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THE UNIVERSITY OF WARWICK

FOURTH YEAR EXAMINATION: JUNE 2011

THREE-MANIFOLDS

Time Allowed: 3 hours

Read carefully the instructions on the answer book and make sure that the particulars
required are entered on each answer book.

Calculators are not needed and are not permitted in this examination.

ANSWER 4 QUESTIONS.

If you have answered more than the required 4 questions in this examination, you will
only be given credit for your 4 best answers.

The numbers in the margin indicate approximately how many marks are available for
each part of a question.

1. a) Define a topological n–manifold, Mn. [4]

b) Define ∂M , the boundary of M . Show that ∂M is a (n− 1)–manifold and that [6]

∂∂M = ∅.

c) Define S3 as a subset of R4. Show that S3 is a three-manifold. Prove that [6]

∂S3 = ∅.

d) Define S3 via a gluing of three-balls. [3]

e) Show that the two definitions of S3 above are equivalent. [6]

2. a) Define a k–simplex. [3]

b) Define a triangulation T and its underlying topological space ||T ||. [4]

c) Suppose T is a finite triangulation. Give a necessary and sufficient condition [6]

for ||T || to be a three-manifold.

d) Consider the tetrahedron shown in Figure 1. Does the given triangulation de- [6]

termine a three-manifold? If it does not, give a reason. If it does, recognize the

manifold.

1 CONTINUED
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Figure 1: The front faces are glued to each other as shown. There are no other gluings.

Figure 2: The front faces are glued by “closing the book”, as are the back faces.

e) Consider the tetrahedron shown in Figure 2. Does the given triangulation de- [6]

termine a three-manifold? If it does not, give a reason. If it does, recognize the

manifold.

3. a) Define a bigon. [2]

b) Suppose that F 2 ⊂ M3 is a properly embedded surface. Define a surgery disk [2]

and surgery bigon.

c) With F,M as above: define what it means for F to be incompressible, boundary [6]

incompressible, or essential.

d) Define a handlebody V . [2]

e) Show that any surface F surface properly embedded in a handlebody V either [6]

is compressible, is boundary compressible, is a disk, or is a sphere.

f) Let T 2 be the two-torus. Classify, up to proper isotopy, all connected essential [7]

surfaces in T × I.

4. a) Define fibered solid tori. [3]

b) Define a Seifert fibered space (M,F). Define the singular and generic fibers of [4]

F , and their multiplicities.

2 Question 4 continued overleaf
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Question 4 continued

c) Briefly describe the base orbifold B of a Seifert fibered space (M,F). [4]

d) Giving the necessary definitions, state but do not prove the structure theorem [3]

for essential surfaces in Seifert fibered spaces.

e) Let X = K ∼× I be the orientation I–bundle over the Klein bottle K. Classify, [7]

up to isotopy, all Seifert fiberings of X. For each fibering, compute the base

orbifold.

f) Using the above or otherwise, classify up to isotopy the essential annuli in [4]

X = K ∼× I.

5. a) Suppose that F ⊂M is properly embedded. Define the notion of π1–injectivity. [3]

b) Briefly define incompressibility. [2]

c) Show that if F is π1–injective then F is incompressible. [5]

d) State Dehn’s Lemma, the Loop Theorem and the Disk Theorem, clearly la- [6]

belling each.

e) Deduce the Disk Theorem from Dehn’s Lemma and the Loop Theorem. [3]

f) Suppose that M is connected and irreducible. Suppose that T ⊂ ∂M is a [6]

two-torus. Suppose that π1(M)∼= Z. Show that M is a solid torus.

3 END
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MATHEMATICS DEPARTMENT
FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: THREE-MANIFOLDS

Model Solution No: 1

a) Define a topological n–manifold, Mn. [4]

(Book) An n–manifold M is a topological space which is Hausdorff and second
countable and so that every point x ∈ M has a neighborhood U that is homeo-
morphic to either Rn or to Rn

+, the closed upper-half space.

b) Define ∂M , the boundary of M . Show that ∂M is a (n − 1)–manifold and that [6]
∂∂M = ∅.
(Book) ∂M is the set of points x ∈ M which do not have neighborhoods homeo-
morpic to Rn.

(Book) Since ∂M is a subspace of M it is second countable and Hausdorff.

Suppose that φ : U → Rn
+ is a homeomorphism. We claim that ∂U = φ−1(Rn−1).

The forward inclusion follows because points p ∈ Rn
>0 have neighborhhoods home-

omorphic to Rn. The other inclusion is implied by the fact that Rn is not homeo-
morphic to Rn

+.

Thus U ∩ ∂M = ∂U . Let ∂φ = φ|∂U . It follows that ∂M is an n− 1–manifold.

(Book) By the above, every point x ∈ ∂M has a neighborhood homeomorphic to
Rn−1: thus ∂M has no boundary points

c) Define S3 as a subset of R4. Show that S3 is a three-manifold. Prove that ∂S3 = ∅. [6]

(Book and exercises) Since S3 ⊂ R4 it is Hausdorff and 2nd countable. Define
S3 = {v ∈ R4 : |v| = 1}. Let N,S be the north and south poles (0, 0, 0,±1). Let
ρ : S3 − {S} → R3 be sterographic projection, defined via

(x, y, z, w) 7→ 2

w + 1
(x, y, z).

This is a homeomorphism between a neighborhood of N and R3. Now, rotations
of S3 act via homeomorphisms, so every point has such a neighborhood. As in the
discussion above, it follows that ∂S3 = ∅.

d) Define S3 via a gluing of three-balls. [3]

(Book) Let B = {v ∈ R3 : |v| ≤ 1}. Let B± be copies of B and let φ : ∂B+ → B−
be the induced identity map. Then S3 ∼= B+ ∪φ B−.

e) Show that the two definitions of S3 above are equivalent. [6]

(Exercises) Define S3
± = S3∩R4

± where R4
± are the upper and lower half spaces. The

projection ρ : R4 → R3, sending (x, y, z, w) to (x, y, z), induces homeomorphisms
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from S3
± with the unit three-ball B. Finally, S3

+ ∩ S3
− is the common two-sphere

boundary.
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MATHEMATICS DEPARTMENT
FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: THREE-MANIFOLDS

Model Solution No: 2

a) Define a k–simplex. [3]

(Book) The set ∆k = {x ∈ Rk+1 |
∑
xi = 1, xi ≥ 0} is the model k–simplex.

b) Define a triangulation T and its underlying topological space ||T ||. [4]

(Book) The I th facet of ∆ is the set {x ∈ ∆ | xi = 0∀i ∈ I}. A face of a simplex is
a codimension one facet.

A k–dimensional triangulation T is a collection of k–simplices and face pairings.
A face pairing is an isometry of faces. The underlying space ||T || is the quotient of
t∆j under the face pairings. We use π : t∆j → ||T || to denote the quotient map.

c) Suppose T is a finite triangulation. Give a necessary and sufficient condition for [6]
||T || to be a three-manifold.

(Exercise) Since the triangulation is finite, ||T || is second countable. Additionally,
since face pairings are isometries, we find ||T || is metrizable and so Hausdorff.

Thus, to be a three-manifold we need only check that every point of ||T || has a
three-ball neighborhood. Fix a point y ∈ ||T ||. Then there is a ε = ε(y) > 0
sufficiently small so that

• If x, x′ are elements of π−1(y) then Nε(x) ∩Nε(x
′) = ∅.

• If x ∈ π−1(y) and x lies in ∆ then Nε(x) ⊂ ∆ meets only facets whose closure
contains x.

The necessary and sufficient condition is that, for every y ∈ ||T ||, the neighbor-
hoods Nε(x), for x ∈ π−1(y) glue together to give a ball with y at the center or on
the boundary.

d) Consider the tetrahedron shown in Figure 3. Does the given triangulation deter- [6]
mine a three-manifold? If it does not, give a reason. If it does, recognize the
manifold.

(Unseen, but similar to a given exercise) The front faces are glued via a rotation.
This is not a three-manifold. Let x be the midpoint of the vertical edge and set
y = π(x). Then any sufficently small neighborhood of y in ||T || is a cone on the
real projective plane, and so is not a three-ball.

e) Consider the tetrahedron shown in Figure 4. Does the given triangulation deter- [6]
mine a three-manifold? If it does not, give a reason. If it does, recognize the
manifold.
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Figure 3: The front faces are glued to each other as shown. There are no other gluings.

Figure 4: The front faces are glued by “closing the book”, as are the back faces.

(Unseen, but easier than a given exercise) To see that M = ||T || is a three-manifold
note that distinct faces are glued in pairs. The three edges in M have degrees 1,
1, and 4 in the tetrahedron. Each point on an edge of degree one has a ball
neighborhood in M because we closed the book. Any point on the edge of degree
four has a neighborhood that is a union of four quarter-balls, each glued to the
next by an orientation reversing map. Finally, there are two vertices. Each has
link a two-sphere triangulated with two triangles.

We give two model proofs that M is a three-sphere.

First, consider the normal surface consisting of a single normal quad that meets
the degree four edge in a single point. This gives a torus in M , cutting M into a
pair of solid tori (D× S1). As their meridian disks meet in a single point we have
the standard decomposition of S3.

Second, compute π1(M) by taking the degree four edge as the spanning tree for
T (1). There are two non-tree edges, and the two faces exactly kill these generators.
Thus π1(M) is trivial. Since M is closed, the Poincaré conjecture implies M is a
three-sphere.
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MATHEMATICS DEPARTMENT
FOURTH YEAR UNDERGRADUATE EXAMS

Course Title: THREE-MANIFOLDS

Model Solution No: 3

a) Define a bigon. [2]

(Book) A bigon is a disk D with ∂D realized as a union of two arcs α, β, where
α ∩ β = ∂α = ∂β.

b) Suppose that F 2 ⊂M3 is a properly embedded surface. Define a surgery disk and [2]
surgery bigon.

(Book) A surgery disk D for F is a disk embedded in M so that D ∩ F = ∂D and
D ∩ ∂M = ∅. A surgery bigon instead has D ∩ F = α and D ∩ ∂M = β.

c) With F,M as above: define what it means for F to be incompressible, boundary [6]
incompressible, or essential.

(Book) The surface F is incompressible if for every surgery disk (D, ∂D) ⊂ (M,F )
we have that ∂D bounds a disk in F .

The surface F is boundary incompressible if for every surgery bigon (D,α, β) ⊂
(M,F, ∂M) we have that α cuts a bigon out of F .

To define essential there are three cases. If F = S is a sphere then we require only
that S does not bound a three-ball on either side. If F = D is a disk then we only
require that ∂D is essential in ∂M . If F is neither a sphere or disk then we require
that F be incompressible and boundary incompressible in M .

d) Define a handlebody V . [2]

(Book) The three-ball V0
∼= B3 and the solid torus V1

∼= D × S1 are handlebodies.
In general, we obtain Vg as the boundary connect sum of g copies of V1.

e) Show that any surface F surface properly embedded in a handlebody V either is [6]
compressible, is boundary compressible, is a disk, or is a sphere.

(Exercise) Let D ⊂ V be a collection of g disjoint essential disks so that B =
V −n(D) is a three-ball. Isotope F to be transverse to D and to minimize |F ∩D|.
Suppose that α is an innermost simple closed curve of F ∩D. If the disk E ⊂ D
bounded by α is a compression disk then we are done. If it is a trivial surgery disk
then we contradict the minimality of |F ∩D|.
So we may suppose that there are no such simple closed curves. Suppose that α
is an outermost arc of F ∩D. If the bigon E ⊂ D is a boundary compression for
F we are done. If E is trivial then again we contradict the minimality of |F ∩D|.
So we may we suppose that F ∩D = ∅.
So F is contained in B. If F has genus then, following the proof of Alexander’s
theorem, F compresses. Thus F is a disk or sphere and we are done.
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f) Let T 2 be the two-torus. Classify, up to proper isotopy, all connected essential [7]
surfaces in T × I.

(Unseen, but similar to a given exercise) By an exercise in class, all essential
surfaces in I-bundles may be isotoped to be vertical, a union of fibers, or horizontal,
transverse to all fibers. Thus all vertical surfaces are annuli. These are determined,
up to isotopy by their projection into T . The projection is a simple closed curve
and thus is determined up to isotopy by its slope, an element of Q ∪ {∞}.
Suppose now that F ⊂ T × I is horizontal. Let d be the intersection number
between F and any generic fiber. Let A,B be vertical annuli meeting in a single
fiber and cutting T × I into a ball. Thus F ∩ A is a collection of d loops and the
same holds for B. It follows, as F is connected, that d = 1 and F is isotopic to
T × {1/2}.
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Model Solution No: 4

a) Define fibered solid tori. [3]

(Book) Suppose that 0 ≤ q < p are integers, with gcd(p, q) = 1. Let D = {z ∈
C : |z| ≤ 1}. Starting with D × I we glue D × {1} to D × {0} via the map
φ(z) = z · exp(2πi · q/p) to obtain a solid torus Vp,q. Since D × I is fibered
by vertical intervals (the second coordinate) the quotient V is fibered by circles.
Letting D = D × {0} ⊂ V , we note that the central circle meets D once while all
other circles meet D exactly p times.

b) Define a Seifert fibered space (M,F). Define the singular and generic fibers of F , [4]
and their multiplicities.

(Book) A partition F of a three-manifold M , into circles, is a Seifert fibering if
for every circle α ∈ F there is a pair (p, q), as above, and a system of regular
neighborhoods of α that are all fiber homeomorphic to Vp,q.

If α has invariant (p, q) then p is the multiplicity of α. Furthermore, α is singular
if p > 1 and generic if p = 1.

c) Briefly describe the base orbifold B of a Seifert fibered space (M,F). [4]

(Book) We define B = M/S1; that is, we form the quotient space where points are
the circles of F . The fibered solid tori in M provide charts homeomorphic to the
unit disk D2 ⊂ C, except at the singular fibres, where B is modelled on D modulo
the action of the pth roots of unity.

d) Giving the necessary definitions, state but do not prove the structure theorem for [3]
essential surfaces in Seifert fibered spaces.

(Book) Supose that (M,H) is a Seifert fibered space. A surface F in (M,H)
is vertical if F is a union of fibers. On the other hand F is horizontal if the
intersection of F with any fiber is transverse. All essential surfaces in M may be
properly isotoped to be either vertical or horizontal. Each vertical surface is an
S1–bundle over a 1-orbifold (T, K, A, M). Each horizontal surface is an orbifold
cover of B.

e) Let X = K ∼× I be the orientation I–bundle over the Klein bottle K. Classify, up [7]
to isotopy, all Seifert fiberings of X. For each fibering, compute the base orbifold.

(Unseen, but easier than a given exercise) We construct X out of the unit cube I3

by gluing the right and left faces by translation and by gluing the front and back
faces by translation followed by 180 degree rotation. Thus the intervals parallel to
the z–axis give the second coordinate of K ∼× I. See Figure 5.
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Figure 5: The orientation I–bundle over K.

Let K be the zero-section of the I–bundle structure on X. Note that K is essential
and without boundary. Let F be any fibering of X. Thus K may, after isotopy, be
made vertical with respect to F . Note that F|K determines F|N(K). Thus, by a
theorem from class, F|K determines F . Finally, since there are only two isotopy
classes of two-sided curves in K, there are exactly two Seifert fiberings of X; we
call them F and G.

The intervals parallel to the x–axis glue to give F while those parallel to the y–axis
give G. To compute the base orbifolds, note that the yz–plane meets every circle of
F once while the zx–plane meets every generic fiber of G twice. Taking quotients,
the base orbifold for F is a copy of the Mobius band while the base for G is a copy
of D(2, 2).

f) Using the above or otherwise, classify up to isotopy the essential annuli in X = [4]
K ∼× I.

(Unseen, but easier than a given exercise) Suppose that A is an essential annulus
in X. By a theorem from class, every essential annulus in X may be made vertical
with respect to F or G. If with respect to F then A covers the unique essential
arc in the Mobius band. If with respect to G then A covers the unique essential
separating arc in D(2, 2).
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Model Solution No: 5

a) Suppose that F ⊂M is properly embedded. Define the notion of π1–injectivity. [3]

(Book) Pick a point z ∈ F . We say F is π1–injective if the inclusion map i : F →M
induces an injection i∗ : π1(F, z)→ π1(M, z).

b) Briefly define incompressibility. [2]

(Book) A properly embedded surface F ⊂ M is incompressible if every surgery
disk (D, ∂D) ⊂ (M,F ) is trivial. That is, if D ∩ F = ∂D then ∂D bounds a disk
in F .

c) Show that if F is π1–injective then F is incompressible. [5]

(Book) Suppose that D is a surgery disk for F . Let α = ∂D. It follows that
[α] = 1 ∈ π1(M, z). As F is π1–injective, we find that [α] = 1 ∈ π1(F, z), as well.
By an exercise from class, any simple close curve in F that is trivial in π1(F, z)
bounds a disk in F .

d) State Dehn’s Lemma, the Loop Theorem and the Disk Theorem, clearly labelling [6]
each.

(Book) Dehn’s Lemma - Suppose that α ⊂ ∂M is a simple closed loop. If α bounds
a singular disk in M , then it bounds an embedded disk.

Loop Theorem - Suppose that F ⊂ ∂M is a component. If F is not π1–injective
then there is an essential simple closed curve in the kernel.

Disk Theorem - Suppose that F ⊂ ∂M is a component. If F is not π1–injective
then F is compressible.

e) Deduce the Disk Theorem from Dehn’s Lemma and the Loop Theorem. [3]

(Exercise) Suppose that F is not π1–injective. Let α be a nontrivial element of
the kernel. By the Loop Theorem there is an essential simple closed loop β that
also lies in the kernel. By Dehn’s lemma β bounds a disk in M . This gives a
compressing disk for F .

f) Suppose that M is connected and irreducible. Suppose that T ⊂ ∂M is a two- [6]
torus. Suppose that π1(M)∼= Z. Show that M is a solid torus.

(Exercise) Note that π1(T ) ∼= Z2. Since Z2 does not inject into Z the map i∗ has
kernel. Choose an essential simple closed curve µ in the kernal. By Dehn’s Lemma
the loop µ bounds a disk D in M . Let TD be the result of compressing T along D.
So TD is a two-sphere. As M is irreducible, TD bounds a three-ball B. Note that
D ∩ B = ∅, as otherwise B contains T , a boundary component. Thus, we have
that B ∪N(D)∼= D × S1, as desired.


