The required problems are Exercises 8.1, 8.2, and 8.3. Please let me know if any of the problems are unclear or have typos.

Exercise 8.1. Suppose that $B, C \in M_3(\mathbb{R})$ are three-by-three matrices over \mathbb{R} . Suppose that there is an open set $U \subset \mathbb{R}^3$ so that for all vectors $u, v \in U$ we have $u^T B v = u^T C v$. Prove that B = C.

Exercise 8.2. Set $a_{\pm} = (1, \pm 1, 0)$ and $b_{\pm} = (1, 0, \pm 1)$. Thus $M = \mathbb{H}^2 \cap \operatorname{span}(a_+, b_+)$ and $N = \mathbb{H}^2 \cap \operatorname{span}(a_-, b_-)$ are hyperbolic lines. Show that $M \cap N = \emptyset$. Find points $P \in M$ and $Q \in N$ so that the hyperbolic line $L = \overline{PQ}$ is orthogonal to both M and N.

Exercise 8.3. In lecture, we defined the following functions from \mathbb{R} to $M_3(\mathbb{R})$.

$$\operatorname{Rot}_{\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \quad \operatorname{Tran}_{t} = \begin{pmatrix} \cosh(t) & \sinh(t) & 0 \\ \sinh(t) & \cosh(t) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\operatorname{Para}_{x} = \begin{pmatrix} 1 + x^{2}/2 & -x^{2}/2 & x \\ x^{2}/2 & 1 - x^{2}/2 & x \\ x & -x & 1 \end{pmatrix}$$

Verify that $\operatorname{Rot}_{\theta} \in O^+(1,2)$ and that $\operatorname{Rot}_{\alpha+\beta} = \operatorname{Rot}_{\alpha} \operatorname{Rot}_{\beta}$. Now do the same for Tran and Para.

Exercise 8.4. Set $L(t) = (\cosh(t), \sinh(t), 0)$. Set $A = \text{Para}_1$, using the notation of Exercise 8.3. Let M(t) = A(L(t)). That is, M is the image of the line L under the hyperbolic isometry A. Show that L and M are disjoint. Now compute the distance $d_{\mathbb{H}}(L(t), M(t))$ for all t. How does the distance behave as t tends to negative infinity? To positive infinity?

Exercise 8.5. Suppose that $S \in \mathbb{L}^3$ is a space-like vector of length one. Define $L = S^{\perp} \cap \mathbb{H}^2$. Define $\operatorname{Refl}_L(P) = P - 2(P \circ S)S$.

- Show that $\operatorname{Refl}_L(\operatorname{Refl}_L(P)) = P$ for all $P \in \mathbb{H}^2$.
- Show that $\operatorname{Refl}_L(Q) = Q$ for all $Q \in L$.
- Suppose that $P \in \mathbb{H}^2$ does not lie on L. Show that the line through P and $Q = \operatorname{Refl}_L(P)$ is orthogonal to L.
- Suppose that L and M are hyperbolic lines that intersect in \mathbb{H}^2 . Describe the composition of Refl_L with Refl_M .