Please let me know if any of the problems are unclear or have typos.

Exercise 7.1. [Do not turn in.] Suppose X is a topological space. We define CX to be the *cone* on X: that is

$$CX = X \times I / (x, 0) \sim (y, 0)$$
 for all $x, y \in X$.

The point a = [(x, 0)] is called the *apex* of the cone. Show that the cone CX deformation retracts to its apex. Deduce $\pi_1(CX, a)$ is trivial.

Exercise 7.2. Suppose G, H are nontrivial groups. Show that the free product G * H is not isomorphic to \mathbb{Z}^2 .

Exercise 7.3. Suppose that $\{G_{\alpha}\}$ is a countable collection of countable groups. Show that $*_{\alpha} G_{\alpha}$ is countable.

For the next two problems we need the following definition. Let $C_n \subset \mathbb{R}^2$ be the circle of radius 1/n centered at $(1/n, 0) \in \mathbb{R}^2$. We define $H \subset \mathbb{R}^2$, the *Hawaiian earring*, to be the union $H = \bigcup_{n=1}^{\infty} C_n$. We take H to be a pointed space, with basepoint at h = (0, 0). Let $\Gamma = \pi_1(H, h)$.

Exercise 7.4.

- For all n > 0 give a retraction $r_n: H \to C_n$. Explain why r_n is continuous.
- Show that $\Gamma = \pi_1(H, h)$ is uncountable. Briefly explain why Γ is not isomorphic to

$$\pi_1\left(\bigvee_{n\in\mathbb{N}}S^1\right)\cong \underset{n\in\mathbb{N}}{*}\mathbb{Z}.$$

Exercise 7.5.

- Show that $H \cong H \lor H$. (Recall that we use h = (0, 0) as the basepoint.)
- [Medium.] Show that the homeomorphism above does not induce an isomorphism between Γ and $\Gamma * \Gamma$.