Orbit equivalence rigidity of irreducible actions of right-angled Artin groups

Camille Horbez

CNRS / Université Paris-Saclay

joint work with Jingyin Huang (Ohio State University)

GaTO Seminar, Oct. 21, 2021

Free: $\mu(\{x \in X | \text{Stab}_G(x) \neq \{1\}\}) = 0$

• • = • • = •

Free: $\mu(\{x \in X | \operatorname{Stab}_G(x) \neq \{1\}\}) = 0$ **Ergodic**: Every *G*-invariant Borel subset of *X* is null or conull.

Free: $\mu(\{x \in X | \operatorname{Stab}_G(x) \neq \{1\}\}) = 0$ **Ergodic**: Every *G*-invariant Borel subset of *X* is null or conull. **Measure-preserving**: $\forall A \subseteq X$ Borel, $\forall g \in G$, $\mu(gA) = \mu(A)$. *G* countable group (X, μ) standard proba space (e.g. $X \approx ([0, 1], \text{Leb}))$ $G \curvearrowright X$ free, ergodic, measure-preserving (p.m.p.) action **Free**: $\mu(\{x \in X | \text{Stab}_G(x) \neq \{1\}\}) = 0$ **Ergodic**: Every *G*-invariant Borel subset of *X* is null or conull. **Measure-preserving**: $\forall A \subseteq X$ Borel, $\forall g \in G$, $\mu(gA) = \mu(A)$.

Two natural examples:

• Bernoulli actions: $G \curvearrowright [0,1]^G$ by shift

G countable group (X, μ) standard proba space (e.g. $X \approx ([0, 1], \text{Leb}))$ $G \curvearrowright X$ free, ergodic, measure-preserving (p.m.p.) action **Free**: $\mu(\{x \in X | \text{Stab}_G(x) \neq \{1\}\}) = 0$ **Ergodic**: Every *G*-invariant Borel subset of *X* is null or conull. **Measure-preserving**: $\forall A \subseteq X$ Borel, $\forall g \in G$, $\mu(gA) = \mu(A)$.

Two natural examples:

- Bernoulli actions: $G \curvearrowright [0,1]^G$ by shift
- *Profinite actions*: *G* residually finite, acting on its profinite completion, preserving the Haar measure

伺 ト イ ヨ ト イ ヨ ト

\rightsquigarrow The orbit equivalence relation $\mathcal{R}_{{\cal G} \frown X}$

• • = • • = •

æ

 \rightsquigarrow The orbit equivalence relation $\mathcal{R}_{{\cal G} \frown {\cal X}}$

<u>Definition</u>: Two actions $G \curvearrowright X$ and $H \curvearrowright Y$ are

• orbit equivalent (OE) if $\mathcal{R}_{G \cap X} \approx \mathcal{R}_{H \cap Y}$, i.e. $\exists f : X \to Y$ iso, $\forall^* x \in X$, $f(G \cdot x) = H \cdot f(x)$; \rightsquigarrow The orbit equivalence relation $\mathcal{R}_{{\cal G} \frown {\cal X}}$

<u>Definition</u>: Two actions $G \curvearrowright X$ and $H \curvearrowright Y$ are

- orbit equivalent (OE) if $\mathcal{R}_{G \cap X} \approx \mathcal{R}_{H \cap Y}$, i.e. $\exists f : X \to Y$ iso, $\forall^* x \in X$, $f(G \cdot x) = H \cdot f(x)$;
- Stably orbit equivalent (SOE) if ∃U ⊆ X, V ⊆ Y of positive measure s.t. (R_{G∩X})_{|U} ≈ (R_{H∩Y})_{|V}

 \rightsquigarrow The orbit equivalence relation $\mathcal{R}_{\mathcal{G} \cap \mathcal{X}}$

<u>Definition</u>: Two actions $G \curvearrowright X$ and $H \curvearrowright Y$ are

- orbit equivalent (OE) if $\mathcal{R}_{G \cap X} \approx \mathcal{R}_{H \cap Y}$, i.e. $\exists f : X \to Y \text{ iso, } \forall^* x \in X, f(G \cdot x) = H \cdot f(x);$
- Stably orbit equivalent (SOE) if ∃U ⊆ X, V ⊆ Y of positive measure s.t. (R_{G∩X})_{|U} ≈ (R_{H∩Y})_{|V}
- **3** conjugate if $\exists \alpha : G \to H$, $f : X \to Y$ iso: $f(gx) = \alpha(g)f(x)$

Flexibility and rigidity: some known results

- 1. Flexibility
 - (Ornstein-Weiss 80) All free, ergodic, p.m.p. actions of countably infinite <u>amenable</u> gps are OE.

A B M A B M

Flexibility and rigidity: some known results

- 1. Flexibility
 - (Ornstein-Weiss 80) All free, ergodic, p.m.p. actions of countably infinite <u>amenable</u> gps are OE.
- 2. Rigidity
 - for <u>all</u> actions of certain groups:
 - higher-rank lattices (Furman 99)
 - mapping class groups (Kida 10), $Out(F_N)$ (for $N \ge 3$, Guirardel-H 21)

Flexibility and rigidity: some known results

- 1. Flexibility
 - (Ornstein-Weiss 80) All free, ergodic, p.m.p. actions of countably infinite <u>amenable</u> gps are OE.
- 2. Rigidity
 - for <u>all</u> actions of certain groups:
 - higher-rank lattices (Furman 99)
 - mapping class groups (Kida 10), $Out(F_N)$ (for $N \ge 3$, Guirardel-H 21)
 - for <u>irreducible</u> actions of $F_p \times F_q$ (Monod-Shalom 06)

- 1. Flexibility
 - (Ornstein-Weiss 80) All free, ergodic, p.m.p. actions of countably infinite <u>amenable</u> gps are OE.
- 2. Rigidity
 - for <u>all</u> actions of certain groups:
 - higher-rank lattices (Furman 99)
 - mapping class groups (Kida 10), Out(F_N) (for N ≥ 3, Guirardel-H 21)
 - for <u>irreducible</u> actions of $F_p \times F_q$ (Monod-Shalom 06)
 - for <u>Bernoulli actions</u> of e.g. Property (T) groups (Popa 06)

伺下 イヨト イヨト

Right-angled Artin groups (RAAGs)

- Γ finite simple graph \rightsquigarrow G_{Γ} right-angled Artin group:
 - generators: vertices of Γ
 - relators: [v, w] = 1 whenever v and w are adjacent

Right-angled Artin groups (RAAGs)

- Γ finite simple graph $\rightsquigarrow G_{\Gamma}$ right-angled Artin group:
 - generators: vertices of Γ
 - relators: [v, w] = 1 whenever v and w are adjacent

More generally: Graph product of $\{G_v\}_{v \in V\Gamma}$ over Γ : group obtained from $*_{v \in V\Gamma} G_v$ by further imposing that G_v and G_w commute whenever v, w are adjacent.

Based on Ornstein-Weiss theorem + an argument of Gaboriau:

Proposition (H-Huang)

Let G be a RAAG with defining graph Γ . Let H be a graph product of countably infinite amenable groups over Γ . Then G and H have OE free, ergodic, p.m.p. actions. Based on Ornstein-Weiss theorem + an argument of Gaboriau:

Proposition (H-Huang)

Let G be a RAAG with defining graph Γ . Let H be a graph product of countably infinite amenable groups over Γ . Then G and H have OE free, ergodic, p.m.p. actions.

Better: Every action $G \curvearrowright X$ has a blow-up $G \curvearrowright \hat{X}$ (i.e. coming with a *G*-equivariant map $\hat{X} \to X$) which is OE to some *H*-action.

Assume $\exists v \in V\Gamma$ such that $G_v \neq H_v$, while $G_w = H_w$ for $w \neq v$.

4 3 4 3 4 3 4

э

Assume $\exists v \in V\Gamma$ such that $G_v \neq H_v$, while $G_w = H_w$ for $w \neq v$. Take $G_v, H_v \curvearrowright Z$ free, p.m.p. OE actions (Ornstein-Weiss)

Assume $\exists v \in V\Gamma$ such that $G_v \neq H_v$, while $G_w = H_w$ for $w \neq v$. Take $G_v, H_v \curvearrowright Z$ free, p.m.p. OE actions (Ornstein-Weiss) We have an action $G \curvearrowright \hat{X} = X \times Z$ (via the retraction $G \twoheadrightarrow G_v$).

Assume $\exists v \in V\Gamma$ such that $G_v \neq H_v$, while $G_w = H_w$ for $w \neq v$. Take $G_v, H_v \curvearrowright Z$ free, p.m.p. OE actions (Ornstein-Weiss) We have an action $G \curvearrowright \hat{X} = X \times Z$ (via the retraction $G \twoheadrightarrow G_v$). To define an (OE) action $H \curvearrowright \hat{X}$, enough to define an action $H_v \curvearrowright \hat{X}$, commuting with the actions of adjacent vertex groups.

Assume $\exists v \in V\Gamma$ such that $G_v \neq H_v$, while $G_w = H_w$ for $w \neq v$. Take $G_v, H_v \curvearrowright Z$ free, p.m.p. OE actions (Ornstein-Weiss) We have an action $G \curvearrowright \hat{X} = X \times Z$ (via the retraction $G \twoheadrightarrow G_v$). To define an (OE) action $H \curvearrowright \hat{X}$, enough to define an action $H_v \curvearrowright \hat{X}$, commuting with the actions of adjacent vertex groups. For $h \in H_v$, let $h \cdot (x, z) := g \cdot (x, z)$, where $g \in G_v$ is s.t. gz = hz.

Strong rigidity of irreducible actions of RAAGs

Some actions of RAAGs are more rigid than others.

()

Some actions of RAAGs are more rigid than others.

Definition

Let G be a RAAG. A free p.m.p. action $G \curvearrowright X$ is irreducible if (through an isomorphism $G \approx G_{\Gamma}$) every standard generator acts ergodically.

Some actions of RAAGs are more rigid than others.

Definition

Let G be a RAAG. A free p.m.p. action $G \curvearrowright X$ is irreducible if (through an isomorphism $G \approx G_{\Gamma}$) every standard generator acts ergodically.

Theorem 1 (Strong rigidity, H-Huang)

Let G, H be two one-ended, centerless RAAGs. If two <u>irreducible</u> actions $G \curvearrowright X$ and $H \curvearrowright Y$ are SOE, then they are conjugate. Works of Furman, Monod-Shalom, Kida let us derive superrigidity.

Theorem 2 (Superrigidity, H-Huang)

Let G be a one-ended, centerless RAAG. Let H be a countable gp. If an <u>irreducible</u> action $G \curvearrowright X$ and a <u>mildly mixing</u> free, p.m.p. action $H \curvearrowright Y$ are SOE, then they are virtually conjugate.

Mildly mixing: $\liminf_{g \to +\infty} \mu(A \Delta g A) > 0$ whenever $0 < \mu(A) < 1$.

Works of Furman, Monod-Shalom, Kida let us derive superrigidity.

Theorem 2 (Superrigidity, H-Huang)

Let G be a one-ended, centerless RAAG. Let H be a countable gp. If an <u>irreducible</u> action $G \curvearrowright X$ and a <u>mildly mixing</u> free, p.m.p. action $H \curvearrowright Y$ are SOE, then they are virtually conjugate.

Mildly mixing: $\liminf_{g \to +\infty} \mu(A \Delta g A) > 0$ whenever $0 < \mu(A) < 1$.

Rk: In the specific case of <u>Bernoulli</u> actions of G, work of Popa enables to remove the mild mixing assumption on the *H*-action.

Say we have two OE irreducible actions $G \curvearrowright X$ and $G \curvearrowright Y$ of the pentagon RAAG G.

 \rightsquigarrow the same OE relation ${\cal R}$

 $\rightsquigarrow c: \, G \times X \rightarrow \, G$ the orbit equivalence cocycle

<u>Goal</u>: *c* is cohomologous to a group homomorphism $\alpha : G \to G$ (i.e. $\exists \theta : X \to G$ such that $\theta(gx)c(g,x)\theta(x)^{-1} = \alpha(g)$)

Camille Horbez OE rigidity of irreducible actions of RAAGs

æ

∃ ► < ∃ ►</p>

 $\label{eq:step1} \begin{array}{l} \underline{\text{Step 1}} \mbox{ (exploiting CAT(0) geometry):} \\ \hline \\ \text{Subrelations of \mathcal{R} coming from restricting the action to a vertex group $/$ a star subgroup can be "recognized".} \end{array}$

Step 1 (exploiting CAT(0) geometry): Subrelations of \mathcal{R} coming from restricting the action to a vertex group / a star subgroup can be "recognized". $\rightsquigarrow c$ is cohomologous to c_v such that

•
$$c_{v}(G_{\mathrm{st}(v)} \times X) \subseteq G_{\mathrm{st}(w)}$$

•
$$c_v(G_v \times X) \subseteq G_w$$

Step 1 (exploiting CAT(0) geometry): Subrelations of \mathcal{R} coming from restricting the action to a vertex group / a star subgroup can be "recognized". $\rightsquigarrow c$ is cohomologous to c_v such that

•
$$c_v(G_{\mathrm{st}(v)} \times X) \subseteq G_{\mathrm{st}(w)}$$

•
$$c_v(G_v \times X) \subseteq G_w$$

<u>Step 2</u> (based on Monod–Shalom, using irreducibility): $\rightarrow c_v$ is cohomologous to a cocycle which descends to a group isomorphism $G_{st(v)}/G_v \rightarrow G_{st(w)}/G_w$. Step 3 (cancelling ambiguities):

By comparing c_{v_1} and c_{v_2} , show that (up to cohomology) c_v restricts to a group homomorphism $G_v \to H$.

Step 3 (cancelling ambiguities):

By comparing c_{v_1} and c_{v_2} , show that (up to cohomology) c_v restricts to a group homomorphism $G_v \to H$.

<u>Step 4</u> (propagation, using commutation and irreducibility): As G_v is part of a generating set of G where consecutive generators commute, c is cohomologous to a group homomorphism $G \to G$. $\frac{Open \ question:}{p.m.p. \ actions?} \ When \ do \ two \ RAAGs \ admit \ (S)OE \ free, \ ergodic,$

A B M A B M

Theorem (H-Huang)

Let G, H be two RAAGs with $|Out(G)|, |Out(H)| < +\infty$. If G and H have SOE free p.m.p. actions, then $G \approx H$.

• • = • • = •

Theorem (H-Huang)

Let G, H be two RAAGs with $|Out(G)|, |Out(H)| < +\infty$. If G and H have SOE free p.m.p. actions, then $G \approx H$.

• • = • • = •

Thank you!

Camille Horbez OE rigidity of irreducible actions of RAAGs

æ