Veering Triangulations
AND
Their Polynomials
WARWICK OCT 2020 yair Minsky

JOINT WORK W.
MICHAEL LANDRY \& SAM TAYLOR

Goals:

- Recall McMullen's polynomial Θ_{F} for fibred 3-mflds
- Recall Ago's veering triangulations
- Define the Veering polynomial V_{τ} \& the Taut polynomial Θ_{τ}
- Θ_{τ} reduces to Θ_{F} in the fibred case
- $\quad V_{\tau}=\Theta_{\tau} \cdot \Pi\left(1 \pm g_{i}\right)$

Mc Mullen's Teichmüller polynomial (1999)

Thurston \& Fried: \mathcal{L} is the same for all fibrations in the same face as h.

Faces of Thurston's norm:

$$
\left.\begin{array}{l}
x: H_{2}(M, \partial M) \longrightarrow \mathbb{R} \\
x(c)=\min \{|x(T)|:[T]=c, \quad T \text { has no sphere }\} \\
\text { components }
\end{array}\right\}
$$

for $C \in H_{2}(M, \partial M ; Z)$.
The (Thurston)
x on integer points extends to a norm. The unit ball B is a polyhedron.
Fibres $[S]$ are in cones $\mathbb{R}_{+} F$ over open top-dim faces of B. and if one integer pt in $\mathbb{R}_{+} F$ is a fibre, they all are.
(F is called a fibered face)

Thu (Fried) for all fibres in F, the suspension flow \& foliation are the same up to isotopy.

The Teichmüller polynomial of a fibred face F :

$$
\Theta_{F} \in \mathbb{Z}[G] \quad \text { where } \quad G=H_{1}(M, \mathbb{Z}) / \text { torsion }
$$ (the construction only was \mathcal{L}).

Why is this a polynomial?
Write G multiplicatively: $x_{1}, \ldots x_{b}$ generators.

$$
\begin{array}{lll}
g \in G \text { is a monomial } x_{1}^{n_{1}} \cdots & x_{b}^{n_{b}} \\
\text { eft of } \mathbb{Z}[G] \text { is } & \sum_{i=1}^{m} a_{i} g_{i} \quad a_{i} \in \mathbb{Z} \\
& g_{i}
\end{array}
$$

Veering triangulations.
M has nonempty toroidal boundary.
τ ideal triangulation, with:

- co-orientation of faces such that:

2 incoming, 2 outgoing on
"transverse" each 3-cell.

each edge is

- 2-coloring of edges ("left-veering", "right veering") st. each 3 -cell when placed in std pos'n, looks like:

(coorientation toward us)
diagonal arcs allowed to be either color.

Fibred setting: Agol showed $\dot{M}=M$-(singular of obits $\left.\begin{array}{c}\text { of } \\ \text { flow }\end{array}\right)$ has a versing triangulation τ which only depends on the fibred face F.

Gueritand: $\quad \begin{aligned} & \tau \\ & \text { as fallows be }\end{aligned}$ obtained from structure of $\lambda^{ \pm}$
$\tilde{S}:$

maximal rectangle has singularities in all 4 edges
 defines tetrahedron, color edges using slope.

Agol-Gueritand: same construction yields veering triangulation for any psendo-Anosov flow w/out perfect fits.

Schleimer-Segerman: (in progress): vice versa.

Defining polynomials. ("following Mc Mullen's philosophy")
fix M, τ.

$$
G=H_{1}(M, \mathbb{Z}) / \text { torsion. }
$$

$G \circlearrowright \tilde{M}=$ cover associated to $\quad \pi, M \longrightarrow G$

$$
\begin{aligned}
& E=\text { edges of } \tau . \\
& \tilde{E}=\text { delis to } \tilde{M} .
\end{aligned}
$$

Relations among edges: (motivated by the rectangular picture)
for each tetrahedron:

consider formal combinations of edges

$$
b=s_{1}+t+s_{2}
$$

would hold for widths if a transverse measure were defined. these relations
this should be the object on which a transverse measure would have to be defined.
$\left.\begin{array}{ll}\text { work in } \tilde{M}: \\ \underset{\mathbb{Z} \text {-module }}{ } \quad \mathbb{Z}^{\tilde{E}}=\left\{\sum a_{i} e_{i}\right. & a_{i} \in \mathbb{Z} \\ e_{i} \text { edges in } \tilde{E}\end{array}\right\}$.
$\mathbb{Z}[G]$ module: for each $e \in E$ pick one eff t \tilde{e} to \tilde{E}. another lift must be ge for $g \in G$
so this gives a $\mathbb{Z}[G]$ action, ($G \bigcirc \tilde{E}$ freely)

$$
\text { and } \equiv \mathbb{Z}[G]^{E}
$$

one relation per tetratudon gives map

$$
L: \quad \mathbb{Z}[G]^{\top} \rightarrow \mathbb{Z}[G]^{E}
$$

can identify $T \simeq E: \quad$ tetrahedron \longleftrightarrow bottom edge .
so $L: \mathbb{Z}[G]^{E} \rightarrow \mathbb{Z}[G]^{E}$

$$
\mathbb{Z}[G]^{E} \xrightarrow{L} \mathbb{Z}[G]^{E} \longrightarrow \xi=\operatorname{coker}(L)
$$

Define: $\quad V_{\tau}=\operatorname{det} L \in \mathbb{Z}[G]$.
Remark: V_{τ} well-defined ip to multiplication by a unit $\pm \mathrm{g}$
Note: V_{τ} is the generator of the Fitting Ideal of E :
if $\varepsilon \mathbb{Z}[G]$ module. Let $\mathbb{Z}[G]^{r} M \mathbb{Z}[G]^{s} \rightarrow \xi \rightarrow 0$ be any free resolution. Then $F_{i H}=$ ideal generated by sos minors of M. Indepenlat of the resolution.

Another construction:
Face relations:
A face f lies at the bottom of a unique tetrahedron: $b=$ bottom edge
 of that terachedr.
$L^{\Delta}(f)=b-s-r$.

$$
\mathbb{Z}[G]^{F} \xrightarrow{L^{\Delta}} \mathbb{Z}[G]^{E} \longrightarrow \varepsilon^{\Delta} \rightarrow 0
$$

Let $\Theta_{e}=$ generator of Fitting ideal of ε^{Δ}

$$
=\operatorname{gcd} \text { of }|E|_{\times}|E| \text { minors of } L^{\Delta} \text {. }
$$

Anna Parlak:

- independent development of some of this
- explicit computations
- relation to Alexander polynomial.
Θ_{T} and the Teichminller polynomial.
M fibers. F face
$\dot{M}=M$ - singular orbits $\quad \stackrel{\circ}{F}=$ face for \dot{M} fibrati τ veering triang of \dot{M} (unique giver F)

The $\quad \Theta_{\tau}=\Theta_{\dot{F}}$

Essentially, construction of \oplus_{τ} mimics McMullen construction using an invariant train track on the fibre.
local train-track picture for τ :
bottom

face relations are the switch relations

What about on M ?
inclusion $2: \dot{M} \longrightarrow M$ induces map

$$
i_{x}: \mathbb{Z}[H,(M) / \text { /or }] \longrightarrow \mathbb{Z}(H,(M) / \text { tor })
$$

The $\quad i_{*}\left(\Theta_{\tau}\right)=\Theta_{F}$
Θ_{τ} and V_{τ}

The $V_{\tau}=\Theta_{\tau} \cdot V^{A B}$
where $V^{A B}$ has the form $\Pi\left(1 \pm g_{i}\right)$
$g: \in G$ cycles arising from the dual graph of τ.

