Please let me know if any of the problems are unclear or have typos.
Exercise 5.1. Exercise 2.6 from the book, regarding halfturns.
Exercise 5.2. Suppose that $A \in O(n+1)$ is an orthogonal matrix. We may consider A as a function from \mathbb{R}^{n+1} to itself; thus we can define $A \mid S^{n}$ to be the restriction of A to S^{n}. Show that $A \mid S^{n}$ is an isometry of S^{n}, equipped with the spherical metric.

Exercise 5.3. Suppose that $p, q \in S^{n}$. Show via a direct computation that

$$
2 \arcsin \left(\frac{|p-q|}{2}\right)=\arccos (p \cdot q) .
$$

Thus the two definitions of distance in S^{n}, given in class, agree.
Exercise 5.4. [A version of Exercise 3.3, from the book.] Suppose that p and q are distinct points in the metric space X. Define $B(p, q)=\left\{x \in X \mid d_{X}(x, p)=d_{X}(x, q)\right\}$. This is the set of points equidistant from p and q. Show the following.

- If $X=\mathbb{R}^{2}$ with the usual metric, then $B(p, q)$ is a line.
- If $X=S^{2}$ with the usual metric, then $B(p, q)$ is a great circle.

Exercise 5.5. [A version of Exercise 3.6, from the book.] Suppose that $\triangle P Q R$ is a spherical triangle. Let A, B, C be the sidelengths opposite P, Q, R respectively. Let α, β, γ be the internal angles adjacent to P, Q, R respectively. Prove the spherical sine law:

$$
\frac{\sin \alpha}{\sin A}=\frac{\sin \beta}{\sin B}=\frac{\sin \gamma}{\sin C} .
$$

