

Henry Segerman Oklahoma State University Brilliant geometry

We describe a point in two-dimensional space using two numbers, say (x, y).

We describe a point in two-dimensional space using two numbers, say (x, y).

We describe a point in two-dimensional space using two numbers, say (x, y).

We describe a point in three-dimensional space using three numbers, say (x, y, z).

We describe a point in two-dimensional space using two numbers, say (x, y).

We describe a point in three-dimensional space using three numbers, say (x, y, z).

We describe a point in four-dimensional space using four numbers, say (w, x, y, z).

↓

•

٠

↓
↓
↓

٠

٠

How can we see 4-dimensional things?

Stereographic projection

First radially project the cube to the sphere...

First radially project the cube to the sphere...

Then stereographically project to the plane

Then stereographically project to the plane

Do the same thing one dimension up to see a hypercube

Do the same thing one dimension up to see a hypercube

More amazing properties of stereographic projection

Regular Polytopes in 2-dimensions: Regular polygons

Regular Polytopes in 3-dimensions: Regular polyhedra

Regular Polytopes in 4-dimensions: Regular polychora

5-cell

8-cell

120-cell

16-cell

600-cell

24-cell

Regular Polytopes in 4-dimensions: Regular polychora

5-cell

8-cell

120-cell

16-cell

600-cell

24-cell

Thanks!

@henryseg

3dprintmath.com

segerman.org

youtube.com/henryseg

shapeways.com/shops/henryseg

thingiverse.com/henryseg

Visualizing Mathematics with 3D Printing

http://3dprintmath.com