The required problems are Exercises 2.1, 2.4, and 2.6. Please let me know if any of the problems are unclear or have typos.

Exercise 2.1. Suppose that $F: X \times I \to Y$ is continuous. For each $t \in I$ define $f_t: X \to Y$ by $f_t(x) = F(x, t)$. Prove that f_t is continuous.

Exercise 2.2. Show that the relation $f \simeq g$ of being homotopic is an equivalence relation on maps.

Exercise 2.3. Show that $f \simeq g$ implies $h \circ f \simeq h \circ g$ (assuming that all compositions make sense). Show that the relation $X \simeq Y$ of being homotopy equivalent is an equivalence relation on topological spaces.

Exercise 2.4. Show that $\mathbb{R}^n - \{0\} \cong S^{n-1} \times \mathbb{R} \simeq S^{n-1}$. That is, the first pair of spaces are homeomorphic while the second pair are homotopy equivalent. Use this to prove that $\mathbb{R}^n - \{0\} \simeq S^{n-1}$.

Exercise 2.5. Fix $m, n \in \mathbb{N}$ so that 0 < n < m. We embed \mathbb{R}^n into \mathbb{R}^m by taking $(x_1, \ldots, x_n) \in \mathbb{R}^n$ to $(x_1, \ldots, x_n, 0, \ldots, 0) \in \mathbb{R}^m$. Show that $\mathbb{R}^m - \mathbb{R}^n \simeq S^{m-n-1}$.

Exercise 2.6. [Medium] Consider the capital letters of the alphabet A, B, C, \ldots in a sans serif font. Each of these gives a graph in the plane. Sort these into homotopy equivalence classes. Clearly state any unproven assumptions that you rely on.

Exercise 2.7. [Medium] Show that the eyeglasses graph E and the theta graph T (both shown in Figure 1) are homotopy equivalent.

Figure 1: Left: the eyeglasses graph. Right: the theta graph.

Exercise 2.8. Define $\omega_n \colon I \to S^1$ by $\omega_n(t) = \exp(2\pi i n t)$. Show that the concatenation $\omega_p * \omega_q$ is homotopic, rel endpoints, to ω_{p+q} . (Consider first the special case of p = 2 and q = 1. Then do the general case.)