Please let me know if any of the problems are unclear or have typos.
Exercise 10.1. [Medium.] Suppose that A is a set. The free group generated by A, denoted \mathbb{F}_{A}, is the free product of copies of \mathbb{Z}, one per element of A. The rank of \mathbb{F}_{A} is defined to be $|A|$, the cardinality of A. Show that $\mathbb{F}_{A} \cong \mathbb{F}_{B}$ if and only if $|A|=|B|$. (You may assume that A is finite. When it is, we may use the notation \mathbb{F}_{n} for \mathbb{F}_{A}, where $n=|A|$.)
Exercise 10.2. [Page 85, of Hatcher.]

- Suppose that G is a graph and $p: G^{\prime} \rightarrow G$ is a covering map. Show that G^{\prime} is homeomorphic to a graph.
- [Nielsen-Schreier.] Suppose that $H<\mathbb{F}_{A}$ is a subgroup. Show that H is isomorphic to a free group.

Exercise 10.3. [Easy.] Suppose that $H<\mathbb{F}_{n}$ is a subgroup of index $k<\infty$. Compute the rank of H. Give a concrete example of an index three subgroup of \mathbb{F}_{2}.
Exercise 10.4. For any non-zero integer p we define the topological space L_{p} as follows.

$$
L_{p}=D^{2} \sqcup S^{1} / z \sim z^{p}
$$

Check that $L_{1} \cong D^{2}$. In general, find the fundamental group $\pi_{1}\left(L_{p}\right)$ and a universal cover $\widetilde{L_{p}}$. Provide illustrative figures. (For the completist: Do the same for L_{0}.)
Exercise 10.5. Set $\zeta=\exp (\pi i / n)$. Let D_{n} be the regular $2 n$-gon in the complex plane \mathbb{C}, with vertices at the points $\left\{\zeta^{k}\right\}_{k=0}^{2 n-1}$. Thus D_{n} is a closed, two-dimensional disk with $2 n$ vertices and $2 n$ edges. Let e_{k} be the edge with vertices ζ^{k} and ζ^{k+1}. Let $d_{n}=|1+\zeta|$. We now form a quotient space $Q_{n}=D_{n} / \sim$. Identify two points $x, y \in D_{n}$ if
(*) for some k, we have $x \in e_{k}, y \in e_{n+k}$, and $|x-y|=d_{n}$.
Show that Q_{n} is a surface. Using the induced CW structure, find a presentation of $\pi_{1}\left(Q_{n}\right)$. Give careful illustrations of the cases $n=2$ and $n=3$. (Challenge: Prove $Q_{2 m} \cong Q_{2 m+1}$.)
Exercise 10.6. [Exercise 14, page 80, of Hatcher.] List all connected covers of $P^{2} \vee P^{2}$. Prove your list is complete, up to isomorphism of covers.
Exercise 10.7. [Picture-hanger's problem.] We identify our living-room wall with \mathbb{C} and hammer a pair of nails at 0 and 1 . It is straight-forward to hang a picture P from these nails so that, after removing just one of them, P does not fall to the ground. Find a way to hang the picture so that, after removing just one nail, P does fall. (Challenge: Suppose that we hammer nails at $0,1, \ldots, n$. Find a way to hang P so that removing any one nail causes P to fall.)
Exercise 10.8. Explain the game of skill fast-and-loose, also called the endless chain, shown here: http://youtu.be/pw0_u9E3ihU?t=1m27s

