Please let me know if any of the problems are unclear or have typos.

Exercise 2.1. [Medium] Give an example of a metric space (X, d) which does not isometrically embed into the euclidean plane \mathbb{E}^2 : that is, into \mathbb{R}^2 with the usual metric.

Exercise 2.2. State the definition of arccos. Now suppose $u, v \in \mathbb{R}^n$ are vectors. We define the angle between u and v to be $\theta_{u,v} = \arccos(u \cdot v/|u||v|)$. Show that $\theta_{u,v}$ is well-defined. Now compute the angles between the following pairs of vectors in \mathbb{R}^2 .

- (1,0) and (0,1).
- (0,1) and $(-1/2,\sqrt{3}/2)$.
- $(-1/2, \sqrt{3}/2)$ and (-1, 1).
- (-1, 1) and (-1, 0).

Exercise 2.3. For $a, b \in \mathbb{R}^n$ we define

$$[a,b] = \{ c \in \mathbb{R}^n \mid \exists t \in [0,1] \text{ so that } c = ta + (1-t)b \}.$$

Suppose $x, y, z \in \mathbb{R}^n$ have $x \in [y, z], y \in [z, x]$, and $z \in [x, y]$. What can you deduce? Justify your answer.

Exercise 2.4. Set X = [-1, 1] and, for $x, y \in X$ define d(x, y) = |x - y|. Verify this is a metric. Find the group Isom(X) and justify your answer.

Exercise 2.5. [Exploration] Fix $n \ge 2$. For $p \ge 1$ and for $x, y \in \mathbb{R}^n$ define

$$d^p(x,y) = \left(\sum_i |x_i - y_i|^p\right)^{1/p}.$$

Verify that (\mathbb{R}^n, d^p) is a metric space. Show that (\mathbb{R}^n, d^p) is isometric to (\mathbb{R}^n, d^q) if and only if p = q.