Please let me know if any of the problems are unclear or have typos.
Exercise 10.1. [Easy.] Show that projective equivalence of points in $\mathbb{R}^{n+1}-\{0\}$ is in fact an equivalence relation.

Exercise 10.2. Suppose P and Q are distinct points in \mathbb{P}^{n}. Show that there is a unique projective line containing them.

Exercise 10.3. Suppose L and M are distinct lines in \mathbb{P}^{2}. Show that $L \cap M$ is a single point. (Thus parallel lines do not exist in projective geometry.)

Exercise 10.4. Suppose U, V, and W are projective subspaces of \mathbb{P}^{n}. Theorem 5.4 tells us that

$$
\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} U \cap V
$$

where we adopt the convention that $\operatorname{dim} \emptyset=-1$. The principle of inclusion/exclusion suggests the following generalization:

$$
\begin{aligned}
\operatorname{dim}(U+V+W)= & \operatorname{dim} U+\operatorname{dim} V+\operatorname{dim} W \\
& -\operatorname{dim} U \cap V-\operatorname{dim} V \cap W-\operatorname{dim} W \cap U \\
& +\operatorname{dim} U \cap V \cap W
\end{aligned}
$$

Prove this or give a counterexample.
Exercise 10.5. Suppose $p=(1: 0), q=(0: 1)$, and $r=(1: 1)$ are three points in \mathbb{P}^{1}. Find all six elements of $\operatorname{PGL}(2, \mathbb{R})$ that preserve the set $\{p, q, r\}$.

