Please let me know if any of the problems are unclear or have typos. Please turn in a single worked exercise. Record your name, the date, and the problem solved. Please also write the names of people and/or references you consult.
Exercise 8.1. For each of the pairs (X, A) given in Exercise 6.1 compute the associated long exact sequence of homology. Show, in each case, that A is not a retract of X.

Exercise 8.2. [Hatcher page 132, problem 22, and page 140.] Suppose that X is a Δ-complex. Show the following.

- If X has no $(n+1)$-simplices, then $H_{n}(X)$ is a free Abelian group.
- The number of n-simplices in X is an upper bound for the size of a minimal generating set for $H_{n}(X)$.
Let $X^{k} \subset X$ be the k-skeleton.
- The inclusion $i: X^{k} \rightarrow X$ induces an isomorphism $i_{*}: H_{n}\left(X^{k}\right) \cong H_{n}(X)$ when $k>n$.
- The previous statement may fail when $k=n$.

Exercise 8.3. [Medium. Hatcher page 156, problem 16.] Suppose $X=\left(\Delta^{m}\right)^{k}$ is the k-skeleton of the m-simplex. Compute the reduced homology groups of X.

Exercise 8.4. [Medium. Hatcher page 141, example 2.37 does this using cellular homology.] Let $N=N_{g}$ be the closed non-orientable surface of genus g. That is, $N=\#^{g} \mathbb{R P}^{2}$ is obtained by attaching g Möbius bands to the planar surface with g boundary components. Compute $H_{*}(N)$.

Exercise 8.5. [Do not turn in. Hatcher page 137, Propostion 2.33.] Recalling the definitions from Exercise 6.6, if $f: X \rightarrow X$ is a map then define $S f: S X \rightarrow S X$ to be the suspension of f : that is, the self-map of $S X$ induced by $f \times \mathrm{Id}$. Prove, when X is a sphere, that $\operatorname{deg}(f)=\operatorname{deg}(S f)$.
Exercise 8.6. We say a map $f: S^{n} \rightarrow S^{n}$ is even if $f(-x)=f(x)$ for all $x \in S^{n}$. Prove if $f: S^{n} \rightarrow S^{n}$ is even then $\operatorname{deg}(f)$ is even. (You may restrict to the cases where $n=1$ and $n=2$.)

Exercise 8.7. [Medium.] Recall that $H_{2}\left(T^{2}\right) \cong \mathbb{Z}$. Define the degree of a map $f: T^{2} \rightarrow$ T^{2} to be the degree of the induced homomorphism $f_{2}: H_{2}\left(T^{2}\right) \rightarrow H_{2}\left(T^{2}\right)$. Recall that $T^{2} \cong \mathbb{R}^{2} / \mathbb{Z}^{2}$. For any two-by-two integer matrix M define $f_{M}: T^{2} \rightarrow T^{2}$ via $f_{M}([x])=[M(x)]$.

- Conjecture a relationship between $\operatorname{deg}\left(f_{M}\right)$ and the entries of M; verify your conjecture for several matrices M.
- Prove your conjecture.

