Curves and laminations
CIR MI [2015-c8-03, Gazi, Turkey] [Reference: Casson and Bleiler]
Goals: Define measured laminations, show why PWof $(5) \cong s^{6 g+2 n-7}$, define Teichmeiller spuce, disiuss the Thurston compactification.

Motavation: Therston introduced Caminotions as a tool for understanding the mapping class group, Teichmuller spuce, (the ends of) Kleinian groups, holomerphic dynamics, etc
i) Surfaces:

Classification Theovern for surfuces: Suppose S is a compact, conrected, orionted surfuce.
Then $g(S)=$ genus of s and $n(s)=12 S 1$ [\# \& bourdury components] determine s, up to homeomorphrom.
[Thet is of S, S^{\prime} are surfuces, $g(S)=g\left(S^{\prime}\right), 1051=10 S^{\prime} 1$ then $\left.S \cong S^{\prime}\right]$

Standard pictures and names

$$
S_{\text {gin }}=\underset{\substack{\text { surface of } \\ \text { genes g, } \\ \text { iasi }=n}}{ }
$$

s^{2}, sphere D^{2} disk
A^{2}, annulus $S_{0,3}$, pair of pants.

Lemma: $X\left(S_{g i n}\right)=2-2 g-n$. Pf: Connect sum.
Exercise: What is the genus of F
closeup of crossing

Exercise: Give a homeomorphism $F \underline{=} S_{i n}$ where $S_{y, n}$ is the standard model above [Border!]
(2) Curres and ares

C IR M suppose $\alpha \varepsilon s^{\prime} \rightarrow s$ (or $\alpha: I \rightarrow s$)
is a proper embedding $\binom{\alpha^{-1}(\partial s)=\partial \alpha}{\alpha$ is nomeo to its image }
Exeverse: Here are only pintelymany proper ares/curves op to homeo Lef: α is inessential if α cots a disk of paiss off of S. α is peripleral if α ats an cunulus off of S.
Pictures

Def: we call F:XXI $\rightarrow S$ a proper Botopy
if * $f_{t}: X \rightarrow S$ is a proper embedding for all $t \in I \quad\left[f_{t}(x)=F(x, t)\right]$

* $F i s$ continuous

If α, β are arcs/curves then write $\alpha \sim \beta$ if Where B a proper Botopy F with $f_{0}=\alpha, f_{1}=\beta$. [Discussion of corners, of index, def of mess, isctupy rel corners] Centre International de Rencontres Mathématiques - CIRM - Laminy - Case 916-F13288 Marseille cedex 9-Tê.: (33) 0491833000
Télécoples: Adrninistration (33) 0491833005 - Bibliothéque/Communication (33) 0491833017 - Rancontres (33) 04.91412786 Telécoples: Administration (33) 0491833005 - Bibliothèque/Communication (33) 0491833017 - Rencontres (33) 04.91412786
wwwompulv-mrs.fr - twittercom/@_ClRM-youtube.com/CiRMchannel

Procure:

Exercise: There are only finitely many curves in S up to homeomorphism of pairs (S, α)
Exercise:

Find a honcec miarphism of pairs!

The program begun by Dean and continued by therston, is to understand the set of proper isotopy clauses of ares and curves
Def: $Q C(S)=\left\{\begin{array}{c}\text { proper } \text { Bot. cases of } \\ \text { ares } / \text { cores } \alpha c\end{array}\right\}$
Define: $\zeta(S)=\{[\alpha] \in \operatorname{aC}(S) \mid \alpha$ curve $\}$

$$
a(s)=\{\quad \alpha \operatorname{arc}\}
$$

(3) Bigon criterion:

CIRM
Suppose $\alpha, \beta \subset S$ are ares/corves. we say α, β share abigon of there is a disk B of $S-(\alpha \cup \beta)$ meeting each of α, β in a single arc, as shour
We say α, β share a
trigor if there is
 a disk Imeeting each of $\alpha, \beta, 25$ in an arc, as shown.

Def:

$$
\left.\begin{array}{rl}
i(\alpha, \beta)= & \min \left\{\left|\alpha^{\prime} \cap \beta^{\prime}\right| \mid \alpha^{\prime} \sim \alpha, \beta^{\prime} \sim \beta\right. \\
\text { propur iotopy }
\end{array}\right\}
$$

Bigon Criterion:
α and β shave a bigon or triagon if and only if

$$
i(\alpha, \beta)<|\alpha \beta \beta| .
$$

Centre Internatioual de Rencontres Mathématiques - CIRM - Luminy - Case 916-F13288 Marsellie cedex 9-Tél: (33) 0491833000

Definition we say α_{1} p ave in minimal portion
if $x(\alpha, p)=|\alpha n \beta|$.
The proof of the tigon criterion uses the Jordan carve theorem in the distr, universal covers, and hyparbutic geometry.
(4) Hupenblic geometry in dimension $2:[9$. Soot's article] $H^{2}=$ hyperbolic plane. We will discuss Ho upper halt plane model: $H=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}=\{z \in \mathbb{C} \mid$ man 1 yo $\}$ equipped wt the metric $d s_{H}=\frac{d s_{E}}{y}=\frac{\sqrt{d x^{2}+d_{y}^{2}}}{y}$ Asuradt of $\gamma \cdot I \rightarrow H$ e a path $|\gamma|=\int_{\gamma} d s_{H}=\int_{\gamma} \frac{d s_{s}}{y}$
$\gamma(t)=(n d), \Delta(t))$

Eq:

Facts: Ism ${ }^{+}\left(H^{2}\right) \simeq P S L(2, \mathbb{R})$. Here a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in P S L(2, R)$ ats via $z=x+i y \xrightarrow{A} \frac{a z+b}{c z+d}$
Examples
(1) if $|\operatorname{tr} A|<2$ then A is elliptic

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)^{R_{0}} \begin{gathered}
-\binom{\cos \sin \theta}{-\sin \theta \cos \theta} \\
\text { nicur ! }
\end{gathered}
$$

C IRM
Pictme

Question
other characterize
(2) If $|\operatorname{tr} A|=2$ then A is parabolic

$$
P_{t}=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

? of te trechotomy? Ans Une minsets (3) Use tramsition dirtances..
(3) If $|\operatorname{tr} A|>2$ then A is hyporbolic

$$
H_{R}=\left(\begin{array}{ll}
R & 0 \\
0 & 1 / R
\end{array}\right) \quad H_{R}(/ / 2)=\frac{R 1 / R+0}{1 / R}
$$

Def: $\partial_{\infty} H^{2}=\Xi_{\infty}^{i}=\mathbb{R} \cup\{, \infty\}$ is the boundany art infinty of $H^{2} \quad \operatorname{PSL}(2, \mathbb{R})$ acts as usval with $A(\infty)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(\infty)=\frac{a}{c}$
Exerrise: PSL $(2, \mathbb{R})$ is 3 tramsitive on antidockuise triples of points in $\partial_{\infty} H^{2}$
Pictare of
tripes \qquad
\qquad Centre International de Rencontres Mathématiques - CIRM - Luminy - Case 916-F13288 Marseille cedex 9 - Tel: : [33] 0491833000 Telecopies: Acministration (33) 0491833005 - Bibliothèque/Communication (33) 0491833017 - Rencontres (33) 040 01412786
Ww.chmuniv-mrs.fr-twittercom/@_ClPM - youtube.com/CiRMchannel

3-transitive: (or any (antilock wise) (a, b, c) and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ there is unique $A \in P S L(2, \mathbb{R})$ st. $A(a)=a^{\prime}$

$$
A(b)=b^{\prime}
$$

$A(c)=c^{\prime}$ (triples
 Espace of triples

$$
\cong V T H^{2}
$$

Pi It suffices to send (a, b, c) to $(0,1, \infty)$. $\left[\begin{array}{l}\text { Now rotate } c \text { to } \infty \text {, translate } a^{\prime} \text { to a } \\ \text { and homethey } b^{\prime \prime} \text { to 1. }\end{array}\right]$

Fact (2): Geodesics in H^{2} cane arcs of vertical lines or circles perp. to \mathbb{R}. Picture

Fact (3): Hyperbolic elements have a unique axis. If trace $(A)=\lambda+\frac{1}{\lambda}$ then A tranlates along its axis by distance $2 \log (\lambda)$. Picture

Fact (4): Uniformization: Any surface SB, with $X(S)<0$ has It as its universal cover. [Possibly in many mays!]

Here are two firal examples
CIRM Exaple (1):

$B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ parabolic about 0 .
we define $T=\langle A, B\rangle\langle P S L(2, R)$ and
form $H^{2} / T=$

A pair of, pants.

$A=\left(\begin{array}{cc}R & 0 \\ 0 & 1 / R\end{array}\right)$
$B=\left(\begin{array}{ll}a & 1 \\ 1 & a\end{array}\right)$ where $a=\frac{R+1 / R}{2}$
 frem a bore the atis of A "pinches"

If $\Gamma=\langle A, B\rangle$ then H^{2} / Γ

oncer punctived torus.

CIRM - Centre International de Rencontres Mathématiques
www.cirm-math.fr - twitter.com/@CIRM - google + CiRM - youtube.com/CIRMchannel - www.chairejeanmorlet.com_ Cimit!

Curves and lamentations III
CIR

$$
[2015-08-04]
$$

(4') One wore model of H2. The Pancare disk model is $D=\{z \in \mathbb{Q}| | z \mid<1\}$. Set $z=x+i y$ $r^{2}=x^{2}+y^{2}$. The metric is W $d s_{D}=\frac{2 \cdot d s_{E}}{1-r^{2}}$
$\left[\begin{array}{c}\text { compare to the spherical metric } d s_{s}=\frac{z d s_{E}}{1+r^{2}} \\ \text { obtained via stereographic } \\ \text { projection }\end{array}\right]$

Nw gadocies are lines through zero and circles perpendicular to $S^{\prime}=\partial_{\infty} D$.

Exercise Show $\left(H, d s_{H}\right) \simeq\left(D, d L_{D}\right)$ are Bometric.
(5) Proof of Bigon criterion (sketch)

Recall: Arcs (corves α, β are in minimal position if $|\alpha \cap \beta|=i(\alpha, \beta)(=$ geom intersection number $)$.
Tho: (Bigon criterion) α, β in minimal position if α, β do not share a bigon (or trigon).

Pictures

trigon
The proof is at hard, but requires some new ideas. Well just gie an out-line.

If Suppose α, β are arcs in the disk D.
They share 0,1 , or 2 endpoints. Here we 4 ass

If $\partial \alpha n \partial \beta=\phi$ den define
$\theta \alpha, \beta$ are $\left\{\frac{\text { linked }}{\text { unlinked }}\right\}$ if $\partial \alpha\left\{\begin{array}{l}\text { separates } \\ \text { doesnitsep }\end{array}\right\} \partial \beta$ in D,
Claim (1) Suppose $\partial \alpha r \alpha \beta=\phi$

$$
\begin{aligned}
& \text { Depose } \partial \alpha, \alpha \beta=\phi \\
& \text { i. } \beta \text { are }\left\{\begin{array}{l}
\text { inked } \\
\text { unlined }
\end{array}\right\} \text { if } i(\alpha, \beta)=\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} \text {. }
\end{aligned}
$$

Pf: (2) Jordan curve theorem
(\Longleftrightarrow) Jordan cove theorem and
"innermost bigon" argument.

Now suppore $\chi(s)<0$
CIRM and $p: \pi,(S) \rightarrow$ PSL $(2, R)$ is a discrete and futhfol rep.

$$
\text { [ioe } H^{2} / p\left(\pi_{1}\right) \cong 8 \text { Pictire }
$$

Claim(B): If $\alpha c S$ is ess, nonperip corve then $A=\rho(\alpha)$ is hyperbolic [Exerise: Give a proof!]

So let L_{A} be the axis of A

let z be the ift of d to $H t^{2}$ that fellow travels with Laso
Defme $\alpha^{*}=\pi\left(L_{A}\right)$ 。
Clam C a
 α^{*} is simple. (and homotenic to α) Pf: a smple $\Rightarrow \pi^{-1}(\alpha)$ is unlinked $\Rightarrow p\left(\pi_{1}\right) \cdot L A$
B un laked $\Rightarrow \alpha^{+}$simple./

Clam(D): α is isstapic to α^{k}.
Pf: we induct on $\mid \alpha \cap \alpha^{+1}$. CIRM - Centre International de Rencontres Mathématiques
Campus de Luminy - Case 916 - F 13288 Marseille cedex $9-T+33$ www.cirm-math.fr - twitter.com/@_CIRM - google + CIRM - youtube.com/CIRMchannel - www.chairejeanmorlet.com
[Skip: If $\left|\alpha \cap \alpha^{*}\right|=0$ then pick $s c H^{2}$ Geodesic are from L_{A} to α, and choose δ to be shortest such. Then $\delta n A(\delta)=\phi$ and $\pi(S)$ embeds, meets α, α^{*} at and pts.
So get rectangle beget annulus $\rightarrow \alpha \approx \alpha^{*}$ If $\alpha \cap x^{*}+t$ find bigon in H^{2}, this embeds So reduce $\left(\alpha \cap \alpha^{*}\right)$
we call α^{*} the geodesic representature
 of α.
Finishing the pf of bigon miterion:
Given α, β, isotope them to α^{*}, β^{*}. These have no bigons (lift to It and recall dusitiation of geodesics). Let $L_{A}=\alpha^{b}, L_{B}=\beta^{*}$. we neat count the number of orbit reps of L_{B} that link L_{A}.
Note that Botopes of do not move $\partial_{\infty}\left(1 \cdot 2^{*}\right)$
So ff of linking pairs is

(a) a lower bound for i(α, β)
(b) realized $\left.b y \mid \alpha^{*} \cap p^{*}\right)$

Exercisc: Mnimal postion is
CIRM

(6) Laminations: $F_{0} p \cdot \pi(s) \rightarrow \mathbb{L}(2, \mathbb{R}), \Gamma=p(\pi$,

Š气 Ht / Γ, surfuce of frote Note $\gamma(s)<0$.

Let cas be the folnaded cesp reightamkeods.
If $2 S+\phi$ then \mathbb{H}^{2} /is nonompuct choose horocydes of kugthy 1 .

So $1 H^{2}, i>$ compact and homeomorphic to S.
Exerise. If $\alpha^{*}<s$ is a simple geadsic then either (i) $\alpha^{*} \perp \partial c$ (perperd)

$$
\text { or } \quad(i i) d^{2} \times c=\phi
$$

In case Sh we say 2^{*} exits S.
CIRM - Centre International de Rencontres Mathématiques
Campus de Luminy - Case 916-F13288 Marseille cedex 9-T + 33 (0)4 $91833000-$ Fax + 33 (0)4 91833005
www.cirm-math.fr - twitter.com/@_CIRM - google + CIRM - youtube.com/CIRMchannel - www.chairejeanmorlet.com

Picture

EX

Ex

c does not out
Def: A lamination $\Delta C \dot{S}=4 / t$ is any closed set that can be realized as a disjoint union of simple geodesics, all leaves.
Before we think about He details lets thine about an example.
Def: A leaf LC AB Botated if $\forall x \in L \quad \exists \varepsilon>0$ $\operatorname{st}\left[B_{\varepsilon}(x)=\varepsilon-b a l l\right]$ $B_{\varepsilon}(x) \cap \Lambda=B_{\varepsilon}(x) \cap L$.
All examples above hare isolated leaves.
Def: call A perfect if it has no isolated leaves.
Can we find a perfect lamination??
(7) An example.

CIRM S $=\mathbb{C}-\{0,1,2\}$ and
$L, R: S \rightarrow S$ nomeo as follows

Eg:

Lets fix a curve α_{0} and define $\left.\left.\alpha_{k}=\left((R)^{k}\right)_{0}\right)\right)^{*}$ there is the sequence of pictores.

$\|^{k}$

$\downarrow R$

The sequence of geodesics is converging in the Havsdorft decl metric:
 to a perfect lamination?

We wire $\alpha_{0} \rightarrow \Delta$ and note $R L(\Delta)=\Lambda$.
Ship: Tran tracks, weights, eigenvector gree transverse measure.

Curves and Laminations IV (18)
CIR

$$
[2015.08 .04]
$$

[skipped a lot of the material in m
attempt to simplify. See notes at end.]
(8) Exiting leaves As usual, fix $S=S_{g} n$ and $p: \pi,(S) \rightarrow P S L(2, R)$. Set $T=p(\pi)$ and suppose $S^{o} \cong H t / p$ has fate area. $\left.(X<S)<0\right)$.

$$
\text { If } 2 s+\phi \text { then } s^{\circ} \text { non-compart. }
$$

Let Δ se b the union of the length one hovocydes.

Let $C_{\text {sci }}$ be the components of $s^{0}-A^{\left.2_{i}\right\}}$ with non-campact closure Shaded I. Hose are the cusps of S. $S^{0}-c^{0} \cong S$ is compact.

Def: If $\alpha^{*} \subset S^{\theta}$ is a simple geodesic, perpendicular to Δ, then we say α^{*} ext S°
Exercise: If $\alpha^{\& c s^{\circ}}$ is a simple geodesic either (i) α^{*} exits s° or $(i i) \alpha^{*} \cap C=\phi$. $\left[\begin{array}{c}\text { This } 3 \text { an easy exercise in th } \\ \text { definitions and requires } \\ \text { one idea! }\end{array}\right]$ firM- Centre International de Rencontre Matiematioues one idea:
d) Campus de Luminy - Case 916 - F 13288 Marseille cedex $9-T+33(0) 491833000$ - Fax $+33(0) 4.91833005$
www.cirm-math.fr - twitter:com/@_CIRM - google + CIRM - youtube.com/CIRMchannel - www.chairejeanmorlet.cd ww.cirm-math.rr - twitter.com/@_CIRM - google + CIRM - youtube.com/CIRMchannel - www.chairejeanmorlet.com
(9) Havsdenff metric

Suppore $\left(X, d_{x}\right)$ is a metric space.
Dof he $H=H(X)=\{c c X(c$ closed $\}$. Dof.e.

$$
d_{\text {thus }}(A, B)=\inf \left\{q \in \mathbb{R} \mid A \subset N_{a}(B), B \subset N_{\varepsilon}(A)\right\}
$$

Example: If $A, B \subseteq \mathbb{R}^{2}$ are $t c$ axes
Then ditaws (A, B) is undefred.
Thm [202] If $\left(X, d_{x}\right)$ 3 compact, so is $\left(H, d_{t}\right)$.
Define $f(S)=\left\{\Lambda \subset S \left\lvert\, \begin{array}{l}\Lambda \text { lamivation wothout } \\ \text { exiting leaves }\end{array}\right.\right\}$.
Note $g \not g(S) \leq \operatorname{Hews}\left(s^{\circ}-c^{0}\right)$ by the exercize.
Theoven: $\left(g \neq(5), d_{\text {teass }}\right)$ is compait. [see Basson Beter]
Ruk: This justities the limt $\alpha_{k} \rightarrow \Lambda(f)$ taken yesterday.
To prove (8) Several Bleas are requived.
(1) Fix a purtition $\Delta=U \gamma$. Aen directions of Λ

(2) The decomposition $\Lambda=u \gamma$ is unique.
(3) A is nowthere dense
(t) The closure of any disjunion of simple geodesics is a lamination.

4 Rimk. If Δ minimal all leaves are dense. Cartorx I

Exercise: Suppose α^{*}
CIR M B a simple closed geodesic. Then $\alpha^{*} \in\left(G \mathcal{L}(s), d_{\text {Haws }}\right)$ is an isolated point.
Picture:

Induct

Choose $\varepsilon>0$ so thant $N a\left(\alpha^{*}\right) 气 \mathbb{A}^{2}$ is an annulus!

$$
(G X(s), d t)
$$

Corollary: $\left(G \mathcal{F}^{\infty}(s), d_{H}\right)$ is totally disconnected.
[This B... unpleasant!] [son opts are pts]
(10) Measured lamination:

Def: Suppose $\alpha \beta$ an anc/curbe system

$$
\alpha=\left\{\alpha_{i}\right\}_{i=0}^{n} \text { where } \alpha_{i} \neq \alpha_{j} \forall i=j \text { and } \quad\left(\alpha_{i}, \alpha_{j}\right)=0 \quad \forall i j \text {. }
$$

Piste A maximal curve system A maximal curve system is a pants decomposition

Picture

A maximal are system is a hexagon decomposition

Def If α, β are systems, define $i(\alpha, \beta)=\sum_{i, j}^{1} i\left(\alpha_{i}, \beta_{j}\right)$
Picture $i(\alpha, \beta)=6$.

1. tromaversely measured
(α, μ) is a system and a function $\mu: \alpha \longrightarrow \mathbb{R}_{\text {yo }}$.
Picture $\rho\left(\alpha, \mu_{t}\right)$ B a."path" in He"space" of measured systems.
Def: $\left.i((\alpha, \mu),(\beta, \nu))=\sum_{i} \mu\left(\alpha_{i}\right) \nu \beta_{i}\right) i\left(\alpha_{i}, \beta_{i}\right)$
Morally: $\mu\left(\alpha_{1}\right)$ measures the "it thickness" of α_{i}

Exercise: $\forall \gamma \in Q(S) \quad i\left(\gamma,\left(\alpha_{m}, \eta\right)\right) \rightarrow i(\gamma, \beta)$
Whats: β s saluted in Haws tap but is not isolated in the "measure topology"
[I drew the geometric and necusure limits next to each other. ged bard work-]

Retintion [Penner-Harei]
CIRM Suppose $\Delta \in G f(S)$ is a geodesic lamination. Let $T(\Lambda)=T$
be the set of (not neeess proper) Simple and curves in S tromswerse to A. A tromsverke measure μ on Λ is a function

$$
\left.\mu: \begin{array}{c}
T(\Lambda) \longrightarrow \mathbb{R}_{\sim} \geqslant 0 \\
d \\
\alpha
\end{array}\right\} \text { so thit. }
$$

(1) If $\alpha, \beta \in T$ are flow equivalent $\alpha(\langle x e ~ \mu(x)=\mu(\beta)$
(2) If $\alpha, \beta \gamma \in T$ with $\gamma=\alpha \cup \beta, \alpha \cap \beta=\xi p t\}$
(3) If $\alpha \in T, \alpha \cap \lambda \neq \phi$ then $\mu(\alpha)>0$. Cand conversely!)
Dicture of flow equivalent

Pictare (a)
 Pitue (3)

Defne $\pi \mathcal{L}(s)=\{0\} \cup\{(\pi, \mu)$ trans meas $\operatorname{lam}\}$. Note there is a notural action of $\mathbb{R} \geqslant 0$

$$
r \cdot(\Lambda, \mu)=(\Lambda, r \cdot \mu)
$$

CIRM - Centre International de Rencontres Mathématiques
Campus de Luminy - Case 916 - F 13288 Marseille cedex 9 - T + $33(0) 491833000$ - Fax + $33(0) 491833005$
www.cirm-math.fr - twitter:com/@_CIRM - google + CIRM - youtube.com/CIRMchanncl - wwicher

So defive $0 m f(S)=\frac{m \not(S)-\{0\}}{\mathbb{R} \geq 0}$
(11) The measure topetoge):

Suppose $\lambda=(\Lambda, \mu) \in m f(S), \quad \alpha \in E S)$
we define $i(\alpha, \lambda)=\mu(\alpha)$.
Dofme $i_{\alpha}: \operatorname{mg}(s) \longrightarrow R_{2}$
$\stackrel{\psi}{\nu} \quad{ }^{4}(\alpha, \lambda)$
The measure topology on $\operatorname{mg}(s)$ makes all of the functions i_{2} continuous.
[Thrs is not the defmition] As we've seen in exarples above
Petore
 mzes) is not totally dsconnected.
Thm Thorston] $m \neq(5) \simeq \mathbb{R}^{69+2 n-6}$

$$
P m f(S) \simeq 8^{6 g+2 n-7}
$$

Thm Thurston, Rees, Bonahon, Lu0.]. Geometric intersection $(: R(C(S) \times R=(C) S) \rightarrow R$ has a contmous extension to $m x \times m \rightarrow \mathbb{R}$
(12) Behn-Thuston coordinates:

Let $\left\{a_{0}\right] \leq(C S$ be a pants deconposition of S

Since $X(s)=2-2 g^{-1}$ and
Since $X\left(S_{0,3}\right)=-1$ there are
$2 y+x-2$ pairs of pants, and so there are

$$
\left[\begin{array}{r}
\left.\frac{(6 g+3 n-6)+n}{2}-n\right] \text { red cures ie. } \zeta(s)=\frac{\text { pants }}{\text { humbrav }} \\
\zeta(s)=3 y+n-3
\end{array}\right.
$$

Lemma: The map $m f(s) \longrightarrow \mathbb{R}_{3}^{3+n-3}$

$$
\stackrel{i}{\lambda} \longmapsto\left(i\left(a_{i}, \lambda\right)\right)
$$

is sorjective.
Pictures:

$$
[c f F P]
$$

We locally solve the problem, gre together the prices and check the result an be "pulled tight."

CIRM - Centre International de Rencontre Mathématiques
Campus de Luminy - Case 916 - F 13288 Marseille codex 9 - T + 33 (0) 491833000 - Fax + 33 (0) 491833005

However this map is not an injection.

Example
The following discussion of the twist coordinate is confused and wrong Please see FLP (or my
notes for my talks in 2018 at the notes for my talks in 2018 at the
Fields) for a correct discussion. for

No turfing

Some turiting

Following FLP. For each a_{i} choose curves

$$
\begin{aligned}
& \text { (i) } i\left(a_{i}, b_{j}\right)= \begin{cases}0 & \text { if } i+j \\
1 & \text { if } a_{i} \text { in handle } \\
2 & \text { if } a_{i} \text { in Suit }\end{cases} \\
& \text { (ii) } c_{i}=T_{a_{i}}\left(b_{i}\right)
\end{aligned}
$$

Pictures

Isotope c_{i} so $b_{i} \cap P_{j}=c_{i} \cap P_{j}$ union of parts.

Fix $\lambda=(\lambda, \mu)$. Isotope Λ to be standard in P_{j} In Ni we see

Novi Considiar the retangle R
CIRM we get by cutting along b_{i}^{t}

There are 3 possiblties for \triangle

$$
\left\{\begin{array}{l}
\text { Define } \\
r_{i}=\mu\left(a_{i}\right) \\
s_{i}=\mu\left(b_{i}^{!}\right) \\
t_{i}=\mu\left(c_{i}^{\prime}\right)
\end{array}\right.
$$ as it flows thro R

(b)

$$
\begin{aligned}
& r=s t t \\
& (p o s)
\end{aligned}
$$

(3)

$$
\begin{array}{ll}
t=r+s & (p o s) \\
\text { nea) }
\end{array}
$$

Nate that $\left(r_{i}, t w_{i}\right)$ recovers $\left(r_{i}, s_{i}, t_{i}\right)$
Theorem $M \mathcal{M L}(S) \longrightarrow \mathbb{R}_{\psi \rightarrow 0}^{3 y+n-3} \times \mathbb{R}^{3 y+n-3}$

$$
\lambda \longmapsto\left(r_{i}, t w_{i}\right)_{i}
$$

is a homeomorphirm. (equivar urt)
[I tailed on this talk instead i talked about PA maps, endiry laminations. Thurston trichatomy, comparing limits in $g \not(s)$ to lmits in $M \mathcal{L}(s)$

CIRM - Centre International de Rencontres Mathématiques Campus de Luminy - Case 916 - F 13288 Marseille cedex 9 - T + 33 (0) 491833000 - Fax $+33(0) 491833005$
www.cirm-math.fr - twitter.com/@_CIRM - google + CIRM - youtube,com/CIRMchannel - www.chairejeanmorlet.com

