

Symmetry and the Klein quartic
Saul Schleimer, University of Warwick (Joint work with Henry Segerman) 2015-08-29, Geometry Labs United Conference

Tilings

Tilings everywhere

Frieze, British Museum

Tilings everywhere

Frieze, British Museum
Plant cells, Wikipedia

Tilings everywhere

Frieze, British Museum Plant cells, Wikipedia Honeycomb, Wikipedia

Tilings everywhere

Frieze, British Museum Plant cells, Wikipedia Honeycomb, Wikipedia Bricks, London

Tilings everywhere

Frieze, British Museum Plant cells, Wikipedia Honeycomb, Wikipedia Bricks, London Soccer ball, Wikipedia

Tilings everywhere

Frieze, British Museum Plant cells, Wikipedia Honeycomb, Wikipedia Bricks, London Soccer ball, Wikipedia Virus, Wikipedia

Cells

From Robert Hooke's Micrographia (1664)

Cells

From Robert Hooke's Micrographia (1664) Observ. XVIII. Of the Schematisme or Texture of Cork, and of the Cells and Pores of some other such frothy Bodies.

Frieze patterns

Frieze patterns, Wikipedia.

Wallpaper groups

Triangles do not tile

Triangles do tile!

Reflections

The kite path

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Non-euclidean geometry, I

Stereographic projection

Stereographic projection

Stereographic projection

Stereographic projection

Non-euclidean geometry, II

M.C. Escher, Circle Limit III

Non-euclidean geometry, II

Roice Nelson, $(2,3,7)$ tiling

Non-euclidean geometry, II

Roice Nelson and Henry Segerman, $(2,3,7)$ tiling with kite path

Covers and quotients

Finite versus infinite

Finite versus infinite

Cylinder seals

Late Urak cylinder seal, about 3300-3000 BC. British Museum.
$X^{2}+Y^{2}=1$

$$
\begin{aligned}
\cos (\theta) & =1-\frac{\theta^{2}}{2}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\ldots & \sin (\theta) & =\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\ldots \\
& =\sum(-1)^{k} \frac{\theta^{2 k}}{(2 k)!} & & =\sum(-1)^{k} \frac{\theta^{2 k+1}}{(2 k+1)!}
\end{aligned}
$$

Wrapping up a checkerboard

John Sullivan, Conformal tiling on a torus, Figure 1

Wrapping up a checkerboard

John Sullivan, Conformal tiling on a torus, Figure 1

Wrapping up the $(2,3,6)$ tiling

Wrapping up the $(2,3,6)$ tiling

John Sullivan, Conformal tiling on a torus, Figure 4

Wrapping up the $(2,3,6)$ tiling

John Sullivan, Conformal tiling on a torus, Figure 5

Wrapping up the $(2,3,7)$ tiling

The Klein quartic

$$
Q: X^{3} Y+Y^{3} Z+Z^{3} X=0
$$

These are the "real points" in the plane $X+Y+Z=1$. Note that the defining equation is degree four and is homogeneous: if (X, Y, Z) is a solution then so is $(\lambda X, \lambda Y, \lambda Z)$.

Symmetries of Q

$$
\begin{aligned}
r^{\prime} & =\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad t=\left[\begin{array}{ccc}
\omega^{4} & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right] \\
s & =\frac{-2}{\sqrt{7}}\left[\begin{array}{ccc}
\sin 2 \alpha & \sin 3 \alpha & -\sin \alpha \\
\sin 3 \alpha & -\sin \alpha & \sin 2 \alpha \\
-\sin \alpha & \sin 2 \alpha & \sin 3 \alpha
\end{array}\right]
\end{aligned}
$$

Here $\alpha=\pi / 7$ and $\omega^{7}=1$ is a primitive root of unity.

Genus

Genus formula: A smooth curve X in $\mathbb{C P}^{2}$ of degree d has genus $g(X)=(d-1)(d-2) / 2$. [so $g(Q)=(4-1)(3-1) / 2=3$]

Symmetries of Q, redux

$$
\begin{aligned}
& r^{\prime}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad t=\left[\begin{array}{ccc}
\omega^{4} & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right] \\
& s=\frac{-2}{\sqrt{7}}\left[\begin{array}{ccc}
\sin 2 \alpha & \sin 3 \alpha & -\sin \alpha \\
\sin 3 \alpha & -\sin \alpha & \sin 2 \alpha \\
-\sin \alpha & \sin 2 \alpha & \sin 3 \alpha
\end{array}\right]
\end{aligned}
$$

Note that t has order seven, s has order two, and TS has order three (and is conjugate to r^{\prime}). However, we also have $(t s T S)^{4}=1$.

Symmetries of the $(2,3,7)$ tiling

The rotations s and t have orders two and seven. The product $T S$ is a rotation of order three. However, the element tsTS is not finite order.

Symmetries of the $(2,3,7)$ tiling

The rotations s and t have orders two and seven. The product $T S$ is a rotation of order three. However, the element tsTS is not finite order. It is the kite path!

Fundamental domain

Fundamental domain

Fundamental domain

Topological models

Joe Christy

Topological models

Joe Christy

Topological models

Carlo Séquin, Patterns on the genus-three Klein quartic

Topological models

Greg Egan, Klein's quartic curve

Topological models

Helaman Ferguson, The eightfold way

Ramanujan's q-series

$$
\begin{aligned}
& a=\sum_{n=-\infty}^{\infty}(-1)^{n+1} q^{(14 n+5)^{2}} \\
& b=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{(14 n+3)^{2}} \\
& c=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{(14 n+1)^{2}}
\end{aligned}
$$

Here $z=x+i y$ is a point in the upper-half plane $(y>0)$ and $q=\exp (2 \pi i z / 56)$. The q-series a, b, and c satisfy the quartic equation! [Lachaud, Berndt, Ramanujan, Klein] This gives a parametrization of Q.

Extracting Q from $\mathbb{C P}^{2}$

Extracting Q from $\mathbb{C P}^{2}$

mathoverflow

Map of the Klein quartic from $C P^{2}$ to R^{3}

The Klein quartic \mathcal{Q} is cut out of $\mathbb{C P}^{2}$ by the homogeneous equation

$$
x^{3} y+y^{3} z+z^{3} x=0
$$

It has 168 orientation preserving automorphisms and includes several copies of the tetrahedral group (with twelve elements).

Is there a nice way to take the points of \mathcal{Q} in $\mathbb{C P}^{2}$, map them to \mathbb{R}^{3} (preserving one of the tetrahedral symmetry groups) and so produce an embedded, compact, genus three surface?

There are already a number of models of the Klein quartic in \mathbb{R}^{3}. So far we've found the two by Joe Christy and Greg Egan (see this webpage by John Baez) and also a version by Carlo Sequin. As far as we (Saul Schleimer and I) can tell, these are all "topological" models and not obtained by mapping from $\mathcal{Q} \subset \mathbb{C} \mathbb{P}^{2}$ in some sensible way.

$$
\text { ag.algebraic-geometry } \quad \text { algebraic-curves }
$$

Bihomogeneous polynomials

Noam Elkies says to look for degree $2 d$ bihomogeneous polynomial functions that are equivarient with respect to the A_{4} action. Here are a few examples:

$$
\begin{gathered}
(Y \bar{Z}, Z \bar{X}, X \bar{Y}) /(X \bar{X}+Y \bar{Y}+Z \bar{Z}) \\
\left.\left(Y Z \bar{X}^{2}, Z X \bar{Y}^{2}, X Y \bar{Z}^{2}\right) /(X \bar{X}+Y \bar{Y}+Z \bar{Z})^{2}\right)
\end{gathered}
$$

We found all such for $d=1,2,3$. Next we took linear combinations, searching for an embedding.

Progress

Progress

Progress

Progress

Progress

Progress

Progress

Progress

Hill climbing

[Video]

Hill climbing

Thank you!

homepages.warwick.ac.uk/~masgar math.okstate.edu/~segerman youtube.com/henryseg shapeways.com/shops/henryseg thingiverse.com/henryseg

