Please let me know if any of the problems are unclear or have typos.
Exercise 3.1. Choose P to be one of the tetrahedron, cube, octahedron, dodecahedron, or icosahedron. For your choice of P, carry out the following exercise.

Show that after scaling appropriately P can be inscribed in S^{2}, the unit sphere. This done, compute the coordinates of the vertices of P. Compute the lengths of the edges of P. Finally, compute the dihedral angle of P : the angle made by a pair of adjacent faces of P, when intersected with a plane orthogonal to both.

Exercise 3.2. Fix $b \in \mathbb{R}^{n}$. Define $\operatorname{Trans}_{b}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $\operatorname{Trans}_{b}(x)=x+b$. Prove Trans ${ }_{b}$ is an isometry. Show that Trans b preserves angles.

Exercise 3.3. Suppose that $A \in O(n)$ is an orthogonal matrix. Define Ortho ${ }_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $\operatorname{Ortho}_{A}(x)=A x$. Prove Ortho $_{A}$ is an isometry. Show that the composition of isometries is again an isometry. Deduce that Trans ${ }_{b} \circ$ Ortho $_{A}$, taking x to $A x+b$, is an isometry. (This is the converse of the statement made in class.)

Exercise 3.4. With Trans ${ }_{b}$ as defined in Exercise 3.2, show that the "translation subgroup" is normal in $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$. That is, for any $c \in \mathbb{R}^{n}$ and for any $T \in \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ there is a vector $c^{\prime} \in \mathbb{R}^{n}$ so that

$$
\operatorname{Trans}_{c^{\prime}}=T \circ \operatorname{Trans}_{c} \circ T^{-1}
$$

Verify this and find c^{\prime}.
Exercise 3.5. For each of the following isometries $T \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ find an orthogonal matrix $A \in O(2)$ and a vector $b \in \mathbb{R}^{2}$ so that $T(x)=A x+b$.

- Reflection in the line containing the points $(1,0)$ and $(0,2)$.
- Reflection in the line containing the points $(1,0)$ and $(0,2)$ followed by reflection in the line containing the points $(1,0)$ and $(3,1)$.
- Rotation by $\pi / 6$ (anti-clockwise) about the point $(1,0)$.
- Translation by $(1,0)$ followed by a rotation by $\pi / 4$ about the origin.

