
FLIPPER TUTORIAL FOR SAGE DAYS 96

SAUL SCHLEIMER

Exercise 0.1. Make sure that flipper is installed into your copy of Sage. There
are instructions on the wiki:

https://wiki.sagemath.org/days96

Mark Bell (the author of flipper) gives instructions for installing flipper into
python, and much more, here:

http://flipper.readthedocs.io/en/latest/

Once you have installed flipper, start a Sage session and type import flipper at
the prompt.

a

b

0

0

1 12

Figure 0.2. The standard triangulation of the (once-punctured)
torus. The vertical and horizontal lines indicate the core curves for
the two (left) Dehn twists built in Exercise 0.4.

Exercise 0.3. Under the hood, flipper works with triangulated surfaces and flip
sequences. In this exercise we will build, inside of flipper, the once-punctured torus
shown in Figure 0.2. A triangulation in flipper is a list of triangles. A triangle in
flipper is a three-tuple of oriented edges, ordered counter-clockwise. So now we
can create a once-punctured torus by typing:

T = flipper.create_triangulation([(0r, 1r, ~2r), (2r, ~0r, ~1r)])

Date: August 15, 2018.
Public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/.

1

https://wiki.sagemath.org/days96
http://flipper.readthedocs.io/en/latest/
https://creativecommons.org/publicdomain/zero/1.0/


2 SCHLEIMER

(The letter r forces an int instead of an Integer.) Before we get started, it will
be very useful to skim the methods of T, by typing T, then a period, and hitting
tab.

• Check the genus, Euler characteristic, and number of unfilled vertices of T.
(These methods are constants, not functions.)

• To be absolutely sure you have entered the surface correctly, check that its
isomorphism signature is cPbbde.

• Check that the triangulation T is isomorphic to the triangulation of the
“equipped triangulation” from S = flipper.load('S_1_1').

Exercise 0.4. A measured lamination on T is represented in flipper as the list
of its geometric intersection numbers with the edges of T. For example, typing
a_lam = T.lamination([1, 0, 1]) builds the curve a.

• Build b_lam, the lamination representing the curve b.
• Flipper gives a_lam a kind of orientation; it records the algebraic intersec-

tions of a_lam with the (oriented!) edges of T. Type a_lam.algebraic to
find these.

• Typing a = a_lam.encode_twist() builds the left Dehn twist about a.
Do the same thing for b. We can compose a and b by concatenating and
taking powers. Define rho = a*b. Use flipper to check that rho is periodic
of order six.

• Mapping classes act on laminations. Define hyp = rho^3. Use “==” to
check that hyp(a_lam) is not the same as (hyp^2)(a_lam); the latter is
the same as a_lam.

• What happens if you type hyp^2(a_lam)? Why?
• For background on the “Alexander method” see [Section 2.3, Farb-Margalit].

Use this and flipper to check that hyp is the hyperelliptic element: that is,
it acts on the torus as a 180 degree rotation.

• Set B = b.inverse() and fib = a*B. Check that fib is pseudo-Anosov
and find its dilatation.

Exercise 0.5. We now record of our work in an equipped triangulation:

lams = {'a': a_lam, 'b': b_lam};
maps = {'a': a, 'b': b, 'rho': rho, 'hyp': hyp, 'fib': fib};
TE = flipper.kernel.EquippedTriangulation(T, lams, maps)

Type TE at the prompt to see what it contains. We can now use strings to de-
scribe mapping classes. Check that f = TE.mapping_class('(ab)^6') gives the
identity.

Exercise 0.7. We now turn to a more complicated example.
• Build the L-shaped surface shown in Figure 0.6, and call it L. Remember

that you need to use raw numbers, of the form 0r, 1r, and so on. Check
your work; this triangulation has isomorphism signature gvLQffeeaead.

• Build the laminations a, b, c, d shown in Figure 0.6, their associated left
Dehn twists, and their inverses. Check that all pairs of twists with disjoint

https://books.google.ca/books?id=FmRMgAV8JwoC


FLIPPER TUTORIAL 3

c

b

a

d

Figure 0.6. An L-shaped surface, with boundary edges identified
by translation as indicated. The four curves of interest are labelled
a, b, c, d.

support commute. Check that rho = a*c*b*d is periodic of order ten.
Check that hyp = rho^5 is the hyperelliptic element; you will need to
compute the number of fixed points by hand.

• The Thurston-Veech construction guarantees that h_pent = a*c*B*D is
pseudo-Anosov. Compute its dilatation.

• Store the triangulation L, the laminations, and all of these mapping classes
in an equipped triangulation LE.

Exercise 0.8. We now start to extract flat structures from flipper. Type

fib = TE.mapping_class('fib')

to recover the Fibonacci mapping class from Exercise 0.4. The FlatStructure

fibflat = fib.flat_structure()

contains a new triangulation T_fib = fibflat.triangulation. It also con-
tains a dictionary edge_vectors; the keys are edges of T_fib and the values are
holonomies. Edges can be a bit tricky to get at, so here are two different ways:
e_0 = T_fib.edge_lookup[0]; # the zeroth edge
e_2 = T_fib.triangles[1].edges[1] # the second edge

So fibflat.edge_vectors[e_0] is the holonomy of e_0. The x and y coordinates
have type:

flipper.kernel.numberfield.NumberFieldElement

To convert these to something Sage understands, you can use the code found here:



4 SCHLEIMER

http://wiki.sagemath.org/days96?action=AttachFile&do=get&target=flipper_
nf_conversion.py

• Add the conversion function to your Sage session and extract the complex
holonomies of all three edges.

• Flipper’s flat structures can deal with half-turn surfaces; thus the holonomies
of the edges necessarily live in C/{±1}. Note that edges do have a well
defined slope: positive, vertical, negative, or horizontal. Write a function
in Sage that, given a flat structure and an edge, computes the slope.

• Write a function in Sage that, given a flat structure and a triangle, draws
the corresponding euclidean triangle. The edges should be coloured red,
green, blue, or purple as their slopes are positive, vertical, negative, or
horizontal.

• In Sage, draw the layout of fibflat.
Problem 0.9. A flipper flat structure is abelian if and only if the holonomies can
be consistently lifted to C. Write code in Sage that detects this and, when abelian,
computes a lift.
Exercise 0.10. We now consider the more difficult example LE from Exercise 0.7
Before we get started, recall that a rectangle R with width w and height h has
modulus Mod(R) = w/h. If we glue the top of R to the bottom, we obtain an
flat annulus A. We again define Mod(A) = w/h. The width of A is the distance
between its boundaries while the height is the length of its core curve.

• In Sage, draw the layout of the flat structure

pentflat = h_pent.flat_structure()

• The flat structure decomposes as a union of two annuli A and C with
core curves a and c. Compute the moduli of A and C. Deduce that the
multitwist a*c acts as a shear on the flat structure.

• Show that this flat structure is, up to an element of SL(2,R), the doubled
pentagon.

• Show that a*c and b*d generate the Veech group.

http://wiki.sagemath.org/days96?action=AttachFile&do=get&target=flipper_nf_conversion.py
http://wiki.sagemath.org/days96?action=AttachFile&do=get&target=flipper_nf_conversion.py

