The required problems are Exercises 4.1, 4.2, and 4.5. Please let me know if any of the problems are unclear or have typos.

Exercise 4.1. Suppose that $W \subset \mathbb{R}^{n}$ is a linear subspace. Define the orthogonal complement $W^{\perp}=\left\{u \in \mathbb{R}^{n} \mid \forall w \in W, u \cdot w=0\right\}$. Prove that W^{\perp} is also a linear subspace. Show that \mathbb{R}^{n} has an orthonormal basis $\left\{f_{i}\right\}$ so that $W=\left\langle f_{1}, \ldots, f_{k}\right\rangle$ and $W^{\perp}=\left\langle f_{k+1}, \ldots, f_{n}\right\rangle$. Deduce $\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n$.

Exercise 4.2. Suppose that $T(x)=A x+b$ is an isometry of \mathbb{E}^{2}, where A is a non-trivial rotation. Prove that T has a fixed point: that is, there is a point $p \in \mathbb{E}^{2}$ so that $T(p)=p$. (This is a part of Exercise 1.8 in the book.)

Exercise 4.3. Theorem 2.6 states that any isometry $T \in \operatorname{Isom}\left(\mathbb{E}^{n}\right)$ can be realized as the composition of at most $n+1$ reflections. Below is a sketch of a proof. Look up any unfamiliar terms and then fill in the details.

Theorem 1.11 implies that any $B \in O(n)$ can be realized as the composition of at most n reflections. Now, suppose $T(x)=A x+b$. Then there is a reflection R so that $R \circ T(0)=0$. Let $B=R \circ T$. Since $B \in O(n)$, and since reflections are involutions, we are done.

Exercise 4.4. [Hard] Show that Theorem 2.6 is sharp: the inequality cannot be improved. Do this by finding, for each n, an isometry $T \in \operatorname{Isom}\left(\mathbb{E}^{n}\right)$ which cannot be realized as a composition of n or fewer reflections.

Exercise 4.5. By Theorem 1.14 any isometry T of \mathbb{E}^{2} is either a translation, rotation, reflection, or glide reflection. In each case write T as a composition of at most three reflections and draw the appropriate picture.

