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Chapter 1

Introduction

1.1 Basic Definition and Examples

One goal of topology is to classify manifolds up to homeomorphism. In dimension n ≥ 4, this
problem is undecidable; no algorithm, given two manifolds as an input, can decide whether or not they
are homeomorphic.∗ We will classify manifolds in dimensions 0, 1 and 2 in the next few pages. The
general topic is to classify 3–manifolds.

Definition 1.1.1. An n–manifold Mn is a Hausdorff topological space with a countable basis and
such that every point p ∈ M has an open neighbourhood U which is homeomorphic to either Rn or
Rn+ = {x ∈ Rn : xn ≥ 0}.

Remark. Rn+ is called the upper half space, and Rn− = {x ∈ Rn : xn ≤ 0} is called the lower half
space.

Definition 1.1.2. ∂M is the set of points p in M such that no neighbourhood of p is homeomorphic
to Rn.

Proposition 1.1.1. ∂M is an (n− 1)–manifold, and ∂∂M = ∅.

Definition 1.1.3. int(M) = M − ∂M .

Definition 1.1.4. We use I = [0, 1] ⊆ R, Bn = {x ∈ Rn : |x| ≤ 1}, and D2 = B2.

Definition 1.1.5. We give several equivalent definitions of the sphere:

(i) A submanifold definition: Sn = ∂Bn+1 = {x ∈ Rn+1 : |x| = 1}.

(ii) A one-point compactification definition: Sn is the one-point compactification of Rn, that is
Sn = Rn ∪ {∞} topologized such that for any compact K ⊆ Rn, the set (Rn −K) ∪ {∞} is a
neighbourhood of ∞. Note here that Bn is the one-point compactification of Rn+.

(iii) A gluing definition: Sn = Bn0 t Bn1/ ∼ where (x, 0) ∼ (x, 1) if and only if x ∈ ∂Bn. For example,
S1 can be obtained by joining two copies of B1 by their boundaries, and similarly for S2 and B2.

Definition 1.1.6. We now give several equivalent definitions of projective spaces:

(i) A covering space definition: Pn = Sn/ ∼ where x ∼ −x, taking Sn as in definition (i) above.

(ii) A gluing definiton: Pn = Bn/ ∼ where x ∼ −x if and only if x ∈ ∂Bn.

(iii) A moduli space definition:

Pn = {L ⊆ Rn+1 : L is a line through the origin} = (Rn+1 − {0})/ ∼

where x ∼ λx for λ ∈ R− {0}.†

∗This result is due to A.A. Markov (1958).
†We will sometimes use R∗ for R− {0}.
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Definition 1.1.7. We have three equivalent definitions of tori :

(i) A Cartesian product definition: Tn = (S1)n, taking the Cartesian product.

(ii) A covering space definition: Tn = Rn/Zn = Rn/ ∼ with x ∼ y if and only if x− y ∈ Zn.

(iii) A gluing definition: Tn = In/ ∼ where (x, 0, y) ∼ (x, 1, y) if and only if x ∈ Ik and y ∈ In−k−1
for any k ∈ {0, ..., n− 1}.

Figure 1.1: Construction of the first three n–tori Tn. Identify opposite faces of In without twisting.

Note. T1 ∼= S1.

Exercise 1.1.1. For each set of three definitions above, prove that all three are equivalent.

1.2 The Classificaiton of Compact 2–Manifolds

In dimension zero, any compact manifold is a finite collection of points, so the classification is
given by the number of points. All compact connected one-dimensional manifolds are homeomorphic
to either S1 or I.

Definition 1.2.1. Suppose Mi (for i = 0, 1) are orientable n–manifolds. Choose Bni ⊆Mi and suppose
ϕ : ∂Bn0 → ∂Bn1 is an orientation reversing homeomorphism. Define:

M0 #M1 := ((M0 − int(Bn0 )) t (M1 − int(Bn1 )))/ ∼

where x ∼ ϕ(x) whenever x ∈ ∂Bn0 .

Figure 1.2: The connect sum. Remove the interiors of the disks Bi and glue along their boundaries.

Exercise 1.2.1. Show that #3P2 ∼= T # P2.

Theorem 1.2.1. Every compact connected two-dimensional manifold is homeomorphic to some Sg,n,c,
where:

Sg,n,c := (#gT2) # (#nD2) # (#cP2)
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Figure 1.3: S3,3,3 is the connect sum of the sphere with three tori, three Möbius strips and three
2–disks, glued along the boundary components (in red)

Example 1.2.1. Some spaces Sg,n,c are homeomorphic, for example S3,3,3
∼= S4,3,1.
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Chapter 2

Alexander’s Theorem and
Incompressible Surfaces

2.1 Primes and Irreducibles

Example 2.1.1. We give some connect sums of three manifolds:

S3 # S3 ∼= S3

T3 # S3 ∼= T3

In general, Sn is a unit for the connect sum. P3 # P3 is more interesting, as we will discuss later. On
the other hand, T3 #T3 invites splitting into two copies of T3 for a more interesting and fundamental
geometry. In general, we shall find a decomposition theorem for 3–manifolds with respect to #.

Definition 2.1.1. M3 is prime if whenever M = N # L then either N or L is homeomorphic to S3.

Remark. If M = N # L and N ∼= S3 then L ∼= M , and vice versa.

Definition 2.1.2. M is irreducible if every smoothly embedded S2 in M bounds a 3–ball.

Note. We have no examples yet of prime or irreducible 3–manifolds.

2.2 Alexander’s Theorem

Definition 2.2.1. Suppose X,Y ⊆ Z. We say X is ambient isotopic (diffeotopic) to Y if there exists
a continuous (smooth) map F : Z × I → Z such that, defining Ft(z) := F (t, z):

(i) For all t ∈ I, Ft is a homeomorphism (diffeomorphism).

(ii) F0 = IdZ .

(iii) F1|X : X → Y is a homeomorphism (diffeomorphism).

Figure 2.1: Here, X is ambient isotopic to Y in Z.

Theorem 2.2.1 (Alexander). Every smoothly embedded S2 ⊂ S3 is ambient isotopic to the equator.
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Compare this to:

Theorem 2.2.2 (Jordan-Schoenflies). Every smoothly embedded S1 ⊂ S2 is ambient isotopic to the
equator.

Figure 2.2: It is not always obvious which ball a sphere bounds

We will prove Alexander’s theorem later, but for now give the following corollary.

Corollary 2.2.3. S3 is prime.

Proof. Suppose S3 = M #S N . By Alexander’s theorem, S is ambient isotopic to a round embedding
of S2 in S3 (say the equator). Thus M − int(B3) ∼= N − int(B3) ∼= B3, and hence M ∼= N ∼= S3 ∼=
B3 ∪∂ B3.

It is important that the embedding is smooth, as the following result shows.

Theorem 2.2.4. There exists a topological S2 ⊂ S3 which does not bound B3 on either side.

Note. This is a generalization of the Alexander horned sphere.

Remark. The statement of Alexander’s theorem with S2 ⊂ S3 replaced by S3 ⊂ S4 is an open
problem, although it has been proved that a smoothly embedded S3 ⊂ S4 bounds a topological
ball. Brown has proved the more general statement that a smoothly embedded Sn−1 ⊂ Sn bounds a
topological ball.

Remark. It is worth making explicit the various categories involved:

(i) Topological (TOP).

(ii) Piecewise linear (PL).

(iii) Smooth (DIFF).

These categories are all equivalent in dimension at most 3, so we move between them freely.

Exercise 2.2.1.

(i) Prove that any irreducible manifold is prime.

(ii) Prove that if M is orientable and S ⊂M is a non-separating 2–sphere, then M = N #(S2×S1).

(iii) Suppose M is orientable. Then M is prime and reducible if and only if M ∼= S2×S1. Prove the
forward direction.

(iv) State and prove analogous statements to (ii) and (iii) for non-orientable manifolds.

We give one more corollary to Alexander’s theorem:

Corollary 2.2.5. If M ⊆ S3 is compact and has |∂M | ≤ 1 (at most one boundary component) then
M is irreducible.
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Example 2.2.1. We give further examples of irreducible manifolds. Suppose K ⊂ S3 is a knot, that
is a smooth embedding of S1. Let N(K) ⊆ S3 be a closed regular neighbourhood (i.e. a tubular
neighbourhood) of the knot. Let n(K) = int(N(K)). Then the knot exterior XK := S3 − n(K) is
irreducible, by the previous corollary.

Figure 2.3: A tubular neighbourhood of the figure 8 knot

2.3 Proof

We now prove Alexander’s theorem. More precisely, we will prove that any (smoothly) embedded
S2 ⊂ R3 bounds a 3-ball, from which the theorem can be deduced as a corollary.

Exercise 2.3.1. Show how Alexander’s theorem follows from this statement.

We need the following lemma:

Lemma 2.3.1. Suppose that a manifold Mn and Bn−11 ⊆ ∂Mn are given, as is a diffeomorphism
ϕ : Bn−10 → Bn−11 , where Bn−10 ⊆ ∂Bn. Then Mn ∪ϕ Bn ∼= Mn, as per Figure 2.4.

Figure 2.4: Glueing Mn to Bn along submanifolds of their boundaries is homeomorphic to Mn.

As a consequence, if B and B′ are n–balls, then B ∪∂ B′ is a ball (Figure 2.5(a)), as is B −B′ if
B′ ⊂ B and ∂B′ ∩ ∂B ∼= Dn−1 (Figure 2.5(b)).
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Figure 2.5: (a) B,B′ balls ⇒ B ∪∂ B′ a ball, and (b) B′ ⊂ B and ∂B′ ∩ ∂B ∼= Dn−1 ⇒ B −B′ a ball.

Theorem 2.3.2. Any smoothly embedded S2 ⊂ R3 bounds a 3–ball.

Proof. Suppose S2 ∼= S ⊂ R3 is smooth. We can isotope S so that z : S → R (the height function,
giving the z co-ordinate) is a Morse function. Thus all critical points are of the standard three
types; cups (minima), caps (maxima), and saddles, and all critical points occur at distinct heights (as
illustrated in Figure 2.6).

Figure 2.6: (a) A cap. (b) A saddle. (c) A cup.

Choose ai ∈ R such that (−∞, a1), (a1, a2), ..., (an−1,∞) each contain exactly one critical value, as
in Figure 2.7.

Figure 2.7: The red circles are regular values separating the critical points (green). Here we have
(n,w) = (6, 9).

Let:

L[a, b] := {(x, y, z) : z ∈ [a, b]}
L(a) := {(x, y, z) : z = a}
Li := L(ai)

Define n(S) to be the number of critical points. Define the width by:

w(S) =
n−1X
i=1

|S ∩ Li|

This is the number of red circles in Figure 2.7. We will induct on (n(S), w(S)) lexicographically.
Note that the components of Li ∩ S are all simple closed curves, because each ai is a regular value.
So by the Jordan-Schoenflies theorem, they all bound disks. Say that β, a component of Li ∩ S, is
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innermost if Dβ , the disk bounded by β, has the property that Dβ ∩S = β. Notice that β also bounds
a pair of disks in S.

Figure 2.8: The intersection of the plane Li with the sphere. Shaded components are innermost.

Label ai with an A (resp. B) if there is some innermost curve β ⊆ Li ∩ S such that one disk of
S − β contains exactly one critical point, a maximum (resp. minimum). Note that ai could receive
both labels. Note also that a1 is labelled by B and an−1 is labelled by A. We have cases:

Case 1: Some ai is labelled both A and B.

Case 2: Some ai is unlabelled.

Case 3: There exists i such that ai is labelled B and ai+1 is labelled A.

Exercise 2.3.2. Check that we must always be in at least one of these cases.

We prove these in turn:

Case 1a: Some innermost β ∈ Li ∩ S bounds a disk in S above and bounds a disk in S below, each with
one critical point; this forms the base case of the induction, where n(S) = 2 and w(S) = 1. We
claim that in this case S bounds a ball.

Figure 2.9: The base case.

To see this, cut off the two critical points with planes slightly above the minimum and below
the maximum, removing two 3–balls from S, and giving a compact cylinder. We claim that for
every a ∈ R such that the set L(a) intersects this compact cylinder, there exists ε > 0 such that
S∩L[a, a+ε] bounds a 3–ball in L[a, a+ε]. This can be proved by the implicit function theorem
and the isotopy extension theorem. See Hatcher’s Notes on basic 3–manifold topology for more
details.

Figure 2.10: The slab bounded by L[a, a+ ε].
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Note that the intersection L(a) ∩ S is a curve, so bounds a disk. Note that finitely many of the
L[a, a+ ε] cover the compact cylinder. Glue these slabs together, and re-attach the cap and cup.
By Lemma 2.3.1, this gives a 3–ball.

Case 1b There are innermost α, β ⊂ Li ∩S so that α bounds D above, β bounds E below. Let D′, E′ be
the disks bounded by α, β, inside of Li. So, by the base case D ∪D′ (E ∪ E′) bounds a 3–ball.
Use this 3–ball to define an ambient isotopy that flattens D (E), pushing the critical point just
below (above) the plane Li.

Exercise 2.3.1. Show that this reduces w(S).

Case 2 The regular value ai is not labelled. For this case, we first have to introduce surgery.

Definition 2.3.1. Suppose F 2 ⊂ M2 is properly embedded (i.e. a submanifold, i.e. embedded
and F ∩ ∂M = ∂F ). We say (D2, ∂D) ⊂ (M,F ) is a surgery disk for F if D ∩ F = ∂D. Let
n◦(∂D) be an open annular neighbourhood of ∂D, in F . Let D+, D− be parallel copies of D in
M . Define F surgered along D by FD := (F − n◦(∂D)) ∪D+ ∪D−, as in Figure 2.11.

Figure 2.11: Surgery. FD := (F − n◦(∂D)) ∪D+ ∪D−.

We now return to case 2. Suppose β ⊂ S ∩ Li is innermost. So, β bounds D above, E below,
D ∪β E = S and D,E each contain at least 3 critical points. Say β bounds a disk B ⊂ Li. So:

SB = S+ ∪ S−, S+
∼= D ∪B+, S− ∼= E ∪B−.

Thus n(S+), n(S−) < n(S) since n(S+)+n(S−) = n(S)+2. By induction, S+, S− each bound a 3–
ball X+, X− thus so did S, applying Lemma 1.3 in Hatcher’s notes. In the first case X+∩X− = B
and so we take the union. In the second case X+ ⊂ X−, we take the difference. See Figure 2.12.

Figure 2.12: The case when (a) x+ ∩X− = ∅ or (b) X+ ⊆ X−.

Case 3 The regular value ai is labelled only B and the regular value ai+1 is labelled only A. Between Li
and Li+1 we have S ∩ L[ai, ai+1] is a union of cylinders, caps, cups, pairs of pants, upside down
pairs of pants and pants with inverted legs, as illustrated in Figure 2.13.
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Figure 2.13: S ∩L[ai, ai+1] is a union of (a) cylinders, (b) caps, (c) cups, (d) pairs of pants, (e) upside
down pairs of pants, (f) pants with inverted legs and (g) an upside down version of (f) (not shown).

Note that there is at most one critical point in S ∩ L[ai, ai+1], so it is a saddle (check this using
the labelling). Using the labelling deduce that either α or β is a cuff of the pants.

Figure 2.14: Two examples of how may isotope E to be in Li and then upwards, canceling two critical
points.

We have that β is innermost in Li and β bounds (in S) a disk below, E, with a single critical
point (minimum). Hence, by the base case, we may isotope E to be in Li and then upwards to
cancel two critical points, as in Figure 2.14. Thus, we have isotoped S to a sphere S′ such that
n(S′) = n(S)− 2. This completes the induction step and so, the proof.

2.4 Incompressible Surfaces

Definition 2.4.1. Say a 2–sphere S ⊂M3 is essential if no component of M − n(S) is a 3–ball.

Definition 2.4.2. Suppose F 2 ⊂M3 is properly embedded. Suppose (D, ∂D2) ⊂ (M,F ) is a surgery
disk. Say that D is a trivial surgery disk if ∂D ⊂ F is equal to 1 ∈ π1(F ) where π1(F ) is the
fundamental group of F . We say that D is a compressing disk if ∂D ⊂ F is not equal to 1 ∈ π1(F ).
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An alternative definition is: D is a trivial surgery disk if ∂D bounds a disk in F . See Figure 2.15.

Figure 2.15: Here, D is a trivial surgery disc for F .

Exercise 2.4.1. Check that a simple closed curve α ⊂ F bounds a disk E ⊂ F if and only if
[α] = 1 ∈ π1(F ).

Definition 2.4.3. Suppose F ⊂M is either properly embedded or F ⊂ ∂M is a subsurface. Then we
say that F is compressible if and only if there exists a compressing disk for F . Otherwise we call F
incompressible.

Example 2.4.1. Let T ⊂ S3 be the standard embedding, i.e. ∂N(U) where U is the unknot. Then
T is compressible since there are two compressing disks. We call them the meridian disk and the
longitude disk respectively, as illustrated in Figure 2.16.

Figure 2.16: The meridian disk is in green while the longitude disk is red. The boundary of the
meridian disk is a circle in T but its interior is in S3.

Example 2.4.2. If M = D × S1 is a solid torus then ∂M ⊂M is compressible.

Exercise 2.4.2. Show that T = T2 × { 12} ⊂ T2 × I = M is incompressible.

Figure 2.17: T = T2 × { 12} ⊂ T2 × I = M is incompressible.

Exercise 2.4.3. Suppose that M is an irreducible three-manifold and F,G ⊂ ∂M are disjoint, incom-
pressible subsurfaces. Suppose that ϕ : F −→ G is a homeomorphism. Show that M/ϕ is irreducible.

Note. One can check M = D2 × S1 is irreducible but D(M), the double of M , is not. Here D(M) =
M0 tM1/ ∼, where (x, 0) ∼ (x, 1) if and only if x ∈ ∂M where Mi = M × {i}.
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Exercise 2.4.4.

1. If F ⊂ S3 is closed, F 6= S2, then F is compressible.

2. (Alexander) Any T2 ⊂ S3 bounds a solid torus (D2 × S1) on at least one side.

Definition 2.4.4. Let Vg be the handlebody of genus g, i.e.

Vg = D2 × S1 ∪D2 D2 × S1 ∪D2 . . . ∪D2 D2 × S1| {z }
g times

By convention, V0 = B3. See Figure2.18.

Figure 2.18: The handlebody V3. Note that Vg is “solid”, and not a surface.

Example 2.4.3. Find S2 ↪→ S3 which does not bound a handlebody on either side. Here S2 denotes
a surface of genus 2.

Remark. ∂Vg = #gT2 = Sg because ∂(D2 × S1) = S1 × S1 = T2.

14



Chapter 3

Products and Bundles

3.1 Bundles and Neighbourhoods

Definition 3.1.1. A map ρ : Z −→ X is a Y –bundle (or a fibre bundle) if for all x ∈ X there exists a
neighbourhood x ∈ U ⊂ X and a homeomorphism hU : Y × U −→ ρ−1(U) such that the composition
ρ◦hU is the projection onto the second coordinate. Here, Z is called the total space, X the base space,
Y the fibre and hU is called a local trivialization.

Example 3.1.1. Let Z = D2 × S1 and denote ρi be the projection onto the i–th coordinate. Then
ρ1 : Z −→ D2 is a S1–bundle map and ρ2 : Z −→ S1 is a D2–bundle map.

See Lackenby §6.

Definition 3.1.1. We say Z
ρ−→ X, Z ′

ρ′−→ X are equivalent Y –bundles if there is a homeomorphism
h : Z ′ −→ Z making the following diagram commute

Z ′
h- Z

X

ρ′

?
IdX- X

ρ

?

Corollary 3.1.1 (See Corollary 6.3 in Lackenby’s notes). If X is contractible then any Y –bundle

Z
ρ−→ X is equivalent to the product bundle Y ×X ρ2−→ X.

Exercise 3.1.1. Prove this directly for X = B1,B2.

Exercise 3.1.2. Find a S1–bundle over S2 that is not equivalent to the product bundle. It follows
that the fundamental group π1(X,x) = {1} is not sufficient hypothesis for Corollary 6.1.

Lemma 3.1.2 (See Lemma 6.4 in Lackenby’s notes). For all n ∈ N there are exactly two Bn–bundles
over S1 up to equivalence. These are

• the trivial bundle Bn × S1

• the twisted bundle BnÜ×S1 = Bn × I/(x, 0) ∼ (r(x), 1), where r(x1, . . . , xn) = (x1, . . . ,−xn) is a
reflection.

For an example, see Figure 3.1.
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Figure 3.1: Two inequivalent bundles over S1: (a) B1 × S1 and (b) B1Ü×S1.

Version of the Tubular Neighbourhood Theorem

Definition 3.1.2. Suppose ρ : Z −→ X is a bundle. Then a map s : X −→ Z is a section of ρ if
ρ ◦ s = IdX .

Theorem 3.1.1. Suppose Fn−k ⊂ Mn is properly embedded. Then there is a closed neighbourhood
N = N(F ) ⊂M of F and a Bk–bundle map such that

1. the inclusion i : F −→ N(F ) is the zero section, i.e. i(x) = 0 ∈ Bk = ρ−1(x),

2. N is a codimension 0 submanifold of M (with corners) and

3. any N ′(F ) satisfying the properties (1) and (2) is ambient isotopic to N(F ) fixing F pointwise.

Notation. We denote by n(F ) the interior of N(F ). Furthermore, M cut along F , is the manifold
(perhaps with corners) M − n(F ). When F is codimension 1 manifold there is a regluing map M −
n(F )

reglue−→ M .

Figure 3.2: Cut open along N(F ) and glue back along N ′(F ).

Exercise 3.1.3. All I–bundles over S2 are trivial.

Figure 3.3: The trivial I–bundle over S2.
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3.2 Classification of I–Bundles over F 2

Suppose that ρ : G2 → F 2 is a double cover. Roughly, this corresponds to an index two subgroup
of π1(F ), and hence to a homomorphism π1(F )→ Z/2Z. Then for all x ∈ F , |ρ−1(x)| = 2, so there is
a canonical involution τ : G → G, where τ(y) is defined to be the unique element of ρ−1(ρ(y))− {y}.
For an example, see Figure 3.4.

Figure 3.4: Here the involution τ is rotation by π about an axis.

Define T = (G × I)/ ∼, where (y, 0) ∼ (τ(y), 0). Then P : T → F given by (y, t) 7→ ρ(y) is an
I–bundle over F . Now suppose that ρ : G→ F is the orientation double cover; so G = F × {0, 1} if F

is orientable, and G is orientable if F is not; for example T2 ×2→ K2 (Figure 3.5).

Figure 3.5: The torus is a double cover for the Klein bottle.

Then P : T → F as above is called the orientation I–bundle (Figure 3.6).

Figure 3.6: The orientation I–bundle over K2 − int
�
D2
�
.

We have the following:

Theorem 3.2.1. Suppose that (F 2, ∂M) ⊂ (M3, ∂M) is properly embedded. Then N(F ) is bundle
equivalent to an I–bundle over F . If additionally M is orientable, then N(F ) is bundle equivalent to
the orientation I–bundle over F .

Example 3.2.1. Figure 3.7 shows the I–bundle for the punctured torus.
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Figure 3.7: The orientation I–bundles are the only I–bundles one can draw in three-space.

Definition 3.2.1. Say F ⊂M is one-sided if F does not separate N(F ). Say F is two-sided if it does
separate.

Example 3.2.2. The core curve α in the Möbius band M2 is one-sided. D2 × {p} ⊂ D2 × S1 is

two-sided for any p ∈ S1. We can also find a Möbius band in D2 × S1 that is one-sided. M2 ×
¦

1
2

©
is

two-sided in M2 × I; see Figure 3.8.

Figure 3.8: (a) α is one-sided in M2. (b) α is two-sided in A2 (c) M2 is one-sided in D2 × S1 (d) D2 is
two-sided in D2 × S1.

Exercise 3.2.1. If F ⊂ M is properly embedded, give a relationship between the orientability of M
and F , and the number of sides of F .

Definition 3.2.2. If ρ : T → F is an I–bundle, then X ⊂ T is vertical if X is a union of fibres.

Definition 3.2.3. The vertical boundary of an I–bundle ρ : T → F is ∂vT := ρ−1(∂F ).

Definition 3.2.4. The horizontal boundary of an I–bundle ρ : T → V is ∂hT = ∂T − int(∂vT ).

Exercise 3.2.2. ∂vT , ∂hT and the zero section are all incompressible in T , except for ∂vT when
T = I × D2.

Exercise 3.2.3. If ∂F 6= ∅, F is compact and connected, and ρ : T → F is the orientation I–bundle,
then T is a handlebody.

Before moving on, we summarize examples of 3–manifolds discussed so far.

Example 3.2.3. We have seen:

(i) S3, P3 and T3, which are closed.

(ii) Vg, the handlebodies.

(iii) I–bundles and S1–bundles over surfaces.
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Chapter 4

Triangulations and the
Fundamental Group

4.1 Triangulations

Definition 4.1.1. Define the k–simplex by:

∆k =
¦

(x0, . . . , xk) ∈ Rk+1 :
P
xi = 1 and xi ≥ 0 for all i

©
.

Definition 4.1.2. The facet δI ⊂ ∆k is the subsimplex of the form:

δI = {(x0, ..., xk) ∈ ∆k : xi = 0 for all i ∈ I}.

Definition 4.1.3. If δ ⊂ ∆ and δ′ ⊂ ∆′ are faces (codimension 1 facets), then a face pairing is an
isometry ϕ : δ → δ′.

Definition 4.1.4. We call a collection T of simplices and face pairings a triangulation.

Remark. We require that for every face pairing ϕ ∈ T that if ϕ : δ → δ′ then δ 6= δ′.

Definition 4.1.5. The number of simplices is written |T |. The underlying space is written ||T ||, and
is defined by

||T || :=
�G

∆i

�
/{ϕj}.

Definition 4.1.6. The quotient map is given by π :
F

∆i → ||T || and we define πi : ∆i → ||T || by
restriction: πi = π|∆i.

Example 4.1.1. If T is the pair of simplices in Figure 4.1 with face pairings given by the arrows,
then ||T || ∼= T2.

Figure 4.1: ||T || ∼= T2.

Similarly, if we draw T as in Figure 4.2 then ||T || = M2.
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Figure 4.2: ||T || ∼= M2.

Exercise 4.1.1. Find necessary and sufficient combinatorial conditions on T so that ||T || is a (PL)
manifold of dimension 1, 2 or 3.

Hauptvermutung (Moise). Every topological 3–manifold admits a triangulation, unique up to sub-
division. In particular, for any M3, there exists a triangulation T such that ||T || ∼= M .

Remark. This is one important step in showing, in dimension three, that the categories TOP, PL
and DIFF are all equivalent.

Definition 4.1.7. Suppose (M3, T ) is a triangulated manifold. An orientation of M is a choice of
orientation for all ∆ ∈ T , such that all face pairings reverse the induced orientation on faces.

Example 4.1.2. The annulus is orientable, but the Möbius band is not. See Figure 4.3.

Figure 4.3: The annulus is orientable as all face pairings reverse the induced orientation on faces.

Proposition 4.1.1 (Proposition 6.5 in Lackenby). An n–manifold (Mn, T ) is orientable if and only
if for every simple closed curve α ∈M we have N(α) ∼= Bn−1 × S1.

Remark. We can also determine orientability in DIFF using sign(det(Dh)) where h ranges over the
overlap maps, as in Figure 4.4. We can also define orientation in TOP using homology.

Figure 4.4: Orientation in DIFF arises from overlap maps of charts.

Definition 4.1.8. Define ∆(k) to be the union of k–dimensional facets of ∆. If (M,T ) is a triangulated

3–manifold, define M (k), the k–skeleton of M to be the manifold with triangulation T =
S|T |
i=1 πi(∆

(k)).
Figure 4.5 shows the k-skeleta of ∆.
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Figure 4.5: The k–skeleta of ∆.

Example 4.1.3. Figure 4.6 shows two examples of identifications.

Figure 4.6: Two different views of the same triangulation for B3.

Exercise 4.1.2. Verify that the triangulation in Figure 4.7 is a three-manifold, and recognise it.

Figure 4.7: Which three-manifold is this?

4.2 Haken Kneser Finiteness

Definition 4.2.1. An isotopy F : M × I → M is normal with respect to a triangulation T of M if
for all t ∈ I, the homeomorphism Ft preserves M (k) for all k, and F0 = IdM . See Figure 4.8 for an
example.

Figure 4.8: A normal isotopy.

Remark. Thus M (0) is fixed pointwise, and all other facets are fixed setwise.

Definition 4.2.2. Say an arc (α, ∂α) ⊂ (∆2, ∂∆) is normal if the points of ∂α are in distinct edges
of ∆, and α ∩∆(0) = ∅. See Figure 4.9 for some examples and a non-example.

Figure 4.9: (a) Normal arcs. (b) This is not a normal arc.
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Definition 4.2.3. A disk (D, ∂D) ⊂ (∆3, ∂∆) is a normal disk if ∂D is transverse to ∆(1), ∂D meets
each edge of ∆(1) at most once, and D ∩ ∆(0) = ∅. See Figures 4.10(a) and (b) for examples and
4.10(c) and (d) for non-examples.

Figure 4.10: (a) There are four normal triangles. (b) There are three normal quadrilaterals. (c) This
is not even a disk, let alone normal. (d) This is also not a normal disc.

Exercise 4.2.1. Prove that:

(i) There are only three normal arcs up to normal isotopy.

(ii) There are only seven normal disks up to normal isotopy.

Recall that πi : ∆i →M is defined by πi = π|∆i, where π is the quotient map.

Definition 4.2.4. Suppose S ⊂ M is a surface. Say S is normal if π−1i (S) is a disjoint collection of
normal disks for all i.

Example 4.2.1. The three normal disks in the tetrahedron shown in Figure 4.11 give a normal surface
under the identification indicated by the arrows.

Figure 4.11: Recognise the normal surface F by computing |∂F |, χ(F ) and the orientability.

Exercise 4.2.2. Show that, with triangulations as in Figure 4.12, (a) and (b) are three manifolds,
and recognise them.

Figure 4.12: Show that (a) and (b) are three manifolds and recognise them.

Theorem 4.2.1 (Haken-Kneser Finiteness). Suppose (M,T ) is a connected, compact triangulated 3–
manifold. Suppose S ⊂ (M,T ) is an embedded normal surface. Then if |S| ≥ 20|T | + 1 there are
components R,R′ ⊂ S so that R,R′ cobound a product component of M − S.
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Remark. Figures 4.13 and 4.14 show examples of parallel surfaces.

Figure 4.13: Here both R1 & R′1 and R2 & R′2 bound copies of D2 × I.

Figure 4.14: R and R′ bound a product.

Proof of Theorem 4.2.1. Recall that S ∩∆ for ∆ ∈ T is a finite collection of normal disks. Consider
the subcollection of disks of a fixed type, that is a normal isotopy class. Call the outermost disks ugly,
the second outermost disks bad, and all other disks good, as illustrated in Figure 4.15.

Figure 4.15: (a) Ugly disks. (b) Bad disks. (c) Good disks.

Thus there is a component F ⊂ S, such that F is a union of good disks. To see this, note that
there are at most 20|T | ugly and bad disks in total. There are at most five types of disk in each S ∩∆,
and at most four of each can be ugly or bad; see Figures 4.16(a) and (b).

Figure 4.16: (a) There are at most five types of disk in each S∩∆ because (b) two normal quadrilaterals
of different types must intersect.

Now let N be the closure of the union, over all ∆i, of all components of ∆i − S that are adjacent
to F , as in Figure 4.17.
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Figure 4.17: N is the closure of the union over all ∆i of all components of ∆i−S that are adjacent to
F .

Exercise 4.2.3. Prove that N is an I–bundle and either N is ambient isotopic to N(F ) or F is
two-sided and parallel to ∂hN .

4.3 The Fundamental Group

We recall properties of π1:

Definition 4.3.1. Suppose A and B are groups. Then if A = 〈ai | rk〉 and B = 〈bj | sl〉, their free
product A ∗B is given by

A ∗B = 〈ai, bj | rk, sl〉 .

Theorem 4.3.1 (van Kampen). If W = X ∪Z Y and Z is path connected (as in Figure 4.18), then,
choosing a base point p ∈ Z, π1(W,p) ∼= π1(X, p) ∗ π1(Y, p)/N , where N is the normal subgroup
generated by:

{i∗(z)(j∗(z))−1 : z ∈ π1(Z, p)}

where i : Z ↪→ X and j : Z ↪→ Y are the inclusions.

Figure 4.18: If W = X ∪Z Y , then π1(W ) = (π1(X) ∗ π1(Y ))/N .

Corollary 4.3.1. If π1(Y, p) = {1} then π1(W,p) = π1(X, p)/N where N is the normal subgroup
generated by:

{i∗(z) : z ∈ π1(Z, p)}.

Corollary 4.3.2. If π1(Z, p) = {1} then π1(W,p) = π1(X, p) ∗ π1(Y, p).

Proposition 4.3.3. If (M,T ) is triangulated then π1(M) = π1
�
T (2)

�
.

Exercise 4.3.1. Prove Proposition 4.3.3. See Figure 4.19 for a hint.

Figure 4.19: Hint: Attach 3-balls one by one.
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Proposition 4.3.4. π1(T (2)) = π1(T (1))/N where N is the normal subgroup generated by boundaries
of two-simplices in T . Note that π1(T (1)) is a free group, as T (1) is a connected graph.

We now give several example computations.

Example 4.3.1. Consider Figure 4.20, where the faces are glued according to the arrows.

Figure 4.20: What is the fundamental group of this manifold?

Exercise 4.3.2. Check that this is a 3–manifold.

Step 1: Find a spanning tree for T (1). Here T (1) is the graph shown in Figure 4.21 and so the spanning
tree is just the vertex.

Figure 4.21: T (1) in this case. The spanning tree is the single vertex circled in green.

Step 2: Give labels to the non-tree edges of T (1), as in Figure 4.21.

Step 3: Read off relations from faces of T (2). There is one relation per face in the quotient. Here we
have



a, b | a2 = b, b2a = 1

�
.

Step 4: (optional) Use Tietze transformations to simplify:¬
a, b | a2 = b, b2a = 1

¶
∼=
¬
a | (a2)2a = 1

¶
∼= Z/5Z.

Example 4.3.2. (A non-Abelian example.) The one-quarter turn space Q is the quotient of the unit
cube as shown in Figure 4.22:

Figure 4.22: Two visualisations of how to glue faces to get Q.

Step 1: The 1–skeleton is the graph in Figure 4.23(a) with four edges and two vertices. We take the
circled edge as the spanning tree.
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Figure 4.23: (a) The 1–skeleton and spanning tree. (b) After labelling the non-tree edges, read off
relators from the faces. Edges of the spanning tree do not contribute to the relators.

Step 2: Label the non-tree edges with a, b, c.

Step 3: The three squares give relations and we have the following presentation

π1(Q) = 〈a, b, c | a = cb, ba = c, abc = 1〉 .

Exercise 4.3.3. Recognize π1(Q). In particular, it is not Abelian.

4.4 Abelian Groups

Definition 4.4.1. Suppose that Z is an Abelian group. Define N := {z ∈ Z : z is finite order}. Then
N < Z is called the torsion subgroup of Z.

Recall that A⊕B is the direct product of A and B.

Proposition 4.4.1. Suppose Z is a finitely generated Abelian group. Then there exist unique k ∈ N
and N a finite group so that Z ∼= Zk ⊕N .

Proof. This follows from the classification of finitely generated Abelian groups.

Definition 4.4.2. We call k the rank of Z, and use the notation rk(Z) = k.

Definition 4.4.3. Let G be any (finitely generated) group. The commutator subgroup of G is [G,G],
the subgroup of G generated by all elements of the form xyx−1y−1 for x, y ∈ G.

[G,G] =
¬
xyx−1y−1 | x, y ∈ G

¶
/ G.

Definition 4.4.4. We define the Abelianization of G to be GAb = G/[G,G].

Definition 4.4.5. We define the first homology group of M3 to be H1(M,Z) := [π1(M)]Ab.

Example 4.4.1. Let M3 = N3 # P 3. Then it follows by van Kampen’s theorem that π1(M) ∼=
π1(N) ∗ π1(P ). Therefore H1(M) = H1(N)⊕H1(P ).

Exercise 4.4.1. Show that (A ∗B)Ab = AAb ⊕BAb.

Example 4.4.2. As in the last example we have that

π1(#gS
2 × S1) = Fg ∼= ∗gZ,

so H1(#gS
2 × S1) = Zg has rank g. We denote #gS

2 × S1 by Mg.
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Chapter 5

The Connect Sum Decomposition

5.1 Existence

Proposition 5.1.1. If M is connected, orientable, compact and M ∼= N #Mg, then g ≤ rk(H1(M)).

Note here that π1 is finitely generated since M is compact.

Proof. We know that H1(M) = H1(N)⊕H1(Mg), so:

rk(H1(M)) = rk(H1(N)) + g.

This is the first step in the existence proof for connect sum decompositions. For the next step, we
need the following proposition:

Proposition 5.1.2. Suppose M is connected, orientable and compact. Then there exists a decompo-
sition

M ∼= #k
i=1Ni # (#gS

2 × S1) # (#nB3)

where each Ni is irreducible and not S3, B3 or S2 × S1.

Proof. The proof is split into three main steps.

Step 1: Let n be the number of components of ∂M that are 2–spheres. Let F be the frontier of a
“tree-like” union of arcs and two-sphere boundary components, as shown in Figure 5.1. Form
M − n(F ) and cap off F± by 3–balls. From now on we assume that n = 0.

Figure 5.1: F is the frontier of a “tree-like” union of arcs and two-sphere boundary components.

Step 2: Proposition 5.1.1 gives us an upper bound on the number of summands of M homeomorphic
to S2×S1. Thus from now on we may assume that g = 0. It follows that any 2–sphere embedded
in M separates.

For Step 3, we require the following definitions.
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Definition 5.1.1. We define S3
k := #k

i=1B3 and we call this a ball with holes or a punctured
sphere. See Figure 5.2.

Figure 5.2: Here, n = 4.

Exercise 5.1.1. Show that (#nB3) ∪S2 (#mB3) ∼= #n+m−2B3.

Definition 5.1.2. We call S ↪→M a sphere system if S is an embedding of a disjoint collection
of 2–spheres; see Figure 5.3.

Definition 5.1.3. A system S ↪→M is reduced if no component of M − n(S) is homeomorphic
to a punctured sphere. The sphere system in Figure 5.3 is reduced.

Figure 5.3: A reduced sphere system S in M .

Step 3: If M is irreducible we are done. If M ∼= S3 we are done by Alexander’s theorem. So suppose
that M contains an essential 2–sphere. For the reminder of the proof, we fix a finite triangulation
T of M . So our assumptions give us a reduced sphere system S ⊂M .

Normalization Lemma. For any reduced sphere system S ⊂ M there is a normal, reduced
sphere system S′ such that |S′| ≥ |S|.

If we assume this lemma, we get the following proposition:

Proposition 5.1.3. (Existence) Let M be defined as above. Then M ∼= #n
i=1Ni such that all

Ni are irreducible and Ni 6∼= S3,B3.

Proof. Let S1 denote an essential 2–sphere, so M = N1 #S1 N2. If N1 is homeomorphic to
#kB3 for k ≥ 1, then we have a contradiction. So, S = {S1} is a reduced sphere system. Let
S be a maximal sphere system (i.e. of maximal size). This exists because any normal reduced
system has at most 20|T | components; this follows from the Haken-Kneser finiteness and the
normalization lemma. Since S is maximal , if we cut M along S and cap off with 3–balls the
resulting manifolds {Ni} are all irreducible.

This completes the proof of Proposition 5.1.2.
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5.2 Proof of the Normalisation Lemma

To prove the normalization lemma, we must normalize the given system S.

Proof of Normalization Lemma. Isotope S to be transverse to T (k) for k = 0, 1, 2, i.e. S ∩ T (0) =
∅, |S ∩T (1)| =: w(S) (the weight of S) is finite, S ∩T (1) is transverse and S ∩∂∆i is a finite collection
of simple closed curves; see Figure 5.4. We alternatingly apply surgery and the baseball move.

Figure 5.4: (a) The sphere system can look unpleasant in the triangulation. (b) A possible picture of
S ∩ T (2).

5.2.1 Surgery

Suppose (D, ∂D) ⊂ (M,S) is a surgery disk, i.e. D ∩S = ∂D. Suppose D ∩S ⊂ F is a component
of S. As before, define FD = (F − n(D)) ∪ D+ ∪ D−. Define SD = (S − F ) ∪ FD. Notice that ∂D
separates F , so FD = F+ ∪ F−. See Figure 5.5.

Figure 5.5: Notice that ∂D separates F , so FD = F+ ∪ F−.

Let X,Y ⊂ M − n(S) be the components adjacent to F and suppose D ∩ X 6= ∅. So let X+ ∪
X0 ∪X− = X − n(FD) where X0 meets D and X± are adjacent to F±, respectively. See Figure 5.6.

Figure 5.6: X+ ∪X0 ∪X− = X − n(FD), where X0 meets D, and X± are adjacent to F±.

Note that X0
∼= #3B3. Since we assumed S is a reduced sphere system, we find Y is not a punctured

sphere.

Exercise 5.2.1. Y ∪F X0 is not a punctured sphere.

Claim. At most one of X+, X− is a punctured sphere.
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Proof. If both are punctured spheres then so is X = X+∪F+X0∪F−X−, a contradiction. This proves
the claim.

Let S′ = S − F . Thus either S+ = S′ ∪ F+ or S− = S′ ∪ F− or SD = S′ ∪ FD is a reduced system.

5.2.2 Using Surgery

For every tetrahedron ∆ ∈ T (3), the surface S meets ∂∆ is a collection of simple closed curves. See
Figure 5.7 for a possible intersection pattern.

Figure 5.7: A possible intersection of S with the boundary of a tetrahedron.

For every simple closed curve α ⊂ ∂∆∩S we do the following. Pick a disk D ⊂ ∂∆ bounded by α.
Isotope D into ∆ (∂D stays in S), as in Figure 5.8.

Figure 5.8: Isotope D into ∆.

Use D (in ∆) to surger all curves of S ∩D, innermost first. When this is done, S ∩∆ is a collection
of disks (for all ∆).

Claim. After surgery, for all ∆ and for all simple closed curves α ⊂ ∂∆ ∩ S, α meets ∆(1).

Proof. Suppose α has weight 0 and α ⊂ f ⊂ ∆(2) a face. We surgered along both D±, so the component
sphere containing α bounds a ball as in Figure 5.9.

Figure 5.9: We surgered along both D±, so the component sphere containing α bounds a ball.

But surgery deletes trivial spheres. This proves the claim.
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Figure 5.10: The intersection of S with the two-skeleton; outside of ∆ it can be complicated.

5.2.3 The Baseball Move

We perform this move after surgery along all curves of S ∩ ∂∆ for all ∆3 ∈ T . Suppose α is a
simple closed curve of S ∩ ∂∆, where ∆3 ∈ T . So α bounds disks D0 and D1 in ∂∆. Suppose that
there is an edge e ∈ ∆(1) with |α ∩ e| ≥ 2, as illustrated in Figure 5.11.

Exercise 5.2.1. Without loss of generality, there is a component d ⊂ D0 ∩ e such that d ∩∆(0) = ∅,
as in Figure 5.11.

Figure 5.11: α bounds two disks D0 and D1, and there is an edge e ∈ ∆(1) such that |α ∩ e| = 2.

Now let D = D0. By an innermost arc argument we may assume that d∩S = ∂d. Let D′ ⊂ S ∩∆
be the disk bounded by α, as in Figure 5.12.

Figure 5.12: D′ is the disk bounded by α.

Since D ∪D′ ∼= S2, they cobound a three-ball, B, by Alexander’s theorem, and so we may choose
an embedded arc d′ ⊂ D′ so that d and d′ cobound a disk E ⊂ B, as in Figure 5.13.
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Figure 5.13: The arcs d and d′ cobound a disk E ⊂ B.

Let C be the 3–ball obtained from N(E) by cutting along S and retaining the component containing
E; see figure 5.14.

Figure 5.14: A picture of N(E) ∩ S.

Write ∂−C = C ∩ S and ∂+C = ∂C − ∂−C. The baseball curve is the common boundary ∂∂+C =
∂∂−C, as in Figure 5.15.

Figure 5.15: The baseball curve is the common boundary ∂∂+C = ∂∂−C.

Since C is a 3–ball, there is an isotopy, called the baseball move, taking ∂−C to ∂+C; see Fig-
ures 5.16(a) or (b). This gives an isotopy of S to S′. Notice that w(S′) = w(S)− 2.

Figure 5.16: Two visualisations of the baseball move.
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So alternate between surgery along all curves and single baseball moves. As w(S) is decreasing,
this process terminates with S in normal position. If w(S) = 0 then S = ∅ and this is a contradiction
as surgery never decreases the initial number of essential spheres. So this completes the proof of
existence.

5.3 Uniqueness

Following Hatcher, for uniqueness we use lemma 5.3.1.

Definition 5.3.1. If M is a 3–manifold, define cM to be M with all S2 ⊂ ∂M capped off by 3–balls,
and discarding 3–sphere components.

Lemma 5.3.1. Suppose that S ⊂M is a sphere system (not necessarily reduced) so that:

ÚM − n(S) =
kG
i=1

Ni

is a disjoint union of irreducible manifolds. Suppose that (D, ∂D) ⊂ (M,S) is a surgery disk. Then:

ÛM − n(SD) =
kG
i=1

Ni.

Exercise 5.3.1. Prove this lemma. For a hint, see Figure 5.17.

Figure 5.17: Hint for Exercise 5.3.1.

So we may now complete the proof of uniqueness of prime decomposition.

Proof of uniqueness. Suppose S and T are sphere systems so that:

M − n(S) =
kG
i=1

Pi

and

N − n(T ) =
lG

j=1

Qj

where the Pi and Qj are irreducible. Now, if S ∩ T = ∅ we have:G
Pi =

ÛG
Pi − n(T )

= ÛM − n(S ∪ T )

=
ÛG
Qj − n(S) =

G
Qj

On the other hand, if S ∩ T 6= ∅ then surger S along an innermost disk of T and apply Lemma 5.3.1.
Finally, if M ∼= N #

�
#lS

2 × S1
�

and M ∼= N #
�
#kS

2 × S1
�

then:

rank(H1(N)) + l = rank(H1(M)) = rank(H1(N)) + k

and so l = k.
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Chapter 6

Torus Decompositions

6.1 Essential Tori

Exercise 6.1.1. Suppose that (M,T ) is orientable, compact, connected, irreducible and triangulated.
Suppose F ⊂ M is embedded, closed (∂F = ∅, compact) and orientable. Show that if G is incom-
pressible, it is isotopic to a normal surface.

Definition 6.1.1. Say F properly embedded in M is boundary parallel if there is an isotopy (relative
to ∂F ) pusing F into ∂M . More precisely, there is an isotopy H : F × I →M such that:

(i) Ht is an embedding of F into M for all t < 1.

(ii) H1 is an embedding of F into ∂M .

(iii) H0 = Id.

(iv) Ht|∂F = Id.

Equivalently M − n(F ) has a component X ∼= F × I with F ×{0} = F+ ⊂ N(F ) and F ×{1} ⊆ ∂M .
See Figure 6.1.

Figure 6.1: F is boundary parallel to M .

Example 6.1.1. (See Figure 6.2)

(i) The equatorial disk B2 ⊂ B3 is boundary parallel.

(ii) Take K ⊂ T = ∂(D2×S1). Let N(K) be a closed neighbourhood in D2×S1. Let G = N(K)∩T .
So G ⊂ T = ∂(D2 × S1). Let F = ∂N(K)−G, so F is boundary parallel; in fact parallel to G.
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Figure 6.2: (a) Example (i). (b) Example (ii). (c) Cross section for Example (ii).

Note. F in example (ii) above is boundary parallel in essentially a unique way, unlike B2 ⊂ B3, or
the following. Take B1 × S1 ⊆ D2 × S1. Then this is boundary parallel in two ways; see Figure 6.3.

Figure 6.3: (b) is a cross section of (a), and B1 × S1 can be isotoped either up or down into T2 =
∂
�
D2 × S1

�
.

Example 6.1.2. M2 ⊆ D2 × S1 is not boundary parallel; see Figure 6.4.

Figure 6.4: M2 is not boundary parallel in D2 × S1.

Definition 6.1.2. A torus T ⊂M is essential if it is incompressible and not boundary parallel.

Definition 6.1.3. Suppose M is irreducible, orientable, compact and connected. Then the manifold
M is toroidal if there exists an essential torus T ⊂ M . M is atoroidal if there are no essential tori
embedded in M .

Example 6.1.3. Suppose K ⊂ S3 is a knot. Define the knot exterior XK := S3−n(K). If K = L#L′

is a non-trivial connect sum of knots, then XK is toroidal. See Figure 6.5 for example.
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Figure 6.5: (a) n(K). (b) An essential torus in XK .

As shown earlier, when dealing with essential 2–spheres, we cut and cap off with 3–balls. However,
there is no canonical way to cap off T2 ⊂ ∂M . So we must live with the possibility of incompressible
tori, but at least we may eliminate essential tori.

Definition 6.1.4. Fix K, a knot in S3, called the companion knot. Fix L ⊂ D2 × S1, the pattern
knot. Fix a homeomorphism ϕ : D2 × S1 → N(K). Then ϕ(L) ⊂ S3 is a satellite knot with pattern L
and companion K. See Figure 6.6.

Figure 6.6: (a) L is the pattern knot, (b) K is the companion knot and (c) ϕ(L) is the satelite knot.

Example 6.1.4. All non-trivial connect sums are satellite knots.

Remark. If K is not the unknot and L ⊂ D2×S1 is disk busting (for all compressing disks D ⊂ D2×S1,
|L ∩D| ≥ 1, and L is not isotopic to {0} × S1), then Xϕ(L) is toroidal.

Theorem 6.1.1 (Thurston). Every knot K ⊂ S3 other than the unknot is either a satellite knot, a
torus knot or a hyperbolic knot, as respectively XK is toroidal, XK is atoroidal but cylindrical, or XK

is atoroidal and acylindrical.

Exercise 6.1.2. Show that XK is irreducible.

Example 6.1.5. S3 is atoroidal, but T3 is not; see Figure 6.7.

Figure 6.7: T3 contains T2 as an essential torus, and so is toroidal.
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Exercise 6.1.3. Suppose F ⊂ M is properly embedded and suppose that i∗ : π1(F ) → π1(M) is
injective. Show that F is incompressible (i.e., all surgery disks are trivial).

The final part of the course will be devoted to proving a partial converse to Exercise 6.1.3, via the
loop theorem, the disk theorem and Dehn’s lemma. An application of this converse will give us the
following example:

Example 6.1.6. A knot K ⊂ S3 is isotopic to a round circle (that is K is unknotted) if and only if
π1(XK) ∼= Z.

Definition 6.1.5. A torus system is a finite union of disjoint, non-parallel, essential tori.

Proposition 6.1.2 (Corollary 1.8 in Hatcher). Suppose that M is compact, connected, orientable and
irreducible. Then there is a torus system S ⊂ M (where we allow S = ∅), so that all components of
M − n(S) are atoroidal.

Proof. If M is atoroidal then take S = ∅. Otherwise, fix a triangulation T of M and suppose that
F ⊂M is an essential torus. So S = {F} is a torus system. We now induct on |S|. By Exercise 6.1.1 we
may normalize S. By Haken-Kneser finiteness we find that |S| ≤ 20|T |, so if there exists a component
N ⊆ M − n(S) which is toroidal then we find F ′ ⊂ N an essential torus. So F ′ is not parallel to any
component of S. Let S′ = S ∪ {F ′}. Then S′ is again a torus system.

Remark. The final step uses Exercise 4.5 in Exercise Sheet 4.

Example 6.1.7. Suppose ϕ : F → F is a homeomorphism of a surface F . Define Mϕ = F ×I/(x, 1) ∼
(ϕ(x), 0). Then Mϕ is a surface bundle over S1 via ρ : Mϕ → S1, where ρ : (x, t) 7→ t ∈ R/Z; see
Figure 6.8.

Figure 6.8: Mϕ is a T2–bundle over S1.

Exercise 6.1.4. Show that every fibre Tt = ρ−1(t) is incompressible (in fact π1–injective) in Mϕ.

Note. If F = T ∼= T2, and T ⊂Mϕ is a fibre, then Mϕ−n(T ) ∼= T ×I. So we cannot avoid sometimes
having a product component after cutting.

Remark. We have that T3 is the torus bundle MId in the above notation.

6.2 Lens Spaces

We now discuss lens spaces. Take S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 2}. Let y be the loop {|w| = 2}
and x be the loop {|z| = 2}, oriented as shown in Figure 6.9.
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Figure 6.9: The great circles {z = 0} and {w = 0} in S3 ⊂ C2 with this orientation are together
homeomorphic to the right Hopf link.

Then define:

V = {(z, w) ∈ S3 : |w| ≤ 1},
W = {(z, w) ∈ S3 : |z| ≤ 1},
T = V ∩W

= {(z, w) ∈ S3 : |z| = |w| = 1} ∼= T2.

Recall that D × S1 is a solid torus. We refer to any curve of the form ∂D × {z} ⊂ D × S1 as a
meridian. Now, as indicated in Figure 6.10 we take µ and λ to be generators of π1(T ). Thus µ and
λ are meridians of the solid tori V and W , respectively. We give µ and λ the orientations shown in
Figure 6.10.

Figure 6.10: The curves µ and λ are oriented so that µ, λ and the outward normal for V form a
right-handed frame.

Definition 6.2.1. Write Zp = Z/pZ = {α ∈ C : αp = 1} for p 6= 0, and fix q ∈ Z with gcd{q, p} = 1.
This acts on S3 via:

α · (z, w) = (αz, αqw).

Definition 6.2.2. Define L(p, q) = Zp\S3, the (p, q)–lens space.

Exercise 6.2.1. L(p, q) is an orientable 3–manifold.

Example 6.2.1. We have L(1, 0) = S3.

Exercise 6.2.2. Show that L(2, 1) ∼= P 3.

Proposition 6.2.1. Suppose V,W ∼= D2 × S1 and ϕ : ∂W → ∂V is a homeomorphism. Show that
M = V ∪ϕW is either a lens space or is S1 × S2.

Note. We have π1(L(p, q)) ∼= Zp. Thus if L(p′, q′) ∼= L(p, q) then p′ = p.

Exercise 6.2.3. Show that if q′ = ±q±1 modulo p, then L(p, q′) ∼= L(p, q).

Remark. The converse holds, but is much harder to prove (see Brody 1960).
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Remark. Whitehead (1941) showed that L(p, q) w L(p, q′) (the spaces are homotopy equivalent) if
and only if qq′ = ±k2 modulo p for some k.

Example 6.2.2. We have L(7, 1) w L(7, 2), but these spaces are not homeomorphic.

For lens spaces, we have the following definitions:

• The quotient space Zp\S3.

• The gluing V ∪ϕW , the union of solid tori, which is either a lens space or S2 × S1.

• The following construction: let B = {(z, t) ∈ C × R : |z|2 + t2 ≤ 1}, a 3–ball. Let D± be the
upper (respectively lower) hemisphere of ∂B, as in Figure 6.11.

Figure 6.11: D± are the upper and lower hemispheres of ∂B.

Fix α = exp(2πi/p) and glue D− to D+ by ϕ : D− −→ D+, where ϕ(z, t) = (αqz,−t). See
Figure 6.12.

Figure 6.12: The lower hemisphere is glued to the upper by a 2π · q/p twist.

Notice that, as Figure 6.12 indicates, there is a nice triangulation of B by a collection of p
tetrahedra, all sharing the z–axis as an edge. Notice also that a neighborhood of the midpoint
of any edge is a half-ball

B3
+
∼= {(x, y, z) : z ≥ 0, x2 + y2 + z2 ≤ 1}

and p copies of these are glued, each to the next. So “geometrically”, an edge has pπ dihedral
angle which is (p− 2)π too much. So we consider a lens with dihedral angle 2π/p at the equator,
as in Figure 6.13.

Figure 6.13: A lens with dihedral angle 2π/p at the equator (here, p = 5).

Now we can glue and get the right amount of dihedral angle. More precisely, the lens should live
in S3 and be cut out by great hemispheres, each meeting the next at angle 2π/p. In Figure 6.14,
you can see the lenses for p = 10. Glue pairs of these together to get lenses for p = 5.
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Figure 6.14: 10 copies of the lens tile S3.

Exercise 6.2.1. Check that the three definitions agree.

6.3 Lens Spaces and Tori

Recall that we defined the meridian and longitude µ, λ for the torus T = V ∩ W ⊂ S3. See
Figure 6.15.

Figure 6.15: The torus T with meridian µ and longitude λ. Note that the orientation of µ, that of λ,
and the outward normal to V , in that order, obey the right-hand rule.

Definition 6.3.1. If K = sµ+ rλ then the slope of K is r/s.

Let K = sµ + rλ ∈ π1(T ), a simple closed curve. In Figure 6.16 for example, K = 3µ + 2λ has
slope 2/3 in T .

Figure 6.16: The right handed trefoil knot K has slope 2/3. (a) K as seen in the torus T , and (b) K
as seen in R2/Z2 ∼= T .

Notation. For α, β ∈ π1(T ) we define α · β to be the signed intersection number. So

µ · µ = 0 µ · λ = +1
λ · µ = −1 λ · λ = 0

and thus µ ·K = r and K · λ = s.

Definition 6.3.2. Suppose r, s ∈ Z are coprime, with |r|, |s| > 1. We call K = rλ + sµ ⊂ T ⊂ S3

the (r, s)–torus knot. Then we define XK := S3 − n(K), the knot exterior. Moreover, we define
VK := V − n(K), WK := W − n(K) and A = TK = T − n(K).

In Figure 6.17, z is the core curve of A = VK ∩WK .
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Figure 6.17: The cross-sections of VK and WK . The loop z is the core curve of A = VK ∩WK , and
the loops x and y are the generators of π1(Vk) and π1(Wk) respectively.

Recall that the inclusions i : A ↪→ VK and j : A ↪→WK induce maps i∗ and j∗ giving the following
diagram:

π1(A) = 〈z〉

π1(Vk) = 〈x〉
i∗�

⊃

π1(Wk) = 〈y〉
j∗

⊂

-

Exercise 6.3.1. Show that i∗(z) = xr and j∗(z) = ys hence i∗ and j∗ are injective, where x and y
are the loops shown in Figure 6.17.

By Seifert-van Kampen, assuming that r, s 6= 0, we get the following push-out where the lower
maps are again inclusions:

π1(A) = 〈z〉

π1(Vk) = 〈x〉
i∗�

⊃

π1(Wk) = 〈y〉
j∗

⊂

-

Z ∗Z Z ∼= 〈x, y |xr = ys 〉 =: Γr,s
�

⊃⊂

-

Via group theory, one can show that Γr,s ∼= Γp,q if and only if {|p|, |q|} = {|r|, |s|}.

Aside. Note that

• SO(2) ∼= S1,

• SO(3) ∼= P3 and

• SL(2,R) ∼= int(D× S1) ∼= R2 × S1, the latter is not an isomorphism of groups.

Remark. We now have the following remarkable fact. Let K ⊂ S3 be the trefoil knot and de-
fine YK = S3 − K be the knot complement, an open three-manifold. Then YK is homeomorphic to
SL(2,R)/SL(2,Z).

For the following we assume that K is not the unknot, i.e. |p|, |q| ≥ 2.

Theorem 6.3.1. Suppose K = Kp,q is the (p, q)–torus knot, then the annulus A = T − n(K) is the
unique essential annulus in XK , up to isotopy.

We will prove this later in the course.

Corollary 6.3.1. Define Xp,q = XK , where K = Kp,q. Then Xp,q
∼= Xr,s if and only if {|p|, |q|} =

{|r|, |s|}.
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6.4 Non-Uniqueness of Torus Decompositions

Now we closely follow Hatcher. Let Vi ∼= D × S1, i = 1, 2, 3, 4. Let Ai ⊂ ∂Vi be an embedded
annulus and suppose Ai winds qi times about Vi with qi ≥ 2; for examples see Figure 6.18.

Figure 6.18: Two examples of a winding annulus; in (a) q1 = 2 and in (b) q2 = 3.

Another way to define qi is the following: Let αi be a core curve of Ai and define qi via qi = |αi·∂Di|.
Let A′i = ∂Vi −Ai and pick ϕ : A′i −→ Ai+1 where we take the indices modulo 4. Let M = tVi/ϕi;
see Figure 6.19(a). Let Bi denote the image of Ai in M . Now we define Mi = Vi ∪ϕi

Vi+1. Let
T1 = B1 ∪B3 and T2 = B2 ∪B4. Thus M = M1 ∪T1

M3 = M2 ∪T2
M4.

Figure 6.19: (a) A schematic of M . Bi is the image of Ai in M . (b) and (c) are schematics of two
different torus decompositions.

Finally, we claim that B1 ∪B3 and B2 ∪B4 are incompressible tori in M . If we now choose the qi
to all be distinct and coprime then, for i = 1, 2, 3, 4, then manifold Mi is a torus knot exterior. So we
have, for these choices of qi, that M1 is not homeomorphic to M2 or M4 and M3 is not homeomorphic
to M2 or M4. Thus the torus decompositions T1 and T2 are different; see Figures 6.19(b) and (c).

Remark (17.2). This requires the following facts. If Xp,q = S3 − n(Kp,q), then

• ∂Xp,q is incompressible,

• Xp,q is atoroidal and

• Theorem 6.3.1.

We will prove these facts later. To do so, and so to understand the non-uniqueness of torus
decompositions, we must first understand Seifert fibred spaces.

6.5 Seifert Fibred Spaces

Fibre D × I by intervals of the form {x} × I. We call {0} × I the central fibre. Let ϕ : D ×
{1} −→ D × {0} be a 2πq/p rotation, ϕ(z, 1) = (αqz, 0) where as usual p and q are coprime. Define
Vp,q = D × I/ϕ, the (p, q)–fibred solid torus. Notice that {0} × I now gives a circle as does the set of
fibres {αk · (z × I) : αp = 1}. Note that Vp,q is given a fibring, i.e. a decomposition into circles.

Definition 6.5.1. A Seifert fibring of a three-manifold M is a partition F of M into circles (the
fibres) such that every fibre λ ∈ F has arbitrary small regular neighbourhoods N(λ) all homeomorphic
to Vp,q for some fixed p, q. Here the homeomorphisms are all fibre-preserving.
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Remark. The integers p, q only depend on λ.

Definition 6.5.2. We call p the multiplicity of λ.

Note that the space Vp,q is Seifert fibred itself and the central fibre has multiplicity p while all other
fibres have multiplicity equal to 1.

Definition 6.5.3. If λ has multiplicity greater than 1, then we call λ a singular fibre. All other fibres
are called generic. See Figure 6.20.

Figure 6.20: Inside of V3,1 the central fibre α is singular (with multiplicity three) while all others, for
example β, are generic.

Exercise 6.5.1. If M is compact then there are only finitely many singular fibres, all contained in
the interior of M .

Exercise 6.5.2. Show that Lp,q is a Seifert fibred space with at most two singular fibres. Compute
their multiplicities.

Exercise 6.5.3. Let K = Kp,q be the (p, q)–torus knot. Show that XK is a Seifert fibered space.
Find the singular fibres and their multiplicities.

Example 6.5.1. Let M = V1 ∪ V2 ∪ V3 ∪ V4 as in the last lecture. Then M is a Seifert fibred space
with 4 singular fibres.

Definition 6.5.4. Suppose (M,F) is a Seifert fibred space. Let B = M/S1 be the base orbifold ; that
is, the quotient of M sending fibres to points.

Example 6.5.2. Suppose M = Vp,q. The quotient M/S1 is a disk D with a cone point at the centre.
The angle at the cone point is 2π/p; see Figure 6.21.

Figure 6.21: (a) The solid torus V = V3,1. (b) A meridian disk for V . (c) The quotient V/S1 is a cone
with angle 2π/3 at the cone point.

Exercise 6.5.4. In exercises 6.5.1 and 6.5.2, identify the base orbifolds.

Example 6.5.3. Notice that if ρ : T −→ F is an S1–bundle then T/S1 ∼= F .

Theorem 6.5.1 (1.9 in Hatcher). Let M be compact, irreducible and orientable. There exists a torus
system T ⊂ M such that all components of M − n(T ) are either atoroidal or Seifert fibred spaces.
Furthermore any minimal such system is unique up to isotopy.
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Chapter 7

Essential Surfaces

7.1 Bigons

Suppose F ⊂M is properly embedded, and M is compact, irreducible and orientable. Recall that
(D, ∂D) ⊂ (M,F ) is a surgery disk for F if D ∩ F = ∂D. D is trivial if ∂D bounds a disk in F . If D
is not trivial, then it is a compressing disk for F .

Definition 7.1.1. A disk D with ∂D = α∪ β such that α and β are connected and α∩ β = ∂α = ∂β
is a bigon; see Figure 7.1.

Figure 7.1: A bigon D.

Definition 7.1.2. Say D ⊂ M is a surgery bigon for F ⊂ M if D is a bigon, D ∩ F = α and
D ∩ ∂M = β. Say that D is trivial if there is a bigon D′ ⊂ F so that ∂D′ = α′ ∪ β′, α = α′ and
D′ ∩ ∂M = β′, as in Figure 7.2. If D is not trivial, call it a boundary compressing bigon, or simply a
boundary compression.

Figure 7.2: D is a trivial surgery bigon. Note that D′ is not properly embedded in M but contained
entirely in F .

Recall that a two-sided simple closed curve α ⊂ F 2 is essential if α does not bound a disk on either
side (Figure 7.3(a)). A sphere S ⊂ M3 is essential if it does not bound a three-ball on either side
(Figure 7.3(b)). If M is irreducible then a disk (D, ∂D) ⊂ (M,∂M) is essential if ∂D is essential in
∂M (Figure 7.3(c)).
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Figure 7.3: (a) All the green curves here are essential. (b) Here S is essential in M . (c) These disks
are essential in M .

Definition 7.1.3. Suppose that S ⊂M is a properly embedded, connected, two-sided surface that is
not a disk or a sphere. We say S is essential if it is incompressible and boundary incompressible.

Definition 7.1.4. If all surgery disks are trivial, we call F incompressible; similarly, if all surgery
bigons are trivial, call F boundary incompressible.

Exercise 7.1.1. Suppose S ⊂M is an essential surface. Show that ∂S ⊂ ∂M is essential.

Proposition 7.1.1. If S ⊂ D2 × S1 is essential then S is isotopic to D2 × {z} for some z ∈ S1.

Proof. Let µz = ∂D2 × {z}. We call µz the meridian curves. Abusing notation, let D = D2 × {1}.
Then by Exercise 7.1.1, ∂S is essential so we may isotope components of ∂S so that all are either equal
to meridian curves, or are transverse to all meridian curves, as in Figures 7.4(a) and (b).

Figure 7.4: (a) Here the component of ∂S is meridian curve. (b) Here ∂S is transverse to all meridian
curves.

Thus, we may assume that ∂S is transverse to µ1, and via isotopy relative to ∂M , we may assume
that S is transverse to D. Then S ∩D is a collection of arcs and loops, as in Figure 7.5.

Figure 7.5: S ∩D is a collection of arcs and loops.

We proceed as follows:

Step 1: First suppose α ⊂ D∩S is an innermost loop, so α bounds a disk D1 ⊂ D such that D1∩S = ∂D1.
So D1 is a surgery disk for S and thus, as S is incompressible, there is a disk E ⊂ S with
∂E = ∂D1 = α, as in Figure 7.6(a). So D1 ∪ E is a 2–sphere. As D × S1 is irreducible, D1 ∪ E
bounds a 3–ball B, so there is an isotopy supported in n(B) moving E past D1; see Figure 7.6(b).
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This gives an isotopy of S, reducing |S ∩D|. So without loss of generality, we may assume that
D ∩ S consists only of arcs.

Figure 7.6: (a) E ∪D1 bounds a 3–ball B, so (b) we may isotope E through n(B) past D1 to reduce
|S ∩D|.

Step 2: Now suppose α ⊂ D ∩ S is an outermost arc. So α cuts off from D a surgery bigon D1. Since
S is boundary incompressible, α cuts off a bigon E from S. Let γ = E ∩ ∂(D × S1) and
β = D1 ∩ ∂(D × S1). See Figure 7.7.

Figure 7.7: (a) α cuts a surgery bigon D1 from D and E from S. (b) A plan view of (a).

Notice that D1 ∪ E is a disk, with D1 ∩ E = α. Thus D1 ∪ E lifts to áD × S1 ∼= D × R, as in
Figure 7.8.

Figure 7.8: D1 ∪ E lifts to áD × S1 ∼= D × R.

Let h : D × R→ R be projection to the second factor, and notice that:

h(∂+γ) = h(∂−γ)

as ∂±γ ∈ ∂D. So by Rolle’s theorem, (h|γ)′ has a zero, so γ is not transverse to µz for some
z ∈ S1, giving a contradiction. Thus without loss of generality, we may assume S ∩D = ∅.

Step 3: Next, define B = (D × S1) − n(D). This is a 3–ball, and S ⊂ B. Pick any component δ ⊂ ∂S.
So δ divides ∂B into disks C and C ′. So push C, say, into B, keeping ∂C inside of S. This gives
a disk in the interior of B. See Figure 7.9. If C ∩ S 6= ∂C, then we may isotope S, as in Step 1,
to reduce |S ∩ C|. So C gives a surgery disk for S. Thus S is a disk.
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Figure 7.9: Push C into B (keeping ∂C inside of S) to get a disk in the interior of B.

Finally, Alexander’s theorem implies that S is isotopic to D × {z} for some z ∈ S1, fixing δ
pointwise.

Note. All surgery disks for S2 are trivial, and all surgery disks and bigons for D2 are trivial, hence
they are excluded from the statement of Proposition 7.1.1.

Definition 7.1.5. Suppose (α, ∂α) ⊂ (A2, ∂A2) is an arc in an annulus. It is trivial if it cuts a bigon
off of A, and essential otherwise. See Figure 7.10.

Figure 7.10: (a) A trivial arc. (b) An essential arc.

Exercise 7.1.2. Suppose F ⊂M is two-sided and incompressible. Suppose D ⊂M is a surgery bigon
for F and suppose FD is the result of surgery. Show that FD ⊂M is incompressible.

Exercise 7.1.3. Deduce from the above that if ρ : T → F is an I–bundle then ∂hT is boundary
incompressible.

Lemma 7.1.2 (1.10 in Hatcher). Suppose that S ⊂ M is a connected, two-sided, incompressible
surface, and M is irreducible. Suppose S admits a boundary compressing bigon D with ∂D = α ∪ β,
α = D ∩ S, β = D ∩ ∂M and β is contained in a torus component T ⊂ ∂M . Then S is a boundary
parallel annulus.

Proof. By Exercise 7.1.1, ∂S ∩ T is essential in T . Let A = T − n(∂S), so A is a collection of annuli.
So β ⊂ A is either trivial or essential, as in Figure 7.11(a).

Case 1: Suppose that β ⊂ A is trivial. So β cuts a bigon E off of A. Then D ∪ E is a disk. Isotope
D ∪ E, keeping ∂(D ∪ E) in S, to get a surgery disk for S; see Figure 7.11(b).

Figure 7.11: (a) β1 is essential while β2 is trivial. (b) Trivial arcs define a surgery bigon for S.

Since S is incompressible, D ∪ E cuts a disk D′ out of S, and hence D was a trivial surgery
bigon, as in Figure 7.12.

47



Figure 7.12: D ∪ E cuts a disk D′ from S and so D is trivial.

Case 2: Suppose β is essential in A. If ∂B is contained in a single component of ∂S, then S is one-sided,
giving a contradiction. To see this, we can orient β and ∂S so that both intersections have
positive sign, as in Figure 7.13.

Figure 7.13: We can orient β and ∂S so that both intersections have positive sign.

Then following α we find that S is one-sided, as in Figure 7.14.

Figure 7.14: Carrying the orientation along α gives a different orientation to carrying along ∂S, a
contradiction.

So we have that β connects distinct components of ∂S, as in Figure 7.15.

Figure 7.15: β connects distinct components of ∂S.

Boundary compress S along D to get SD. Note that SD is incompressible, by Exercise 7.1.2, and
that SD has a trivial boundary component, so SD is a disk. To see this, say ∂SD bounds E in
T . So isotope E into E′ in M , keeping ∂E in SD, as in Figure 7.16.

48



Figure 7.16: Cutting along β gives two components of ∂Sβ , and the identification gives a trivial curve
in ∂SD.

Since SD is incompressible, ∂E′ must cut a disk out of SD, so SD is a disk. Since M is irreducible,
SD is boundary parallel; in fact it is parallel to the original E.

Figure 7.17: SD is boundary parallel.

So SD cuts a 3–ball B out of M . Letting V = B∪N(D), this is a solid torus, giving a parallelism
of S with the annulus A, as in Figure 7.18.

Figure 7.18: S is boundary parallel to the annulus A.

This completes the proof.

7.2 Vertical and Horizontal Surfaces

Definition 7.2.1. Suppose that (M,F) is Seifert fibred. Then we say that a properly embedded
surface S ⊂ M is vertical if S is a union of fibres, and it is horizontal if S is transverse to the fibres.
We make the same definitions for S ⊂ T for an I–bundle ρ : T → F .

Exercise 7.2.1. All essential surfaces S ⊂ T , where ρ : T → F is an I–bundle, are isotopic to either
vertical or horizontal surfaces.

Lemma 7.2.1. [1.11 in Hatcher] Suppose that (M,F) is compact, connected and irreducible. Supppose
S ⊂M is essential. Then after a proper isotopy, S is either vertical or horizontal.

Proof. Let Z := {αi}ki=1 be the set of singular fibres of F ; if M has no singular fibres, and ∂M = ∅,
then let {α1} be a single generic fibre. Let M0 = M − n(Z). Let B = M/S1 and let B0 = M0/S

1.
Note that ∂B0 6= ∅. In fact B0 is B with neighbourhoods of cone points removed, as in Figure 7.19.
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Figure 7.19: B0 is B with neighbourhoods of cone points removed.

Example 7.2.1. If M = Vp,q then Z is just the central fibre. Then M0 = A2 × S1 and B0 = A2; See
Figure 7.20.

Figure 7.20: M0 = A2 × S1 and B0 = A2.

Choose a system of arcs in B0 cutting B0 into a disk, i.e. as in Figure 7.21.

Figure 7.21: We may choose a system of arcs cutting B0 into a disk.

Let A ⊂ M0 be the vertical annuli above this system of arcs. So M0 − n(A) =: M1 is a solid torus,
fibred by F|M1, with all fibres generic. Given an essential surface S, all components of ∂S are essential
in ∂M .

(i) We may isotope them to all be vertical or horizontal with respect to the fibring F|∂M .

(ii) Isotope S (relative to ∂S) so that S meets Z transversely, and so meets n(Z) in horizontal disks.
Define S0 = S∩M0, and make S0 intersect A transversely. Consider the arcs and loops of S0∩A,
as in Figure 7.22.

Figure 7.22: (a) An essential loop. (b) Trivial loops. (c) Trivial arcs. (d) An essential arc.
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(iii) If there is a trivial loop, then there is an innermost such. Now, using incompressibility of S
and irreducibility of M , there is an isotopy of S reducing |S ∩ A| as usual. So without loss of
generality, there are no trivial loops.

(iv) Suppose β ⊂ S ∩ A is an outermost trivial arc and let D be the bigon cut our of A by β. If
∂β ⊂ ∂M then D is a surgery bigon for S, but as in Proposition 7.1.1, ∂S is either contained in
or transverse to F|∂M , giving a contradiction. To see this, since S is boundary incompressible,
there is a bigon E contained in S, as in Figure 7.23.

Figure 7.23: γ is parallel to the fibres.

So letting ∂E = β ∪ γ′, we find that γ′ is not transverse to F|∂M . On the other hand, if
∂β ⊂ ∂M0 − ∂M , then a baseball move across D reduces |S ∩ (Z)| by two. Now without loss of
generality, every component of S ∩A is either horizontal or vertical.

Figure 7.24: A baseball move across α reduces |S ∩ Z| by 2.

(v) Define S1 = S0 ∩M = S0 − n(A). So ∂S1 ⊂M1 is completely horizontal or completely vertical.
We may assume that S1 is incompressible in M1. Thus S1 is either a collection of horizontal
meridian disks, or a collection of boundary parallel annuli. If S1 contains an annulus with slope
that of the meridian, then S1 is compressible. If S1 contains an annulus B ⊂ S1 with ∂B
horizontal, then we see a surgery bigon with vertical boundary. So do a baseball move and
return to case (iv).
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Figure 7.25: If S1 contains an annulus B with ∂B horizontal, we may do a baseball move and reduce
to case (iv).

So S1 is now a collection of horizontal meridian disks, or a collection of boundary parallel vertical
annuli. It follows that S0, and so S, is either horizontal or vertical.

Remark. Vertical surfaces are easy to classify. They are orientable or not, and the base is I or S1.

Base Orbifold I S1

A2 T 2 orientable
M2 K2 non-orientable

Notation. Suppose F is not orientable. Let F ∼× I denote the orientation I–bundle over F . Likewise
define F ∼× S1.

Exercise 7.2.1. Show that P 2 ∼× I is homeomorphic to P 3 − int(B3).

7.3 Orbifolds and Covers

Definition 7.3.1. We say that B = (S,Z) is an 2–orbifold if S is a surface and Z ⊂ int(S) is a finite
set such that for every z ∈ Z we have an order pz ∈ Z+. We call Z the singular set. A point z ∈ Z is
a cone point if pz > 1.

Example 7.3.1. A surface is an orbifold with Z = ∅.

Example 7.3.2. The square pillow case, S2(2, 2, 2, 2), shown in Figure 7.26, is an orbifold.

Figure 7.26: A picture of the square pillow case S2(2, 2, 2, 2).

Definition 7.3.2. If S is a surface with a triangulation T then we define the Euler characteristic of
S to be χ(S) = V −E +F where V denotes the number of vertices, E the number of edges and F the
number of triangles (faces).

Exercise 7.3.1. Show that χ stays unchanged under the Pachner moves. Figure 7.27 shows the
Pachner moves. Since any two triangulations of a fixed closed surface are related by Pachner moves,
the Euler characteristic is independent of the choice of T .
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Figure 7.27: The Pacher moves.

Example 7.3.3. You can see by the triangulation shown in Figure 7.28(a) that χ(S2) = 4−6+4 = 2.
Similarly, Figure 7.28(b) shows that χ(T 2) = 1− 3 + 2 = 0.

Figure 7.28: (a) A triangulation of a 2–sphere. (b) A triangulation of the 2–dimensional torus.

Definition 7.3.3. We define the Euler characteristic of an orbifold via

χorb(B) = χ(S) +
X
z∈Z

�
1

pz
− 1

�
.

Example 7.3.4. χorb(S2(2, 2, 2, 2)) = 2 + 4(1/2− 1) = 0.

Exercise 7.3.2. List all 2–orbifolds B so that χorb(B) = 0.

Exercise 7.3.3. What can you say about B so that χorb(B) > 0?

Example 7.3.5. The map from D ⊂ C → D which sends z to zn is an orbifold map of order n. In
Figure 7.29, n = 3.

Figure 7.29: The map z 7→ z3 from D ⊂ C to itself is a three-fold cover.

Definition 7.3.4. If C,B are 2–orbifolds then ϕ : C → B is a cover if

1. ϕ−1(ZB) = ZC ,

2. ϕ|(C − ZC) : C − ZC → B − ZB is a d–fold cover and

3. for every point z ∈ ZB , we have d/pz =
P

y∈ϕ−1(z)

1/py.

Note that ϕ restricted to any regular neighbourhood of a point z ∈ ZC is modelled on the example
z 7−→ zn.
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Example 7.3.6. The quotient of T 2 via the 180◦ rotation shown in Figure 7.30 is a degree two orbifold
cover.

Figure 7.30: The quotient map of the 2–dimensional torus via the 180◦ rotation.

Exercise 7.3.4. Show that if ϕ : C → B is a d–fold orbifold cover then χorb(C) = d · χorb(B). As
warm-up, show that if ϕ : T → S is a d–fold cover of surfaces then χ(T ) = d · χ(S).

Exercise 7.3.5. List all 2–fold covers of S2(2, 2, 2, 2).

The following question is known as the Hurwitz problem and still open in general: Given B,C such
that χorb(C)/χorb(B) ∈ {2, 3, 4, . . .} does there exists a d–fold cover?

Example 7.3.7. For n ≥ 2, S2(n) is a bad orbifold, meaning it is not covered by a surface. Hence
S2(n) is not covered by S2. You can also see this because 2/(2 + (1/n− 1)) /∈ N.

7.4 Back to Horizontal Surfaces

We now return to our original topic, horizontal surfaces. Suppose that S ⊂ (M,F) is horizontal.
As in the proof of Lemma 21.4, we may form M ⊃M0 ⊃M1 and S ⊃ S0 ⊃ S1. Let λ be any generic
fibre and d = |S ∩ λ|, so S1 is a collection of d horizontal disks. Recall that Z is the set of all singular
fibres. Thus S ∩ (N(Z)) is also a collection of disks. Then S is formed by gluing horizontal disks along
horizontal loops in ∂N(Z) and horizontal arcs in A. Thus the quotient ρ : M → M/S1 = B restricts
to S to give a d–fold cover ρ : S → B. So

χ(S) = d · χorb(B) = d ·

 
χ(B) +

X
z∈Z

�
1

pz
− 1

�!
.

Proof. See Hatcher.

To answer the question of a student, we will expand the definition of a boundary compression.

Definition 7.4.1. Suppose S ⊂ ∂M is a subsurface. Then we say S is boundary compressible if there
is a bigon D with ∂D = α∪ β so that D ∩ S = α, D ∩ ∂M − S = β and α does not cut a bigon out of
S. Say that S is boundary incompressible if no such bigon exists.

Now we continue our discussion of horizontal surfaces. Suppose that S ⊂ (M,F) is two-sided,
horizontal and connected. Then we get the following corollary of Proposition 7.2.1 (1.11 in Hatcher).

Corollary 7.4.1. The manifold M − n(S) is an I–bundle.

Proof sketch. Recall that S1 was a collection of horizontal disks in M1
∼= D × S1. So n(S1) cuts M1

into cylinders foliated by intervals. The vertical sides of these solid cylinders glue to give the desired
I–bundle.

Let ρ : M − n(S) −→ F be the I–bundle map. Then there are two cases.

(Case 1) The manifold M − n(S) is connected. So M − n(S) ∼= S × I and thus ∂h(M − n(S)) = S t S
and so F ∼= S and we find that M is an S–bundle over S1. See Figure 7.31.
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Figure 7.31: A picture of M −n(S) as an S–bundle over S1. The blue curve represents a generic fibre.

So the I–fibres in N(S) and in M − n(S) glue to give the Seifert fibring, F . I.e., there is a
monodromy (a homeomorphism ϕ : S −→ S) such that M ∼= S × I/(x, 1) ∼ (ϕ(x), 0) =: Mϕ and
finally S/ϕ ∼= B. The monodromy is periodic of period d = |S ∩ λ|, i.e. ϕd = IdS . See Figure 7.32.

Figure 7.32: M = (M − n(S)) ∪N(S) ∼= Mϕ. Here ϕ has periodicity 4.

Example 7.4.1. Let ϕ be the hyperelliptic involution on the 2–torus shown in Figure 7.30. This is
periodic.

Example 7.4.2. Glue the cube as shown in Figure 7.33 and note that planes parallel to the xy–plane
glue to give tori.

Figure 7.33: A cube with face pairings. The front and back are glued by the identity as are the left
and right face. The bottom and top face are glued together by a 180◦ rotation.

Note that intervals parallel to the z–axis glue to give circles, 4 of length 1 and the rest of length 2.
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Figure 7.34: A picture of the different circles achieved by gluing intervals parallel to the z–axis. The
gluings of the vertical faces are the same as in Figure 7.33 and are omitted.

All of the singular fibres in Figure 7.34 have length one, while all other vertical circles have length
two. All other vertical circles have length 2. So B ∼= S2(2, 2, 2, 2) is the base orbifold, double covered
by double covered by any horizontal surface, all of which are tori. See Figure 7.35.

Figure 7.35: The base orbifold is a copy of the square pillow case: B ∼= M/S1 ∼= S2(2, 2, 2, 2), and
double covered by T .

(Case 2) If M − n(S) has two components then each is a twisted I–bundle over F and these glue to
N(S) ∼= S × I giving a semibundle (also called a fibroid). See Figure 7.36.

Figure 7.36: A picture of the two twisted I–bundles over F .

So letting T1 and T2 be the two I–bundles, we obtain M by gluing T1 and T2 to N(S) and find
involutions τi : S −→ S such that Ti = S × I/(x, 0) ∼ (τi(x), 0). Here the homeomorphism ϕ = τ1 ◦ τ2
is again periodic.

Example 7.4.3. As an exercise, we showed that P 3 − int(B3) = P 2 ∼× I. Here ∂hT ∼= S2 and the
involution τ is the antipodal map. So if we consider T1 ∪S T2 where Ti ∼= P 2 ∼× I, we find that P 3 #P 3

is Seifert fibred. Check that τ1 ◦ τ2 = τ2 = ϕ = IdS and so it is periodic.

Figure 7.37: A picture of the gluing of T1 ∪S T2.

56



Example 7.4.4. Consider the cube with face pairings given in Figure 7.28. Notice that the intervals
parallel to the x–axis also define a Seifert fibring with B = K2, the Klein bottle, and all fibres are
generic, as in Figure 7.38(a). The planes y = 1/4 and y = 3/4 define a 2–torus S ⊂M and M − n(S)
has two components, both homeomorphic to K ∼× I.

Figure 7.38: (a) Intervals parallel to the x–axis give a fibring with B = K2. (b) Both components of
M − n(S) are homeomorphic to K2 ∼× I.

Exercise 7.4.1. Check that these planes give a 2–torus with the claimed properties. Find the invo-
lutions τ1, τ2.

Recall that every essential arc in A2 ∼= S1 × I is isotopic to {pt} × I, as in Figure 7.39.

Figure 7.39: An essential arc α in the annulus A2.

Exercise 7.4.2. Classify up to isotopy the essential arcs and loops in #3D
2, the pair of pants.

Figure 7.40: Two diagrams of the Pair of Pants.

Recall that if X = XK where K = Kp,q is the (p, q)–torus knot then B = X/S1 is the orbifold D2(p, q).

Exercise 7.4.3. Classify essential arcs and loops in D(p, q). Deduce that the only essential vertical
annulus in X is A = VK ∩WK . (Care is required if p or q is equal to 2, as then X contains a vertical
Mobius band.)

Figure 7.41: A diagram of D2(p, q). Note that the A here is the projection of the annulus into the
orbifold.
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Exercise 7.4.4. Use orbifold Euler characteristic to show that any horiontal surface S ⊂ X has
χ(X) ≤ p+ q− pq < 0 as p, q ≥ 2 and p 6= q. Deduce that X is atoroidal and A is the unique essential
annulus in X, up to isotopy.

Exercise 7.4.5 (Harder). Use Exercise 7.4.4 to prove that

g(Kp,q) =
(p− 1)(q − 1)

2

where g(K) is the minimal genus of a spanning surface for K.

Furthermore, X is a surface bundle over S1 with monodromy of order pq. To show this, let S be
the minimal spanning surface and consider X − n(S).

Aside. To answer the question of a student, we define the Euler characteristic of an n–manifold.

Definition 7.4.2. We define χ(Mn) by taking a finite triangulation of M and setting χ(M) =Pn
k=0(−1)k|T (k)| where |T (k)| denotes the number of k-simplices in the image ‖T‖.

7.5 Some Theorems From Hatcher

Proposition 7.5.1 (1.12 in Hatcher). Suppose (M,F) is compact, connected and Seifert fibred. Then
M is irreducible or M is homeomorphic to one of S2 × S1, S2 ∼× S1 or P 3 # P 3.

Proof. Suppose S ⊂ M is an essential 2–sphere. Following the proof of Proposition 7.2.1 (1.11 in
Hatcher) with surgery of essential surfaces replacing isotopy of essential spheres, we find an essential
2–sphere S′ such that S′ is vertical or horizontal. Since S′ is not A2, T 2,M2 or K2, we find S′ must
be horizontal.

1. If S′ is non-separating, then M −n(S′) is homeomorphic to S2× I. So M ∼= S2×S1 or S2 ∼×S1.

2. If S′ separates, then it is an exercise to show that M ∼= P 3 # P 3.

Proposition 7.5.2 (1.13 in Hatcher). Let (M,F) be as above. Then

1. every horizontal 2–sided surface is essential and

2. every vertical 2–sided surface is essential except for tori bounding fibred solid tori and boundary
parallel annuli cutting off fibred solid tori.

Proof. Suppose that D is a surgery disk or bigon for S ⊂M .

1. Suppose S is horizontal. By the previous discussion, M − n(S) is an I–bundle and D gives a
surgery for ∂h(M − n(S)). But the horizontal boundary of an I–bundle is always essential.

Exercise 7.5.1. The horizontal boundary of an I–bundle is always essential.

2. Suppose S is vertical. So D gives a surgery in M ′ ⊂ M − n(S) where M ′ is the component of
M − n(S) containing D. Suppose D is essential. Since D ⊂ M ′ is essential, D must be vertical
or horizontal, hence horizontal. Let B = M ′/S1.

Exercise 7.5.2. Show that B is a disk with at most one orbifold point. Hint: use that d ·
χorb(B) = χ(D) = 1.

Thus M ′ is a solid torus. If D was a bigon, then, as D ∩ ∂M = D ∩ ∂M ′ is a single arc, the
fibring of M ′ is the trivial fibring, so M ′ ∼= V1,0.

Lemma 7.5.3 (1.14 in Hatcher). Let A ⊂ (M,F) be an essential annulus. Then A can be properly
isotoped to be vertical with respect to F , possibly after changing F if M is T × I, T ∼× I, K × I or
K ∼× I.
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Proof. Since A is essential, it may be isotoped to be vertical or horizontal. Suppose A is horizontal.
So M − n(A) is an I–bundle with annuli as horizontal boundary components.

(i) If M − n(A) is connected, then M − n(A) ∼= A× I. So

M = A× I/(x, 1) ∼ (ϕ(x), 0) =: Mϕ,

as in Figure 7.42.

Figure 7.42: M = (A× I)/((x, 1) ∼ (ϕ(x), 0)).

But there are only four possibilities for ϕ, up to isotopy: the identity, reflections switching or
preserving the boundary components, and the rotation given by composing these reflections. See
Figure 7.43.

Figure 7.43: The three non-trivial possibilities for ϕ.

Exercise 7.5.1. Show that MCG(A) = Z2 ⊕ Z2. Here MCG(S) is the mapping class group of
S, the group of homeomorphisms of S, up to isotopy.

These four maps give the four exceptions.

Exercise 7.5.2. Check this.

(ii) If M − n(A) has two components, as in Figure 7.44, then M − n(A) ∼= M2 ∼× I tM2 ∼× I.

Figure 7.44: M − n(A) may have two components.

Note that M2 ∼×I is a cube with a pair of opposite faces glued by a π twist, shown in Figure 7.45.
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Figure 7.45: A picture of M2 ∼× I.

Exercise 7.5.3. Find the Möbius bands in this cube.

It is again an exercise to show that all four gluings give K ∼× I with base orbifold D2(2, 2).

Note. We have an exact sequence of groups: S1 → K ∼× I → D2(2, 2)

1 - Z - π1(K2) - D∞ - 1

1 -
¬
a2
¶
-
¬
a, b | a2 = b2

¶
-
¬
a, b | a2 = b2 = 1

¶
- 1

coming from the long exact sequence for the Seifert fibering. See Theorem 4.41 page 276 of Hatcher’s
Algebraic Topology for more details.

Lemma 7.5.4 (1.15 in Hatcher). Let (M,F) be as above. Then the slopes of F|∂M are determined
by M only, unless M is Vp,q or one of the four exceptions above.

Proof. If ∂M = ∅ then we have nothing to prove. If B = M/S1 has no essential arcs, then B = D2(p).

Exercise 7.5.4. Check this.

Then M ∼= D × S1 and we are done. So let α ⊂ B be an essential arc. See Figure 7.46.

Figure 7.46: Two examples of essential arcs in (a) where B = D2(p, q, r) with p, q, r > 1, and (b) where
B = T 2#D2(p).

Let A ⊂M be the vertical annulus above α. In this case:

(i) A is essential by Lemma 1.13 in Hatcher.

(ii) A is vertical in any fibering of M , with exceptions as above, by Lemma 1.14 in Hatcher.

So ∂A is determined by M alone, and we are done.

Remark. Note that in the above we used the fact that solid Klein bottles are not Seifert fibered
spaces.

Exercise 7.5.5. Show that the solid Klein bottle can be partitioned as a disjoint union of circles.
Show, nonetheless, that the solid Klein bottle cannot be Seifert fibered.

Exercise 7.5.6. Show that K × I contains a solid Klein bottle, yet is still a Seifert fibered space.

Lemma 7.5.5 (1.16 in Hatcher). Suppose M is connected, compact, orientable, irreducible and
atoroidal. Suppose A ⊂ M is an essential annulus with ∂A contained in torus components of ∂M .
Then M admits a Seifert fibering.
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Proof. Let M,A be as above. Let T be the components of ∂M meeting A. Let N = N(A ∪ T ). So
there are three cases:

(i) A meets two boundary components, T1 and T2, as in Figure 7.47.

Figure 7.47: A meets two boundary components.

(ii) A meets a single boundary component without twisting, as shown in Figure 7.48.

Figure 7.48: A meets a single boundary component without twisting.

(iii) A meets a single boundary component with a twist, as shown in Figure 7.49.

Figure 7.49: A meets a single boundary component with a twist.

Note. Note that Figures 7.47, 7.48 and 7.49 give a cross section of N . For example in Figure 7.47,
the entirety of N is shown in Figure 7.50. Unfortunately the neighborhood N , in the third situation,
does not embed in R3.

Figure 7.50: The whole of N in case (i), of which Figure 7.47 is a cross section. The front and back
faces and edges are identifed.
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Note that N(A) and N(T ) are Seifert fibered, and we may glue these fibrings to get a fibering of
N . Fix F , a component of ∂N − ∂M . In other words, a component of the frontier of N in M . Note
that F ∼= T2.

(i) Suppose that F compresses in M via a disk (D, ∂D) ⊂ (M,F ). Since A is essential we may
arrange via an isotopy to have A ∩ D = ∅. So we may assume that D ∩ N = ∂D; thus F
compresses to the “outside” of N . So FD is a 2–sphere bounding a ball B ⊂ M . Note that
N ⊂ B is a contradiction as ∂M ∩ ∂N 6= ∅. So X = B ∪N(D) is a solid torus attached to F .

(ii) Suppose F is boundary parallel. Say M − n(F ) contains X, with X ∼= F × I the parallelism.
Since A is essential, we find that X ∩N = F , as N ⊂ F leads to a contradiction.

So the fibering on N extends to a fibering on N ∪ X. We do the same for all components of
∂N − ∂M .

Exercise 7.5.7. Read the proof of Theorem 1.9 in Hatcher.
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Chapter 8

Haken Manifolds and Hierarchies

8.1 Haken Manifolds and the Poincaré Conjecture

We now state the Poincaré conjecture, proved by Perelman, following a program of Hamilton.

Poincaré Conjecture. Suppose M3 is closed and simply connected. Then M is homeomorphic to
S3.

Recall that closed means that M is compact and ∂M = ∅. Simply connected means that M is
connected and π1(M) = {1}. Note that the equivalent statement in dimension two follows from the
classification of surfaces and the Seifert-van Kampen theorem. In dimensions greater than three, the
conjecture was solved previously by (among others) Smale, Stallings, and for dimension four, Freedman.

Remark. Poincaré originally conjectured that if H1(M,Z) = 0 then M = S3. He then gave a
counterexample to this, called the Poincaré homology sphere. Let D be the dodecahedron and let
P = D/∼, where we glue opposite faces with a 1/10 right-handed twist, as in Figure 8.1.

Figure 8.1: The Poincaré homology sphere. This diagram is adpated from one in The Shape of Space
by J. Weeks.

Exercise 8.1.1. Let Γ = π1(P ). Give a presentation of Γ and check that Γab = 0.

Exercise 8.1.2. What if we use a 5/10 twist?

Remark. If we use a 3/10 twist we get the Seifert-Weber dodecahedron space. See Figure 8.2.

Figure 8.2: The Seifert-Weber dodecahedron space. This diagram is adapted from one in The Shape
of Space by J. Weeks.
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Definition 8.1.1. We say a knot K ⊂ S3 is spanned by a surface F ⊂ S3 if F is embedded and
two-sided away from ∂F , and ∂F = K. In other words, the boundary of F wraps exactly once about
K. See Figure 8.3a. Equivalently, S ⊂ XK is a spanning surface for K if it is two-sided, embedded,
|∂S| = 1 and the following holds. Let N = N(K) and let (D, ∂D) ⊂ (N, ∂N) be a meridian disk. Let
µ = ∂D. Then the transverse intersection µ ∩ ∂S is a single point. See Figure 8.3b.

Figure 8.3: Diagrams of equivalent definitions of the spanning surface.

Recall that a knot K is the unknot if K is isotopic to a round circle.

Theorem 8.1.1. Suppose K ⊂ S3 is a knot. The following are equivalent:

(i) K is the unknot.

(ii) K is spanned by a disk E.

(iii) XK = S3 − n(K) is a solid torus.

(iv) π1(XK) ∼= Z.

See Figure 8.4.

Figure 8.4: Illustration of Theorem 8.1.1.

Proof.

(i) =⇒ (ii) Use ambient isotopy.

(ii) =⇒ (iii) Use irreducibility of XK and the fact that (∂XK)E ∼= S2. Note that E ⊂ XK is essential as
∂E ∩µ is a point. So if (∂XK)E bounds a 3–ball B, we have B∪N(E) ∼= E×S1 is a solid torus.

(iii) =⇒ (i) This follows from Exercises 2.2 and 6.6.

(iii) =⇒ (iv) Since π1(X × Y ) = π1(X)× π1(Y ), we have π1(XK) ∼= π1(S1) = Z.
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(iv) =⇒ (iii) We must show that if M is irreducible, ∂M = T2 and π1(M) ∼= Z, then M ∼= D × S1. This
requires Dehn’s Lemma.

Exercise 8.1.3. Deduce (iv) =⇒ (iii) from the following lemma.

Dehn’s Lemma (Papakyriakopoulos, 1957). Suppose α ⊂ ∂M is a simple closed curve, bounding a
singular disk in M . Then α bounds an embedded disk in M .

Loop Theorem. Suppose F is a component of ∂M , and i∗ : π1(F ) → π1(M) is not injective. Then
there is an essential simple closed curve α ⊂ F such that [α] = 1 ∈ π1(M).

This leads nicely to the following conjecture.

Simple Loop Conjecture. If i : F #M is a two-sided map, and i∗ is not injective, then there is an
essential simple loop in the kernel.

This has been proved by Gabai if M is a surface, and by Hass if M is Seifert fibered.

Exercise 8.1.4. Prove the simple loop conjecture when F is two-sided and properly embedded in M .

Disk Theorem. Suppose that F ⊂ ∂M is a component, and i∗ : π1(F ) → π1(M) is not injective.
Then there is an essential disk (D, ∂D) ⊂ (M,F ).

Exercise 8.1.5. Show that the Disk Theorem is implied by the Loop Theorem and Dehn’s Lemma.

The Disk Theorem is the first “promotion” theorem, among many others. For example we have the
following:

Sphere Theorem. Suppose M is an orientable 3–manifold with π2(M) non-trivial. Then there is an
embedded 2–sphere S ⊂M such that [S] 6= 1 ∈ π2(M).

In general we assume that there is an essential map (F, ∂F ) # (M,∂M). The corresponding
promotion theorem gives us an embedding. For example, F could be a disk or sphere (due to Pa-
pakyriakopoulos), a projective plane (due to Epstein), an annulus or torus, or indeed any F with
χ(F ) ≥ 0.

8.2 Heirarchies

We now discuss hierarchies. Suppose that M0 = M , suppose that Si ⊂Mi is a properly embedded
two-sided surface, and define:

Mi+1 := Mi − n(Si).

So we have a sequence of manifolds:

M0
S0- M1

S1- M2
S2- · · · Sn−1- Mn.

Definition 8.2.1. Call a sequence {Mi, Si} a partial hierarchy if every Si is essential in Mi.

Note. Some authors only require Si to be incompressible.

The following example demonstrates why we require the Si to be essential.

Example 8.2.1. Take annuli in V2, the genus 2 handlebody, as in the right hand side of Figure 8.5, and
glue them to give M0

∼= V2. Let S0 be the single annulus given by the image of the two annuli under
the gluing map. Then cutting along S0 gives M1

∼= V2, so we could continue the process indefinitely.

Figure 8.5: Note that S0 is inside M0, not on the boundary (although ∂S0 ⊂ ∂M0).
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Equivalently, one can think of V2 as
�
T 2 − n(

�
B2
��
× I, as in Figure 8.6.

Figure 8.6: Another way to look at V2.

Cut along A to get the pair of pants ×I, as in Figure 8.7.

Figure 8.7: Let F = T − int(D) be a once-holed torus. Let G be a pair of pants. Cutting F × I along
a vertical annulus gives a copy of G × I. As F × I ∼= G × I this could lead to an infinite hierarchy,
were we to allow non-essential surfaces.

Definition 8.2.2. IfMn is a collection of 3–balls, then the partial hierarchy is simply called a hierarchy.

Example 8.2.2. Let M0 = T3, thought of as the unit cube in R3 with face pairings. Let S0 ⊂ M0

be the image of the xy–plane, so S0
∼= T 2. Then M1

∼= T × I. Let S1 be the image of the yz–plane,
so S1

∼= A2, and M2
∼= D × S1. Let S2 be the image of the zx–plane, a disk. Then M3

∼= B3. See
Figure 8.8.

Figure 8.8: A hierarchy of length three for the three-torus.

Example 8.2.3. Let M0 = XK , where K is the (p, q)–torus knot, as shown in Figure 8.9, and let

S0 = A, the unique essential annulus. Then XK
A→ VK tWK = M1. Now letting S1 be a pair of

meridian disks, one in each of VK and WK , we find that M2
∼= B3

1 tB3
2 . See Figures 8.10 and 8.11.
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Figure 8.9: The (p, q)–torus knot complement, M0.

Figure 8.10: Compressing disks for VK and WK .

Figure 8.11: The final stage of the heirarchy.

Definition 8.2.3. If M is compact, orientable and irreducible, and S ⊂ M is properly embedded,
two-sided and essential, then M is called Haken.

Theorem 8.2.1. If M is compact, orientable, irreducible and ∂M 6= ∅, then either M is a 3–ball or
M is Haken.

This theorem is implied by the following:

Theorem 8.2.2. If M is compact, orientable and irreducible, and if

rank(H1(M,Z)) ≥ 1

then M is Haken.

Definition 8.2.1. Suppose M,N are 3–manifolds and D ⊂ ∂M and E ⊂ ∂N are disks. Let ϕ : D −→
E be an orientation reversing homeomorphism. Then we define the boundary connect sum of M and
N to be M #∂ N := M tN/ϕ. See Figure 8.12.
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Figure 8.12: An example of the boundary connect sum.

Recall that ϕ only matters up to isotopy.

Definition 8.2.2. Suppose V is a handlebody and F = tFi is a collection of closed orientable surfaces,
none of which is a two-sphere. Then C := V #∂ (#∂Fi× I) is a compression body. We define the inner
boundary ∂−C = tFi×{0}C and the outer boundary ∂+C = ∂C − ∂−C.

Example 8.2.1. See Figure 8.13.

Figure 8.13: Another example of the boundary connect sum. Note that the third grey surface is a disk
while the others are all annuli.

Exercise 8.2.1. Show that #∂ is associative, commutative and B3 is the unit.

Exercise 8.2.2. Show that the essential surfaces in C are

• essential disks compressing ∂+C,

• components of ∂−C and

• annuli meeting both ∂+C and ∂−C.

Example 8.2.2. See Figure 8.14.
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Figure 8.14: An example of the boundary connect sum.

8.3 The Existence of Short Hierarchies

Now we demonstrate the existence of short hierarchies, following Jaco. Suppose that M0 is Haken
and additionally that ∂M0 is incompressible. Let S0 ⊂ M0 be a maximal collection of disjoint, non-
parallel, closed, incompressible, two-sided surfaces in M0 none of which are spheres. Since M0 is Haken,
S0 is non-empty and it is finite by Haken-Kneser finiteness. See Figure 8.15.

Figure 8.15: S0 ⊂M0 is non-empty and finite. It is convenient to take ∂M0 = ∅.

Aside. Note that closed incompressible surfaces, which are not spheres, are essential.

Note that every component N ⊂ M1 := M − n(S0) has boundary with genus ≥ 1. So N contains
some essential surface by Theorem 27.5. Let S1 ⊂M1 be a maximal collection of disjoint, nonparallel,
two-sided, essential surfaces in M1: these are the green lines in Figure 8.16. Again, S1 cuts every
component of M1 and S1 is finite by Haken-Kneser finiteness in the bounded case. See the addedum
to Exercise 5.5. Define M2 := M1 − n(S1) and let C be any component of M2.

Figure 8.16: The component C contains an essential surface.

Proposition 8.3.1. The component C is a compression body.
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Proof. Suppose that some component G ⊂ ∂C is compressible into C. So let Gi, Di be a sequence
where G0 = G and Di compresses Gi in the same direction as D0, into C. Define Gi+1 = (Gi)Di . So
we get a sequence

G0
D0−→ G1

D1−→ · · · Dn−1−→ Gn.

See Figure 8.17.

Figure 8.17: The first few terms in the sequence (Gi, Di).

Note that Gi+1 may be disconnected, as in Figure 8.18.

Figure 8.18: Gi+1 may be disconnected.

Claim. If some component of Gn is a 2–sphere then it bounds a 3–ball in C.

Proof sketch. M is irreducible, thus C is irreducible as well.

So cap off such 2–spheres, deleting them from Gn.

Claim. The closed surface Gn is incompressible in M .

Proof. As Gn is last in the sequence, Gn cannot compress into C. So suppose E is a surgery disk for
Gn in the other direction. See Figure 8.19.

Figure 8.19: E is a compressing disk for Gn in the other direction.
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Then we can do the following: Isotope E off of S0, then off of S1 and then off of {Di}. It follows
that E is a surgery disk for Gn in the compression body cobounded by G0 and Gn. Thus Gn is the
inner boundary of this compression body and so is essential. Thus E is trivial, as desired.

To finish the proposition, deduce that the components of Gn are parallel to components of S0 since
Gn is essential, closed and disjoint from S0 (as it lies in C).

Now let S2 ⊂ M2 be a collection of essential disks, cutting all compression bodies into products.
Let S3 ⊂ M3 be a collection of vertical annuli (one per product). Finally S4 ⊂ M4 is a collection
of disks cutting all handlebodies into 3–balls, as in Figure 8.20. This proves the existence of short
hierarchies.

Figure 8.20: S3 is a collection of vertical annuli; cut along these annuli to get a collection of handle-
bodies. Then cutting along S4 gives a collection of 3-balls.

8.4 Boundary Patterns

In this section, we again follow Lackenby.

Definition 8.4.1. A boundary pattern P for M3 is a trivalent graph embedded in ∂M . We allow P
to be the empty set, to be disconnected and to have simple closed curves as components.

Example 8.4.1. Trivalent graphs in S2 = ∂B3 are patterns for B3. See Figure 8.21.

Figure 8.21: Six examples of trivalent graphs in S2. Note that (e) is a disconnected pattern.

Suppose (M,P ) is a manifold equipped with a boundary pattern. Suppose S ⊂ M is properly
embedded and ∂S is transverse to P . So ∂S misses the vertices of P and intersects the edges of P
transversely. Let N = M − n(S) and let

Q = (P − n(S)) ∪ ∂S+ ∪ ∂S−.

So Q is a pattern for N and we write (M,P )
S−→ (N,Q). See Figure 8.22.
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Figure 8.22: A picture of the cutting.

Definition 8.4.2. Let P be a boundary pattern for M . Then we call P essential if for any (D, ∂D) ⊂
(M,∂M) with ∂D transverse to P and |∂D ∩ P | ≤ 3 we have

• a disk E ⊂ ∂M such that ∂E = ∂D and

• the intersection E ∩ P contains at most one vertex of P and contains no cycles of P .

Exercise 8.4.1. Verify that if P is essential then we get the implications shown in Figures 8.23 to
8.26:

Figure 8.23: The case ∂D ∩ P = ∅.

Figure 8.24: The case |∂D ∩ P | = 1 is not possible.

Figure 8.25: The case |∂D ∩ P | = 2.
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Figure 8.26: The case |∂D ∩ P | = 3.

Exercise 8.4.2. Analyse the examples of (B3, P ) given above. Which are, and which are not, essential?

Exercise 8.4.3. Give necessary and sufficient conditions for P to be an essential pattern for B3.

Example 8.4.2. If M0 = T3 = I3/∼ then S0 = {z = 0} is an essential torus, S1 = {x = 0} ⊂ M1 is
an essential annulus and S2 = {y = 0} ⊂M2 is an essential disk. We can see this in Figure 8.27.

Figure 8.27: Pictures of these cuttings with boundary patterns. For M3, P3 is the 1–skeleton of the
cube.

Definition 8.4.3. Let P ⊂ ∂M be a pattern. We say P is homotopically essential if the following
condition hold. For any map f : (D, ∂D) −→ (M,∂M) (which need not be an embedding) transverse
to P , we define Z = Zf = ∂D ∩ f−1(P ). If |Z| ≤ 3 then there is a homotopy H : D × I −→ M such
that

• for all t: Ht|Z = f |Z,

• H0 = f ,

• H1(D) ⊂ ∂M and finally

• H1(D) contains at most one vertex of P and contains no cycles of P .

Exercise 8.4.4. If P is homotopically essential, then P is essential.

Theorem 8.4.1 (9.1 in Lackenby). If P is essential, then it is homotopically essential.

We will indicate a proof, using special hierarchies, in the next lecture.

Exercise 8.4.5. Theorem 8.4.1 implies the Disk Theorem. As a hint, recall that we allow P = ∅.

We pause to give another example of a hierarchy.

Example 8.4.3. Consider the knot K ⊂ S3 shown in Figure 8.28: the (1, 1,−3)–pretzel knot. The
surface shown is a spanning surface for K. This is one of the two so-called checkerboard surfaces for
this diagram of K.
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Figure 8.28: A diagram of the (1, 1,−3)–pretzel and S, one of its two checkerboard surfaces.

Near a twist we see a half-twisted band, as in Figure 8.29.

Figure 8.29: A half twisted band.

Let N = N(K) be a regular neighbourhood and write X = XK = S3−n(K). See Figure 8.30. Let
S0 be the remains of the spanning surface in X.

Figure 8.30: (a) A picture of N(K), S0 and (b) N(S0).

Let M0 = X and cut M0 along S0 to get M1. Thus, as M1 is a genus two handlebody, we find that
∂S±0 gives a pattern to ∂M1, shown in Figure 8.31.

Figure 8.31: A pattern to ∂M given by ∂S±. Note that M1 is the handlebody on the outside.
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The two components of P in ∂M1 cobound an annulus, the remains of ∂N . We take S1 to be the
union of a pair of disks as in Figure 8.32.

Figure 8.32: The essential surface S1 in M1, consisting of two disks which meet ∂M1 in two loops
around the holes.

Now cut along S1 to get M2
∼= B3.

Exercise 8.4.6. Show that (M2, P2) is homeomorphic to the pattern shown in Figure 8.33.

Figure 8.33: A 3–ball with a pattern.

Exercise 8.4.7. Show that P2 ⊂ ∂M2 is essential. Figure 8.34 may be helpful.

Figure 8.34: (M2, P2) ∼= Oct× I where Oct denotes an octagon.

Claim. The surface S0 ⊂ X is essential.

Proof. Suppose (D, ∂D) ⊂ (X,S0) is a surgery disk. So consider D ∩ S1 ⊂ D. This is a collection of
simple loops and arcs.

1. Suppose α is an innermost loop. Then α bounds E in D. So (E,α) ⊂ (M2, ∂M2) and α∩P2 = ∅
which implies that we may isotope E past S1, reducing |S1 ∩D|. See Figure 8.35.
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Figure 8.35: We may isotope E past S1, reducing |S1 ∩D|.

2. Suppose α ⊂ D is an outermost arc of S1 ∩D. So α cuts off a bigon E. So (E, ∂E) ⊂ (M2, ∂M2)
is a bigon and ∂E ∩P2 is exactly two points. But (M2, P2) is essential and we continue as usual.

So we may assume that D ∩ S1 = ∅. So (D, ∂D) embeds in (M2, ∂M2) with ∂D ∩ P2 = ∅. Since
M2 is a ball we find that D is parallel to a disk D′ ⊂ S0. So S0 is incompressible. Now by Lemma 20.2
(1.10 in Hatcher) S0 is boundary incompressible. It is also possible to directly prove that by repeating
the proof using bigons. See Figure 8.36.

Figure 8.36: D is parallel to a disk D′ ⊂ S0.

We now give the ideas necessary to prove Theorem 8.4.1. We need a few more definitions.

Definition 8.4.4. Suppose S ⊂ (M,P ) is properly embedded and suppose P ⊂ ∂M is an essential
pattern. A surgery bigon D for S is a pattern surgery if |β∩P | ≤ 1 where ∂D = α∪β and α = ∂D∩S.
Say D is trivial if α cuts a bigon E out of S with ∂E = α ∪ γ and |γ ∩ P | ≤ 1. Otherwise call D a
pattern compression.

Definition 8.4.5. If S is essential and all pattern surgeries are trivial, we call S pattern essential. See
Figure 8.37.
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Figure 8.37: A picture of what it means to be pattern essential.

Definition 8.4.6. A special hierarchy is a sequence (Mi, Pi)
Si−→ (Mi+1, Pi+1) where all Pi are essential

and all Si are pattern essential. We do not allow Si to be a sphere.

Proposition 8.4.1. If S ⊂ (M,P ) is essential we may isotope S to be pattern essential.

Proof. Exercise.

Using the above one can show the following two propositions which imply Theorem 8.4.1.

Proposition 8.4.2. If P is a pattern for M ∼= B3 and is essential, then P is homotopically essential.

Proposition 8.4.3. If (M,P )
S−→ (N,Q) are all essential and Q ⊂ ∂N is homotopically essential,

then P is homotopically essential in M .
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