Please let me know if any of the problems are unclear or have typos.
For the first three problems the paths $f, g, h: I \rightarrow X$ are loops based at the point $x \in X$. The path $e: I \rightarrow X$ is the constant loop, also based at x.

Exercise 3.1. Give explicit parameterizations of the loops $p_{0}=e * g$ and $p_{1}=g * e$. Show, by giving a picture in $I \times I$, a picture in X, and an explicit homotopy, that p_{0} and p_{1} are homotopic (preserving endpoints). Do the same for g and p_{0}.

Exercise 3.2. Define $\bar{g}: I \rightarrow X$ by $\bar{g}(s)=g(1-s)$. Give an explicit parameterization of the loop $p=g * \bar{g}$. Show, by giving a picture in $I \times I$, a picture in X, and an explicit homotopy, that p and e are homotopic (preserving endpoints). Briefly discuss the corresponding situation for $q=\bar{g} * g$.

Exercise 3.3. Give explicit parameterizations of the loops $p_{0}=(f * g) * h$ and $p_{1}=$ $f *(g * h)$. Show, by giving a picture in $I \times I$, a picture in X, and an explicit homotopy, that p_{0} and p_{1} are homotopic (preserving endpoints).

Exercise 3.4.

- Let $X \subset \mathbb{R}^{3}$ be the union of the coordinate axes. Show that $\mathbb{R}^{3}-X$ is homotopy equivalent to a graph. Which graph?
- Let $X \subset \mathbb{R}^{4}$ be the union of the $x y$-plane and the $z w$-plane. Show that $\mathbb{R}^{4}-X$ is homotopy equivalent to a surface. Which surface?

