Please let me know if any of the problems are unclear or have typos.
Exercise 7.1. Give a purely algebraic proof of the basic lemma: if $P, Q \in \mathbb{H}^{2}$ are points in the hyperbolic plane then $P \circ Q \leq-1$, with equality if and only if $P=Q$. [Hint: Apply the Cauchy-Schwarz inequality to the second and third coordinates.]

Exercise 7.2. Suppose that $u \in \mathbb{L}^{3}$ is a vector in lorentzian space. Define the Lorentz orthogonal $u^{\perp}=\left\{v \in \mathbb{L}^{3} \mid u \circ v=0\right\}$.

- Show that $u^{\perp} \subset \mathbb{L}^{3}$ is a two-dimensional linear subspace for any nonzero $u \in \mathbb{L}^{3}$.
- Show that if u is time-like then every non-zero $v \in u^{\perp}$ is space-like.

Exercise 7.3. Fix distinct points $P, Q \in \mathbb{H}^{2}$. Set $C=d_{\mathbb{H}}(P, Q)$. We define

$$
P^{\prime}=\frac{P-\cosh (C) Q}{\sinh (C)} \quad \text { and } \quad L(t)=\cosh (t) Q+\sinh (t) P^{\prime}
$$

- Verify that $P^{\prime} \circ P^{\prime}=1$.
- Show that $L(t) \in \mathbb{H}^{2}$, for all t.
- Show that $L(0)=Q$ and $L(C)=P$.
- More generally, show $d_{\mathbb{H}}(Q, L(t))=|t|$, for all t.

Thus $L(t)$ is a line in \mathbb{H}^{2}, parameterized by distance.
Exercise 7.4. Suppose that $t \geq 0$ and $\theta \in[0,2 \pi)$. Define

$$
P(t, \theta)=(\cosh (t), \sinh (t) \cos (\theta), \sinh (t) \sin (\theta))
$$

This defines polar coordinates on \mathbb{H}^{2}.

- Show that $P(t, \theta) \in \mathbb{H}^{2}$, for all t, θ.
- Show that, for any $Q \in \mathbb{H}^{2}$, there are coordinates t, θ so that $Q=P(t, \theta)$.
- Give an explicit basis for $P(t, \theta)^{\perp}$.
- Set $O=(1,0,0)$. Prove $d_{\mathbb{H}}(O, P(t, \theta))=t$.
- Set $O=(1,0,0)$. Suppose that $\theta, \sigma \in[0, \pi)$. Show that the angle $\Theta(P, O, R)$ between $P=P(t, \theta)$ and $R=P(s, \sigma)$ is $|\theta-\sigma|$.

