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Group actions on probability spaces

G countable group
(X , µ) standard proba space (e.g. X ≈ ([0, 1],Leb))
G ↷ X free, ergodic, measure-preserving (p.m.p.) action

Free: µ({x ∈ X |StabG (x) ̸= {1}}) = 0
Ergodic: Every G -invariant Borel subset of X is null or conull.
Measure-preserving: ∀A ⊆ X Borel, ∀g ∈ G , µ(gA) = µ(A).

Two natural examples:

Bernoulli actions: G ↷ [0, 1]G by shift

Profinite actions: G residually finite, acting on its profinite
completion, preserving the Haar measure
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Orbit equivalence

⇝ The orbit equivalence relation RG↷X

Definition: Two actions G ↷ X and H ↷ Y are

1 orbit equivalent (OE) if RG↷X ≈ RH↷Y , i.e.
∃f : X → Y iso, ∀∗x ∈ X , f (G · x) = H · f (x);

2 stably orbit equivalent (SOE) if ∃U ⊆ X ,V ⊆ Y of positive
measure s.t. (RG↷X )|U ≈ (RH↷Y )|V

3 conjugate if ∃α : G → H, f : X → Y iso: f (gx) = α(g)f (x)
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Flexibility and rigidity: some known results

1. Flexibility

(Ornstein-Weiss 80) All free, ergodic, p.m.p. actions of
countably infinite amenable gps are OE.

2. Rigidity

for all actions of certain groups:

higher-rank lattices (Furman 99)
mapping class groups (Kida 10), Out(FN) (for N ≥ 3,
Guirardel-H 21)

for irreducible actions of Fp × Fq (Monod-Shalom 06)

for Bernoulli actions of e.g. Property (T) groups (Popa 06)
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Right-angled Artin groups (RAAGs)

Γ finite simple graph ⇝ GΓ right-angled Artin group:

generators: vertices of Γ

relators: [v ,w ] = 1 whenever v and w are adjacent

More generally: Graph product of {Gv}v∈VΓ over Γ: group
obtained from ∗v∈VΓGv by further imposing that Gv and Gw

commute whenever v ,w are adjacent.

Camille Horbez OE rigidity of irreducible actions of RAAGs



Right-angled Artin groups (RAAGs)

Γ finite simple graph ⇝ GΓ right-angled Artin group:

generators: vertices of Γ

relators: [v ,w ] = 1 whenever v and w are adjacent

More generally: Graph product of {Gv}v∈VΓ over Γ: group
obtained from ∗v∈VΓGv by further imposing that Gv and Gw

commute whenever v ,w are adjacent.

Camille Horbez OE rigidity of irreducible actions of RAAGs



Failure of rigidity

Based on Ornstein-Weiss theorem + an argument of Gaboriau:

Proposition (H-Huang)

Let G be a RAAG with defining graph Γ. Let H be a graph
product of countably infinite amenable groups over Γ.
Then G and H have OE free, ergodic, p.m.p. actions.

Better: Every action G ↷ X has a blow-up G ↷ X̂ (i.e. coming
with a G -equivariant map X̂ → X ) which is OE to some H-action.

Camille Horbez OE rigidity of irreducible actions of RAAGs



Failure of rigidity

Based on Ornstein-Weiss theorem + an argument of Gaboriau:

Proposition (H-Huang)

Let G be a RAAG with defining graph Γ. Let H be a graph
product of countably infinite amenable groups over Γ.
Then G and H have OE free, ergodic, p.m.p. actions.

Better: Every action G ↷ X has a blow-up G ↷ X̂ (i.e. coming
with a G -equivariant map X̂ → X ) which is OE to some H-action.

Camille Horbez OE rigidity of irreducible actions of RAAGs



Idea of the construction

Start with G ↷ X .

Assume ∃v ∈ VΓ such that Gv ̸= Hv , while Gw = Hw for w ̸= v .

Take Gv ,Hv ↷ Z free, p.m.p. OE actions (Ornstein-Weiss)

We have an action G ↷ X̂ = X × Z (via the retraction G ↠ Gv ).

To define an (OE) action H ↷ X̂ , enough to define an action
Hv ↷ X̂ , commuting with the actions of adjacent vertex groups.

For h ∈ Hv , let h · (x , z) := g · (x , z), where g ∈ Gv is s.t. gz = hz .
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Strong rigidity of irreducible actions of RAAGs

Some actions of RAAGs are more rigid than others.

Definition

Let G be a RAAG. A free p.m.p. action G ↷ X is irreducible if
(through an isomorphism G ≈ GΓ) every standard generator acts
ergodically.

Theorem 1 (Strong rigidity, H-Huang)

Let G ,H be two one-ended, centerless RAAGs.
If two irreducible actions G ↷ X and H ↷ Y are SOE, then they
are conjugate.
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Superrigidity of irreducible actions of RAAGs

Works of Furman, Monod-Shalom, Kida let us derive superrigidity.

Theorem 2 (Superrigidity, H-Huang)

Let G be a one-ended, centerless RAAG. Let H be a countable gp.
If an irreducible action G ↷ X and a mildly mixing free, p.m.p.
action H ↷ Y are SOE, then they are virtually conjugate.

Mildly mixing: lim infg→+∞ µ(A∆gA) > 0 whenever 0 < µ(A) < 1.

Rk: In the specific case of Bernoulli actions of G , work of Popa
enables to remove the mild mixing assumption on the H-action.
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Proof ingredients for Theorem 1 (Strong rigidity)

Say we have two OE irreducible actions G ↷ X and G ↷ Y of the
pentagon RAAG G .

⇝ the same OE relation R
⇝ c : G × X → G the orbit equivalence cocycle

Goal: c is cohomologous to a group homomorphism α : G → G
(i.e. ∃θ : X → G such that θ(gx)c(g , x)θ(x)−1 = α(g))
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Proof ingredients for Theorem 1 (Strong rigidity)

Step 1 (exploiting CAT(0) geometry):
Subrelations of R coming from restricting the action to a vertex
group / a star subgroup can be“recognized”.
⇝ c is cohomologous to cv such that

cv (Gst(v) × X ) ⊆ Gst(w)

cv (Gv × X ) ⊆ Gw

Step 2 (based on Monod–Shalom, using irreducibility):
⇝ cv is cohomologous to a cocycle which descends to a group
isomorphism Gst(v)/Gv → Gst(w)/Gw .
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Proof ingredients for Theorem 1 (Strong rigidity)

Step 3 (cancelling ambiguities):
By comparing cv1 and cv2 , show that (up to cohomology) cv
restricts to a group homomorphism Gv → H.

Step 4 (propagation, using commutation and irreducibility):
As Gv is part of a generating set of G where consecutive generators
commute, c is cohomologous to a group homomorphism G → G .
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On the SOE classification of RAAGs

Open question: When do two RAAGs admit (S)OE free, ergodic,
p.m.p. actions?

Theorem (H-Huang)

Let G ,H be two RAAGs with |Out(G )|, |Out(H)| < +∞.
If G and H have SOE free p.m.p. actions, then G ≈ H.

Camille Horbez OE rigidity of irreducible actions of RAAGs



On the SOE classification of RAAGs

Open question: When do two RAAGs admit (S)OE free, ergodic,
p.m.p. actions?

Theorem (H-Huang)

Let G ,H be two RAAGs with |Out(G )|, |Out(H)| < +∞.
If G and H have SOE free p.m.p. actions, then G ≈ H.

Camille Horbez OE rigidity of irreducible actions of RAAGs



On the SOE classification of RAAGs

Open question: When do two RAAGs admit (S)OE free, ergodic,
p.m.p. actions?

Theorem (H-Huang)

Let G ,H be two RAAGs with |Out(G )|, |Out(H)| < +∞.
If G and H have SOE free p.m.p. actions, then G ≈ H.

Camille Horbez OE rigidity of irreducible actions of RAAGs



Thank you!
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