Agu(s, t)
—7/2 —/2
yielding
Vo= —%Aslu(s, t). (3.17)

Taking (3.15) and (3.17) together we obtain the desired equation of motion of the interface.



4 Interfacial motion for 0 < § << 1.

In this section, the temperature is considered to be small but positive. In particular, it is
assumed that

6 = O(e)

for some o > 0.

We undertake the matching in terms of the concentration and the concentration fluxes, and
we verify a posteriori that these assumptions are consistent with the requirement of continuity of
the chemical potential and with the expected limiting estimate (2.5) for the size of the chemical
potential within the inner region. Therefore, in the outer region we expand

u=1u’+eu' +ut+ ... (4.1a)

=i+ g+ 4+, (4.10)
and a similar expansion will be undertaken in the inner region. Asin Section §3, we rescale the
time t — €%t, set v = €2, and study the equation

Sup = eV AM(u)V{—EAu+ V' (u)}}. (4.2)

Note also that as we have assumed that § = O(e*) for o > 0, its respective place in an
e—expansion is somewhat undetermined. We resolve this issue by maintaining it as an O(1) term
in constructing the expansion, but taking into consideration its e—dependence in the matching.

4.1 The outer solution.

As stated in Section §2, both equation (2.1) (rescaled as (4.2) ) and the ansatz (2.7) should hold
in the outer region. We show below that these assumptions are compatible.

At O(1),
0=V-i% =@0-(1-u")Vu® zeQruQr
n-Vul=n-j=0 z€9QFuaQ; naoQ.

Note that the boundary conditions pertain to points belonging to the exterior boundary of the
domain. Clearly a possible solution is u = constant. In accordance with the ansatz that our
solution is nearly equilibrated in the outer solution, we assume that

uw’ =+5(0) ae.
and this implies that j° = 0.
At O(e),
0=V-j', j'=@0-0-u")Vu' zeQtuQr
n-Vu'=n-j' =0 2 €09 NnoQ.
From the above equations, we see that u' = 0 and hence j' = 0 is a possible solution at this
level.

A similar analysis at order O(€?) yields that u? = 0 is also consistent with the equations for
the outer region.



4.2 The inner solution.

I we introduce again the variables ¢, p and

s discussed in Section §3 and the Appendix, and we shall assume that p € I. where I, is defined
by

In order to obtain a solution in the inner region 2

I.= (=t .

However, in what follows we distinguish between the intervals I. and (—oo,00) only where
necessary. We shall denote by U = U(p, s, t) and by J = J(p, s, t) the concentration and the
concentration fluxes expressed in terms of the inner variables, and shall assume expansions for
U and J.

U=U+cU' +EU* + ...,

J=c' T 430+ I+ 2%+

To obtain the desired equation for the motion of the interface, we proceed to develop the
expansion through four orders of magnitude.

At O(e™1), , ,
0=(0U) — (1=UHUY — (1 =UYUY,,),-

pop
Integrating this equation once with respect to p yields

0=0U% — (1—UYUO — (1 - U UC +C (s, 1).

pPp

Noting that
U0 — (1 - U U0 — (1 - U U0 =J~"-n

pPp

and that noting that j = O(€?) in the outer region, it follows upon imposing the matching
conditions on the concentration fluxes that C' = 0. We now wish to seek monotone solutions of

0=0U% — (1 - U0 — (1 - U°HU° (4.3)

pPp

which also satisfy the matching conditions,

lim UO(L7 s, 1) — u®(¢(s, ) + '/ m, 1) =0
=0 61/2 |s t,n fized
where 1 = rel/2, see (6.1). The most obvious way to satisfy the boundary conditions on the

internal I, is to choose as our solution the unique solution of (4.3) which corresponds to the
heteroclinic orbit connecting the two values £4(6) = +(1 — 7.5.T.), since all other solutions
of (4.3) will have finite support and will lie strictly within the interval (—1,1). This solution
satisfies the equation

vt 14U\ -
0:0/ 1n<1+(~]) dir — U°% — (U%)? + ko (4.4)
0 J—

where kg is chosen so that the minimum of

o AN L
xpzo/ 1n<1+?f)dU—U02
0

1—u

will be attained when US =0.



We note that since 8 = 8(¢), U® = U%(p, ¢). In fact, one may write
0°(p, ) = T°(p) + O(¢)

where

Thus, U%(p, €) may be viewed as a regularized version of the solution U°(p, s, t) obtained in
Section §3. It is because of the e—dependence in the solution U%(p, €) that it is necessary to
consider the interval I, and not directly the interval (—oo, o). Thus, in particular, we are led
to look for solutions which are uniformly bounded (with respect to €) in L?(1.) where

e [t

Wy =5 [ T3 dp,

and when the integral [0 -dp is indicated, we mean lim,_,o ff:l -dp.
At O(1) using (4.3), we obtain

LU = (1= U0, (4.5)
where

LU ={U) — (1 - U U} — (1 = U°*)UL,, 4+ 20°0 U0 + 20°U' U0, )}, = (n-3°),,.

pPp pPp

The existence (and uniqueness) of the solutions to (4.5) depends on the orthogonality of the
right hand side of equation (4.5) to the null solutions of the adjoint equation. It is easy to check
that the adjoint equation is given by

0=0Q, — (1= UHQu), — (1 = UH)Qp) ppp — 2U°2U + U2, )Q,

and that its null solutions are

0
=1, Q2= j/p E____l____;‘iﬁ7 Qs = j/p E———gz—————‘iﬁ

1— U‘O2 1-— Uoz)
and
P v N 0 _1
i

However, @2, ()3, and 4 are sufficiently singular in e that there is no necessity for the right
hand side of (4.5) to be orthogonal to these solutions. Therefore, it remains only to require that
the right hand side of (4.5) be orthogonal to Q1. In particular, integrating the right hand side
of (4.5) between —oco and oo with respect to the weight function @)1 = 1, we obtain that

[(1— U°*)ROUC)I1=, = 0,

which can be seen by (4.4) to hold.

10



Integrating the resultant equation for U! once with respect to p and noting that matching
gives that

. n . +0 1/2
hm[n-JO—,s,t] :hm[n-J (bs,t—l—e/ n,t] =0
=0 (61/2 ) n fized €0 ( ( ) 7 ) n fized
lim[Uozi,s,t] :lim[uoqus,t—|—61/2 n,t] =1
lim (UD) (755 5, 1) i A (u”)"(o(s, 1) nm, 1) e
we may conclude that U?! is determined by the equation
(1-U°%)KPU° = n-J°. (4.6)

At order O(e), noting that U is independent of s and using (4.3) and (4.6), we find that the
relevant equations are

LIU% = (1= U (%200 — (U°U)KCU0), + (1 = UOH)K'U2),,. (4.7)

Again we impose the condition that the right hand side of the equation (4.7) be orthogonal to
(21. However, in this case, this condition may be taken into account rather simply as follows.
We note that the function U° is odd and that the function U! prescribed by (4.6) may easily be
seen to be even, hence by looking at the terms on the right hand side of (4.7), we find that the
first two terms are odd and hence trivially orthogonal to the constant function @)y = 1. Lastly,
it was shown above that

©o 2
| a=utg),dp=o.
Thus, (4.7) may be simplified to give
(n-3Y), = L[U%] = (1 - U°H)&°U} ), — (2UU)K0U2),. (4.8)

Since u' = 0 and j' = 0, we have in addition the matching conditions

) 0 L T sl 1/2 =
lim [n T =m0 t)]nfmd = lim [n i (&(s, 1) + €/, t)]nfmd 0
) 1 L T 1 1/2 —
lim [U (61/27 s, t)]nfmed = lim [u (6(s, t) + €/ nn, t)]nfixed =0,

hence (4.8) may be integrated explicitly to yield

1 02y 0771 Orrly,.0770
n-J =(1-U")U,, - QU U )KU,,
—QUOU%OUP1 — (UI)QHOU;J — 200Ut — (UI)QHOUO

pPp ppp*

We remark that it is not necessary to solve for U? explicitly, since this expression will not
be necessary in order to obtain the asymptotic description of the evolution of the interface.

11



At order O(e?), imposition of the orthogonality constraint implies that
VU  (00) = U%(~00)} =
ffooo{—u — U AKOUY + 0{ AUy = (1= U AU — (1 - UOZ)ASUplp} dp

+ 22— (1 = U°%) (692U, + 20°U" (+9)2U0, + 20U kOU) + (U")2K0U9 4 20°U" 00}

ppp
2
+UROUD Y dp
RO [ U2 — (1 = UOYU2 — (1 = UO)UZ,, + 20°U2U0 4 2U0°U%UY, )} dp

[e') 2 2
+x! f_oo{(l - U° )HOU/?/) — ((1 - o )Uplp)p + 2U1(U0U§p)p + QUOU;USP} dp
R [ {(1 = U UL Y, dp.

Noting now that the third integral is simply equal to x° [*°_n-J'dp and using the expression
for n - J! given above, we find that the sum of the second and third integrals vanishes. The
fourth integral vanishes since the integrand is easily seen to be odd and hence orthogonal to
@)1 = 1. The fifth integral vanishes as discussed previously.

In order to evaluate the first integral, noting that L[U7] = 0, it follows from (4.4) and (4.5)
that U' may be expressed in the form U' = HOQUS where g = ¢g(p). Substituting this expression
in the first integral on the right hand side of (4.9), and recalling (4.3), we obtain that

VU () — U(—0)} = —ASHO{/OO (1— Uo2)Ug dp + /_0;(1 — UOQ)(QMUS + Qnggp) dp}.

(4.9)
It is easy to check that g = g(p) satisfies the equation
1 oo 2
9ooUY + 29,U7, = =U7) + W/_ Ud” dp. (4.10)

Using the expression (4.10) in (4.9), we obtain finally the equation for the motion of the
interface.

VO[O (c0) — U0(—00)} = _ASHO{%/_O:O 0% dp - /_2(1 — U d,o}, (4.11)

or, in other words, motion by the Laplacian of the mean curvature. We note that the second
integral in the equation (4.11) does not converge unless we apply the definition of the integral
described earlier, in which case these expressions can be evaluated to yield in the limit

7.1.2

0—__
Vi= 16

AL,

4.3 The chemical potential.

Let us now consider the behavior of the chemical potential. Returning now to the solution
given in the outer region, we find that formally evaluating w to lowest order, we find that

12



w® = w(u®) = 0. However, it is not so easy to obtain a next order approximation, since if we
write u = u" + 4, then @ satisfies the equation

2

W= —yAu+0(1 —u) M —

where b is the correction to w®, and since (1 — u02)_1 is transcendentally large and u is (at
least) algebraically small, the order of the correction to w? is not clear.

Suppose we consider now the behavior of the chemical potential in the inner region. To
lowest order,

0
0 0 0 0 0
WO = U7, + S{ln(1+U%) = In(1 - U°)} U,

which can easily be seen to vanish by looking at equation (4.4). However, here it is possible to
obtain the correction,

W= —kU° UL +0(1 - U0 — U,

which, using (4.10), (4.12), can be evaluated to yield

~ 1 oo 2
W = —5650/OOU£ dp,

or more explicitly,

< €m

W= —ZHO. (4.15)
This result is in line with the expected results described in the Preliminaries in Section §2, as
well as (3.15) which was obtained in Section §3. The continuity up to zero order, and the order

of the correction also supports the expansion in € of W undertaken in Section §3.

5 Conclusion.

The geometric motion given by minus the surface Laplacian of the curvature has been previously
derived by Mullins in the context of surface diffusion for single component alloys in a vapor
environment [20] and by Davi and Gurtin [9] in the general thermodynamic framework of [16].
It has also been obtained formally as H~! gradient flow [30]. In the present paper, this motion
has been derived formally here in the context of phase separation in binary alloys, described by
Cahn-Hilliard equation with concentration dependent mobility, both in the deep quench limit
and at asymptotically low temperatures, assuming a time scale of €2t as opposed to the et time
scale employed in the derivation of the Mullins-Sekerka equation for the Cahn-Hilliard equation
with constant mobility [25]. In order to prove this formal result rigorously one would need an
extension of the techniques of Alikakos, Bates and Chen [1] to deal with the degenerate nature

of (1.1).
Acknowledgement: This work was supported by the SERC grant GR/F85659.

Appendix.

Let T'(t) be a smooth closed evolving interface in Q@ C IR", n =2 or 3 with interior Q7 (¢) and
exterior Q% (¢). Let ¢ : S x [0, T] — IR™ be a parametric representation of I'(¢) where S is an
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orientated manifold of dimension n — 1. Thus 2 € I'(¢) provided a unique s € S exists such that
x = ¢(s, t). We assume that there is an annular neighborhood

N({t)={z e Q| dist(z, () < do}

of T'.(t) such that for each € N(t) there is a unique orthogonal projection from z to T'.(¢).
Thus there is a unique pair (s, r) € S x (—dy, dg) solving for each € N (),

r = ¢(s, t) +ru(s, 1) (6.1)

where n is a unit normal to T'.(¢) pointing into Q¥ (¢) and r = d(z, t) where d(-, t) is the distance
function to T'.(¢) signed to be positive in Q% (¢) and negative in Q7 (¢). It follows that

V.d=n,
od
Tl -V, (6.2)

Ayd = k(s(z, 1), t) + drs(s(z, 1), t) + O(d?)

where  is the mean curvature of T'F(¢) signed to be positive if Q% (¢) is convex and V is the
normal velocity of I'.(¢).

Because of (6.1) we may transform the coordinates from (z,t) to (s, r,t) and setting
U(s, r, t) = (x, t) we have

8¢ _ T@S 8d
E—\I’t-l-qlsg—l-q’ra
Vb = (J,8) 10, +0,V,d (6.3)

Agih = AW+ W, ALd+ 0,0,

Here J,s is the Jacobian matrix 0s;/dz; and
AT = Tr[(Jps) W, (Jos)] 4+ Aps V0

is the surface Laplacian of W. It holds, by the orthogonality of V,d with respect to the surface,
that
(Jo5)TV,d = 0.
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