Please let me know if any of the problems are unclear or have typos.
Exercise 2.1. [Medium] Give an example of a metric space (X, d) which does not isometrically embed into the euclidean plane \mathbb{E}^{2} : that is, into \mathbb{R}^{2} with the usual metric.

Exercise 2.2. State the definition of arccos. Now suppose $u, v \in \mathbb{R}^{n}$ are vectors. We define the angle between u and v to be $\theta_{u, v}=\arccos (u \cdot v /|u \| v|)$. Show that $\theta_{u, v}$ is well-defined. Now compute the angles between the following pairs of vectors in \mathbb{R}^{2}.

- $(1,0)$ and $(0,1)$.
- $(0,1)$ and $(-1 / 2, \sqrt{3} / 2)$.
- $(-1 / 2, \sqrt{3} / 2)$ and $(-1,1)$.
- $(-1,1)$ and $(-1,0)$.

Exercise 2.3. For $a, b \in \mathbb{R}^{n}$ we define

$$
[a, b]=\left\{c \in \mathbb{R}^{n} \mid \exists t \in[0,1] \text { so that } c=t a+(1-t) b\right\} .
$$

Suppose $x, y, z \in \mathbb{R}^{n}$ have $x \in[y, z], y \in[z, x]$, and $z \in[x, y]$. What can you deduce? Justify your answer.

Exercise 2.4. Set $X=[-1,1]$ and, for $x, y \in X$ define $d(x, y)=|x-y|$. Verify this is a metric. Find the group $\operatorname{Isom}(X)$ and justify your answer.

Exercise 2.5. [Exploration] Fix $n \geq 2$. For $p \geq 1$ and for $x, y \in \mathbb{R}^{n}$ define

$$
d^{p}(x, y)=\left(\sum_{i}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

Verify that $\left(\mathbb{R}^{n}, d^{p}\right)$ is a metric space. Show that $\left(\mathbb{R}^{n}, d^{p}\right)$ is isometric to $\left(\mathbb{R}^{n}, d^{q}\right)$ if and only if $p=q$.

