Please let me know if any of the problems are unclear or have typos.
Exercise 8.1. Suppose that $B, C \in M_{3}(\mathbb{R})$ are three-by-three matrices over \mathbb{R}. Suppose that there is an open set $U \subset \mathbb{R}^{3}$ so that for all vectors $u, v \in U$ we have $u^{T} B v=u^{T} C v$. Prove that $B=C$.

Exercise 8.2. Set $a_{ \pm}=(1, \pm 1,0)$ and $b_{ \pm}=(1,0, \pm 1)$. Thus $M=\mathbb{H}^{2} \cap \operatorname{span}\left(a_{+}, b_{+}\right)$ and $N=\mathbb{H}^{2} \cap \operatorname{span}\left(a_{-}, b_{-}\right)$are hyperbolic lines. Show that $M \cap N=\emptyset$. Find points $P \in M$ and $Q \in N$ so that the hyperbolic line $L=\overline{P Q}$ is orthogonal to both M and N.

Exercise 8.3. We define the following functions from \mathbb{R} to $M_{3}(\mathbb{R})$.

$$
\begin{gathered}
\operatorname{Rot}_{t}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos (t) & -\sin (t) \\
0 & \sin (t) & \cos (t)
\end{array}\right) \quad \operatorname{Tran}_{t}=\left(\begin{array}{ccc}
\cosh (t) & \sinh (t) & 0 \\
\sinh (t) & \cosh (t) & 0 \\
0 & 0 & 1
\end{array}\right) \\
\text { Para }_{t}=\left(\begin{array}{rrr}
1+t^{2} / 2 & -t^{2} / 2 & t \\
t^{2} / 2 & 1-t^{2} / 2 & t \\
t & -t & 1
\end{array}\right)
\end{gathered}
$$

Show that $\operatorname{Rot}_{0}=\mathrm{Id}$, that $\operatorname{Rot}_{s+t}=\operatorname{Rot}_{s} \operatorname{Rot}_{t}$, and that $\operatorname{Rot}_{t} \in O^{+}(1,2)$. Now do the same for Tran and Para.

Exercise 8.4. Set $L(t)=(\cosh (t), \sinh (t), 0)$. Set $A=$ Para $_{1}$, using the notation of Exercise 8.3. Let $L^{\prime}(t)=A(L(t))$. That is, L^{\prime} is the image of the line L under the hyperbolic isometry A. Show that L and L^{\prime} are disjoint. Now compute the distance $d_{\mathbb{H}}\left(L(t), L^{\prime}(t)\right)$ for all t. How does the distance behave as t tends to negative infinity? To positive infinity?

Exercise 8.5. Suppose that $S \in \mathbb{L}^{3}$ is a space-like vector of length one. Define $L=$ $S^{\perp} \cap \mathbb{H}^{2}$. Define $\operatorname{Refl}_{L}(P)=P-2(P \circ S) S$.

- Show that $\operatorname{Ref}_{L}\left(\operatorname{Refl}_{L}(P)\right)=P$ for all $P \in \mathbb{H}^{2}$.
- Show that $\operatorname{Refl}_{L}(Q)=Q$ for all $Q \in L$.
- Suppose that $P \in \mathbb{H}^{2}$ does not lie on L. Show that the line through P and $Q=\operatorname{Refl}_{L}(P)$ is orthogonal to L.
- Suppose that L and L^{\prime} are hyperbolic lines that intersect in \mathbb{H}^{2}. Describe the composition of Refl_{L} with $\operatorname{Refl}_{L^{\prime}}$.

