Please let me know if any of the problems are unclear or have typos.
Exercise 6.1. Recall that $T^{2}=S^{1} \times S^{1}$ is the two-torus; informally T^{2} is the surface of a donut. Fix any point $x \in T^{2}$; show that $T^{2}-\{x\}$ deformation retracts to the figure-eight graph. Illustrate your proof with useful figures.

Exercise 6.2. [A version of Exercise 14, page 39, of Hatcher's book.] Given topological spaces X and Y we equip $X \times Y$ with the product topology. Let $p: X \times Y \rightarrow X$ be projection to the first factor; that is $p(a, b)=a$. Define $q: X \times Y \rightarrow Y$ to be projection to the second factor.

Fix $x \in X$ and $y \in Y$ and set $z=(x, y)$. Prove that the homomorphism

$$
p_{*} \times q_{*}: \pi_{1}(X \times Y, z) \rightarrow \pi_{1}(X, x) \times \pi_{1}(Y, y)
$$

is an isomorphism. (Essentially you are being asked to carefully reprove Proposition 1.12, using the notion of projections.)

Exercise 6.3. The real projective space $\mathbb{R}^{p}{ }^{n}$ is the space of lines through the origin in \mathbb{R}^{n+1}. We equip $\mathbb{R} \mathbb{P}^{n}$ with its usual topology, coming from the round metric; the distance between distinct lines $L, M \subset \mathbb{R}^{n+1}$ is the smaller of the two angles made by L and M in the plane they span.

- Exhibit a two-fold covering map $p: S^{n} \rightarrow \mathbb{R}^{n}$.
- Deduce that $\pi_{1}\left(\mathbb{R}^{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$, when $n \geq 2$.
- Briefly discuss the cases of $n=0$ and $n=1$. Give pictures.

Exercise 6.4. [Hard.] Let X and Y be copies of the two-sphere and choose distinct points $p, p^{\prime} \in X$ and $q, q^{\prime} \in Y$. Define

$$
Z=X \sqcup Y / p \sim q, p^{\prime} \sim q^{\prime}
$$

to be the quotient space; that is, Z is obtained from the disjoint union of X and Y by identifying p with q and p^{\prime} with q^{\prime}. Draw a picture of Z. Compute $\pi_{1}(Z)$ and carefully justify your reasoning.

