Vecring polynomin π.
Flou graph α Thurton noim
joint with M. Landiy α Y. Minsky

Goals:

- understan the surfices carried by τ and give the conection to the Thiston norm on $H_{2}(M . \partial M)$
- introduce π slaw griph and its Perron polynond γ rollte to V_{τ}
- expliin the conncetion betreen the aboue of use to (not nec. fibcicl) fices of Thustu norm b.ll $B_{x} \leq H_{2}(\mu, \partial \mu$
I. Cones in (co)homology.

Identify: $H^{\prime} H^{\prime}(\mu)=H_{2}(\mu, \partial \mu)$

$$
\tau \leadsto \operatorname{conc}_{2}(\tau) \leq H_{2}(M, \partial \mu)
$$

cone spanned by surfaces (nonneg.) carried by $\tau^{(2)}$

Let Γ be the directed dol graph to τ.

Cone, $(r) \leq H_{1}(M ; \mathbb{R})$ generated by dircatel dual cycles.

$$
\begin{aligned}
& \text { Than }(\text { Dilly }) \\
& \operatorname{Cone}_{2}(\tau)= \\
& = \begin{cases}\alpha & 1(\gamma, \alpha) \geqslant 0 \\
\forall \text { tansuack cure } \gamma\end{cases}
\end{aligned}
$$

II. Thurstan norm Note: $[r] \in H_{1}(\mu) \alpha$ if $S<\tau^{(N)}$ then

$$
\begin{aligned}
(r, S)= & \# \text { of tringle in } \\
& \text { idenl trangortiten of } S
\end{aligned}
$$

Define

$$
C_{\tau}=-V / 2(r, \cdot) \in H^{2}(\mu, \partial \mu)
$$

so if $S<\tau^{(2)}$ then

$$
\begin{aligned}
-C_{2}([s]) & =-x(s) \\
& =x([s])
\end{aligned}
$$

$\Rightarrow O_{n} \operatorname{cone}_{2}(\tau)$,

$$
-C_{s}=\text { Thuston noin } X
$$

Thear
τ deternins a face F_{Σ} of $B_{x}(M)$ such that

$$
\operatorname{conc}_{2}(\tau)=\mathbb{R}_{+} F_{\tau} .
$$

This cone is subsple of $H_{2}(M, D \mu)$ on thed

$$
-e_{2}=x
$$

Moccover, if $\alpha \in \mathbb{R}_{f} F_{z}$ ad S is genus minimiting aming tout rep.s of α, then $s<\tau$.
III. The flew griph α the vearing p-lynominl.

Define $\Phi=\Phi_{2}$ (flou greph) vartices \sim edges of τ edges $\leadsto 3$ outgeing Φ-clses at ear vartex

RmH: Φ cones -ith in e-belding $i: \Phi \longrightarrow M \alpha$ pusting it slightly uperd mates it positioe tranverse to $\tau^{(l)}$.

$$
\Rightarrow \quad \text { cone, }(\Phi) \leq \text { cone, }(r)
$$

- // -
$\Phi \leadsto P_{\Phi}($ Perron Polynomial $)$
Let A_{Φ} be its adjucency matrix

$$
\left(A_{\Phi}\right)_{a b}=\sum_{n-1-a} e \in \mathbb{Z}\left[C_{1}(\Phi)\right]
$$

then

$$
\begin{aligned}
P_{\Phi} & =\operatorname{det}\left(I-A_{\Phi}\right) \\
& =1+\sum_{c}(-1)^{k 1} c \in \mathbb{Z}[H,(\Phi))
\end{aligned}
$$

where $\{c\}$: \{multicycles of $\Phi\}$

$$
:=\operatorname{SUPP}\left(P_{\Phi}\right)
$$

Why core?

$$
\cdot i\left(\operatorname{supp} P_{\Phi}\right) \leq H_{1}(\mu ; \|)
$$

generates cone, (r)

- Pe determines V_{z}

Thoore In $H_{1}(M ; \| 2)$, cone, $(\Gamma)=$ cone, (Φ)

$$
=\left\{\sum f i(c): \sum_{t \geqslant 0}^{c \in \operatorname{supp}(\Phi)}\right.
$$

The inclusion $i: \Phi \rightarrow M$
inducer $i_{*}: \mathbb{Z}\left[H_{1}(\Phi)\right] \rightarrow \mathbb{Z}[\sigma]$
Thole

$$
V_{\tau}=i_{+}\left(P_{\Phi}\right)
$$

Fiber detection Tare
Let τ be bearing triangulation and F_{τ} the corcospaling face. TFAE
$1 \operatorname{supp}\left(P_{\Phi}\right) \leq H_{1}(\mu: \mathbb{Z})$ lies in an open halfspice
$2 \exists \alpha \in H^{\prime}(\mu)$ st $(\gamma, \alpha)>0 \forall$ close l trivia
3τ is lyered
出 Fe_{z} is fisecel
 $M=S^{3} \backslash 9_{5}^{2} \simeq \sim$ pulled fon $V_{\tau}=\theta_{\tau} \cdot V^{\text {Ais of Gecing carnes }}$ of Gianopolver $=\left(a^{4} b-a^{2} b-a b-a^{3}-a^{2}+1\right)$

- $\left(1+a^{5} b^{3}\right)\left(1+a^{3}\right)$

$$
H_{1}(M ; \mathbb{R})=\mathbb{R} a \oplus \mathbb{R}_{s}
$$

\square

$$
[r]=a^{8} b^{4}
$$

Du.l cone in $H_{1}(M)=$ Reom

I. $(2, \beta)$ cuman,

$$
\begin{aligned}
& e_{\tau}(\alpha, \beta) \\
& =-(4 \alpha+\beta) .
\end{aligned}
$$

So fo oxi-l, if $\Sigma=(1,0)$ the $\begin{aligned}|x(\varepsilon)| & =x(1,0) \mid \\ & =4\end{aligned}$
$f: \varepsilon \rightarrow \varepsilon$ h. stuth fut.

$$
\begin{aligned}
\theta_{2}^{(1,0)} & =f^{4}-f^{3}-2 f^{2}-f+1 \\
& \sim 2.081
\end{aligned}
$$

