Questions asked by students on 2014-02-17.

Background:

- 1. What exactly does the * represent in $C_* \& H_*$?
- 2. Are commutative diagrams ok to use in formal proofs?
- 3. Which are the differences between H_* , H_n , H_k , H_n^{Δ} , H_*^s , \widetilde{H}_* , \widetilde{H}_k , H_k^{Δ} , H_*^{Δ} , H_*^{Λ} , H_n^{Λ} , H_*^{Λ}
 - ... between $C_n, C_*, C_*^s, C_n^{\mathcal{U}}, C_*^{\mathcal{U}}, C_*^{\Delta}, C_n, C_*^{\text{sing}}$?
 - ... between $i_n, i_*, i_{\#}$?
- 4. How exactly do we compute homology groups using exact triangles?

Day of:

1. Do we have an explicit formula for the $j_{\#}$ discussed in the theorem 2.27 (as we just called it "the homomorphism"? Also in the proof part 2, we only proved surjectivity. can we get injectivity in a similar way?

Connections:

1. In \mathbb{C} -analysis, a curve is homologous to zero – is there a connection to this course in that?

Administration:

- 1. Will Assignment solutions be available online at any point? Each week I am only really able to solve 1 or 2 problems fully, and there isn't time in the Support Class to look at all the others.
- 2. If you struggle with some of the concepts of the course so far but enjoy the module, can you recommend another textbook?