MA3F1 Exercise sheet 11.

Please let me know if any of the problems are unclear or have typos.

Exercise 11.1. Suppose that X is a topological space. Show that $X \times X$ is not homeomorphic to S^1 . [Harder: do the same for S^2 .]

We use the following notations for Exercises 11.2, 11.3, and 11.5. Suppose that X is a path-connected CW complex. Fix $x_0 \in X^0$. Suppose that the set \widetilde{X} , the point $\widetilde{x}_0 \in \widetilde{X}$, the function $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$, the basis \mathcal{U} (for X), and the subsets $U_{\gamma} \subset \widetilde{X}$ are all as defined in lecture.

Exercise 11.2. Prove that

$$\widetilde{\mathcal{U}} = \{ U_{\gamma} \mid U \in \mathcal{U}, [\gamma] \in \widetilde{X} \}$$

is a basis for a topology on \widetilde{X} .

Exercise 11.3. [Medium.] Prove that \widetilde{X} , equipped with the above topology, is path connected.

Exercise 11.4. A cover $q: Y \to X$ is normal if for every $x \in X$ the deck group $\operatorname{Deck}(q)$ acts transitively on $q^{-1}(x)$. Determine which degree-three covers of $S^1 \vee S^1$ are normal.

Exercise 11.5.

- Show that $\operatorname{Deck}(p) \cong \pi_1(X, x_0)$. Show that p is a normal cover.
- Suppose that $q:(Y,y_0) \to (X,x_0)$ is a pointed, connected cover. Find a pointed map $r:(\widetilde{X},\widetilde{x}_0) \to (Y,y_0)$ so that r is a pointed covering and $p=q \circ r$.

Exercise 11.6. [Hard.] Suppose that X, Y, and Z are topological spaces. Suppose that $q: Y \to X$ and $p: Z \to X$ are covering maps and suppose that $r: Z \to Y$ is a map with $p = q \circ r$. Must r be a covering map? Prove this or give a counterexample. [Hint: see exercise 16, page 80, of Hatcher. Be aware of differences in notation.]

2016-01-01