Please let me know if any of the problems are unclear or have typos.

Exercise 9.1. [Do not turn in.] Show that a CW complex X is path-connected if and only if it is connected.

Exercise 9.2. List all surjective homomorphisms from $\mathbb{F}_2 = \mathbb{Z} * \mathbb{Z}$, the free group of rank two, to \mathbb{Z}_2 , the finite group with two elements. Prove your list is complete.

Exercise 9.3. Let $X = S^1 \times I$. Let $A = S^1 \times [0, 3/4)$ and $B = S^1 \times (1/4, 1]$. Let $\Gamma = \pi_1(A) * \pi_1(B)$. Compute $\pi_1(X)$ using the Seifert-van Kampen theorem applied to the open cover $\{A, B\}$. Let $N \triangleleft \Gamma$ be the resulting normal subgroup. Give a useful description of the elements of N. (For example, it should allow you to decide whether or not a given reduced word $f \in \Gamma$ lies in N. This is called the *membership problem*.)

Exercise 9.4. Let P^2 be the real projective plane. Compute the fundamental group of $P^2 \vee P^2$ directly from the Seifert–van Kampen theorem.

Exercise 9.5. For any non-zero integers p and q we define topological spaces $B_{p,q}$ and $T_{p,q}$ as follows.

$$B_{p,q} = \frac{(S^1 \times I) \sqcup S^1}{(z,0)} \sim z^p, \ (z,1) \sim z^q$$

$$T_{p,q} = \frac{S^1 \times I}{(z,0)} \sim (e^{2\pi i/p}z,0), \ (z,1) \sim (e^{2\pi i/q}z,1)$$

For p = q = 1, check that $B_{1,1} \cong T^2$ and $T_{1,1} \cong S^1 \times I$. For general p and q, find CW complex structures on $B_{p,q}$ and $T_{p,q}$. Give presentations of their fundamental groups. Provide illustrative figures. (For the completists: Suppose p or q is zero. What is $B_{p,q}$? What is the correct definition of $T_{p,q}$?)