Please let me know if any of the problems are unclear or have typos.

Exercise 7.1. Give a purely algebraic proof of the basic lemma: if $P, Q \in \mathbb{H}^2$ are points in the hyperbolic plane then $P \circ Q \leq -1$, with equality if and only if P = Q. [Hint: Apply the Cauchy-Schwarz inequality to the second and third coordinates.]

Exercise 7.2. Suppose that $u \in \mathbb{L}^3$ is a vector in lorentzian space. Define the *Lorentz* orthogonal $u^{\perp} = \{v \in \mathbb{L}^3 \mid u \circ v = 0\}.$

- Show that $u^{\perp} \subset \mathbb{L}^3$ is a two-dimensional linear subspace for any nonzero $u \in \mathbb{L}^3$.
- Show that if u is time-like then every non-zero $v \in u^{\perp}$ is space-like.

Exercise 7.3. Fix distinct points $P, Q \in \mathbb{H}^2$. Set $C = d_{\mathbb{H}}(P, Q)$. We define

$$P' = \frac{P - \cosh(C)Q}{\sinh(C)} \quad \text{and} \quad L(t) = \cosh(t)Q + \sinh(t)P'.$$

- Verify that $P' \circ P' = 1$.
- Show that $L(t) \in \mathbb{H}^2$, for all t.
- Show that L(0) = Q and L(C) = P.
- More generally, show $d_{\mathbb{H}}(Q, L(t)) = |t|$, for all t.

Thus L(t) is a line in \mathbb{H}^2 , parameterized by distance.

Exercise 7.4. Suppose that $t \ge 0$ and $\theta \in [0, 2\pi)$. Define

$$P(t,\theta) = (\cosh(t), \sinh(t)\cos(\theta), \sinh(t)\sin(\theta)).$$

This defines *polar coordinates* on \mathbb{H}^2 .

- Show that $P(t, \theta) \in \mathbb{H}^2$, for all t, θ .
- Show that, for any $Q \in \mathbb{H}^2$, there are coordinates t, θ so that $Q = P(t, \theta)$.
- Give an explicit basis for $P(t, \theta)^{\perp}$.
- Set O = (1, 0, 0). Prove $d_{\mathbb{H}}(O, P(t, \theta)) = t$.
- Set O = (1, 0, 0). Suppose that $\theta, \sigma \in [0, \pi)$. Show that the angle $\Theta(P, O, R)$ between $P = P(t, \theta)$ and $R = P(s, \sigma)$ is $|\theta \sigma|$.