Please let me know if any of the problems are unclear or have typos.
Exercise 9.1. A metric space $\left(X, d_{X}\right)$ is homogeneous if for all $p, q \in X$ there is an isometry $T \in \operatorname{Isom}(X)$ so that $T(p)=q$. Show that the three geometries $S^{2}, \mathbb{E}^{2}$, and $\mathbb{H}^{2}$ are all homogeneous. In each case, discuss the uniqueness of the isometry $T$.

Exercise 9.2. Show that for any pair $u, v \in \mathbb{L}^{3}$ of light-like vectors there is a matrix $A \in O^{+}(1,2)$ with $A u=v$. Prove or disprove: the matrix $A$ is unique.

Exercise 9.3. Suppose that $\Delta, \Delta^{\prime} \subset \mathbb{H}^{2}$ are ideal triangles: that is, the three sides of $\Delta$ are infinite, pairwise asymptotic lines. Show that there is an isometry $T \in \operatorname{Isom}\left(\mathbb{H}^{2}\right)$ so that $T(\Delta)=\Delta^{\prime}$. Prove or disprove: the isometry $T$ is unique.

Exercise 9.4. [Medium.] Suppose that $\Delta, \Delta^{\prime} \subset \mathbb{H}^{2}$ are triangles where all side lengths are finite. Suppose also that $\Delta$ and $\Delta^{\prime}$ have interior angles $\alpha=\alpha^{\prime}, \beta=\beta^{\prime}$, and $\gamma=\gamma^{\prime}$. Finally assume the angles $\alpha, \beta$, and $\gamma$ are all distinct. Show that there is an isometry $T \in \operatorname{Isom}\left(\mathbb{H}^{2}\right)$ so that $T(\Delta)=\Delta^{\prime}$. Prove or disprove: the isometry $T$ is unique.

Exercise 9.5. [Do not hand in.] Exercise 4.4 from Chapter 4.
Exercise 9.6. Suppose that $T(x)=A x+v$, where $A \in \mathrm{GL}(n, \mathbb{R})$ and $v \in \mathbb{R}^{n}$. Show that $T$ sends affine subspaces of $\mathbb{A}^{n}$ to affine subspaces.

