Please let me know if any of the problems are unclear or have typos.

Exercise 1.1. Suppose that X is a topological space. Define Homeo(X) to be the set of homeomorphisms $f: X \to X$. Show that Homeo(X) is a group if we take the group operation to be function composition.

Give an example of a space X where Homeo(X) is the trivial group.

Exercise 1.2. Show that the relation $X \cong Y$ of being homeomorphic is an equivalence relation on topological spaces. Now consider the capital letters of the alphabet A, B, C, ... in a sans serif font. Each of these gives a graph in the plane. Sort these into homeomorphism classes. (The partition may depend on the font! In particular, K can be tricky.)

Exercise 1.3. We equip $[0,1) \subset \mathbb{R}$ and $S^1 \subset \mathbb{C}$ with their usual subspace topologies. Consider the map $p: [0,1) \to S^1$ given by $p(t) = \exp(2\pi i t)$. Show that p is a continuous bijection. Show that p is not a homeomorphism.

Exercise 1.4. We equip $[0,1] \subset \mathbb{R}$ and $S^1 \subset \mathbb{C}$ with their usual subspace topologies. Show that the quotient space

$$X = [0, 1] / 0 \sim 1$$

is homeomorphic to S^1 .

Exercise 1.5. For three of the following pairs (X, Y) show that X is not homeomorphic to Y.

- The graph X and the graph Y.
- (0,1) and [0,1]: the open and closed intervals.
- S^1 and [0,1]: the circle and the closed interval.
- S^1 and S^2 : the circle and the sphere.
- \mathbb{R}^1 and \mathbb{R}^2 : the line and the plane.
- \mathbb{R}^2 and \mathbb{R}^3 : the plane and three-space (harder).
- S^2 and $T^2 = S^1 \times S^1$: the sphere and the torus (harder).

Exercise 1.6. Suppose X and Y are topological spaces. We call a function $f: X \to Y$ an *embedding* if f is a homeomorphism from X to f(X), equipped with the subspace topology. Give an example of a space X that does not embed in \mathbb{R}^n , for any n.