The required problems are Exercises 1.1, 1.2, and 1.4. Please let me know if any of the problems are unclear or have typos.

Exercise 1.1. Suppose that $a \in \mathbb{R}$ is a scalar and $u, v \in \mathbb{R}^{n}$ are vectors.

- Show that $u \cdot v=v \cdot u$. [Dot product is "commutative".]
- Show that $|a \cdot u|=|a| \cdot|u|$. [Norm is linear with respect to scalars.]

Exercise 1.2. Suppose that $x, y, z \in \mathbb{E}^{n}$ are points and suppose that y is a barycentric combination of x and z. Now prove that $d_{E}(x, z)=d_{E}(x, y)+d_{E}(y, z)$.

Exercise 1.3. (See also problem A. 2 in [RS].) Fix $n \in \mathbb{Z}$ a positive integer. Let $H=\{0,1\}^{n}$ be the set of binary strings of length n. For strings $x, y \in H$ define the Hamming distance $d_{H}(x, y)$ to be the number of positions i so that $x_{i} \neq y_{i}$. For example, when $n=4$ the Hamming distance between 0101 and 0011 is two. Prove $\mathbb{H}=\left(H, d_{H}\right)$ is a metric space. Also, compute the diameter of \mathbb{H} : the largest possible distance between a pair of points of \mathbb{H}.

Exercise 1.4. (Problem A. 1 of $[\mathrm{RS}]$.) Suppose $\mathbb{X}=\left(X, d_{X}\right)$ and $\mathbb{Y}=\left(Y, d_{Y}\right)$ are metric spaces. We call a function $f: X \rightarrow Y$ an isometric embedding if for all $x, y \in X$ we have $d_{Y}(f(x), f(y))=d_{X}(x, y)$. Justify the terminology by proving f is injective.

Show, by means of an example, that f need not be surjective even when $\mathbb{X}=\mathbb{Y}$.
Exercise 1.5. Recall the statement of the Cauchy-Schwarz inequality: For any $u, v \in \mathbb{R}^{n}$ we have $|u \cdot v| \leq|u||v|$. Furthermore, equality holds if and only if u and v are linearly dependent.

Here is a sketch of Schwarz's proof of the Cauchy-Schwarz inequality. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(t)=|u+t v|^{2}$. Thus f is non-negative, and is a quadratic polynomial. Thus the discriminant of f is non-positive. Finally, f vanishes if and only if u is a multiple of v.

Fill in the missing details.

