Nieleur-Thutar
Classification, Revisited
w/ Camille Holey
[Hoble-T] Give a new proof of the NielsenThunston closification of mapping classes \& new) representatives for ypendo-Ansors.

Tool: Bess approach using Thuncton metric on Teichmiller Space

Moodeic Lamenations
$X$ hypertotic sunface of genws $g \geqslant 2$
Geodesic lamination on X:
A closed sulset $\lambda$ of $X$ foliated by complete simple geodesics

Example: Multicure

multiciuse + spualing leaves

I... am a geodesic


Each component of $X-\lambda$ is a thypabolic sempace wl geodesic boundary

Defu: $\lambda$ s filling if $X-\lambda$ is a unvion of ideal ypolygons.
$\lambda$ is maximal of $x-\lambda$ o a urion of ideal triangles


Defp: Suypore $\lambda$ is flling on $X$.
$\operatorname{Say} X=\lambda$-symmetive if each ideal polygor $P_{\text {of }} X-\lambda$ is regular.


Not: When $\lambda$ is maximal $X$ is alvays $\lambda$-symnetras.

Dual Horrcyclic Foluation

$P$ regular polgopor $P$ carcinscites an equalateral horoger $h$
$F_{p}$ - Dud Morapli Pohation

- suppat on P-int (h)
- leaves are hoocyclic segment
- Measure concicido w/ arclength along sids of P.
$\lambda$ flllimg lamunction on $X$
$X \lambda$-symutric : each $\operatorname{Pof} X-\lambda$ s regular
$F_{x}(\lambda)$ dual harcupti foliation
- Supert of $F_{x}(\lambda)$ is $X-V \operatorname{int}(h)$ th unaciled hoogon in $P$
- Restrution of $F_{x}(\lambda)$ to each $P$ of $X-\lambda$ \& $F_{p}(h)$.


$$
\text { Maping Class Gnoup: } \Gamma(s)=H_{\text {omos }}{ }^{+}(s) / \cos ^{\text {togy }}
$$

Nieben - Thustor Clossfucation.
Thim: if $\phi \in \Gamma(S)$ b not seducible or funte ooder, then $\phi$ has a representative $f \in \operatorname{Hones}^{+}(S)$ which is $\frac{\text { pseudo-Anosoon: }}{\hat{I}}$
$\exists$ a pair of thanoverse (singular) measured foliations $F_{+}: F_{-}$on $S$ i $K>1$ s.t $f\left(F_{ \pm}\right)=K^{ \pm 1} F_{ \pm}$

$\left(\begin{array}{ll}k & 0 \\ 0 & \frac{1}{k}\end{array}\right)$
[Bers]: y $\phi \in P(S)$ is not reducille or funit-oder, then $\exists$ a conplex stactime $X$ on $S$, a quachatic defferential $q$ on $X, K>1$, and a $\operatorname{rup} f \in \phi$ s.t :

1) $f: X \rightarrow X$ has quasi-comforal conctant $K^{2}$, which is minimal cmony all map $X \in$ rep $\phi$.
2) $f$ preserves the leaves of the rectical: rougotal foliations $V_{q}: H_{q}$ of $q$, acting by $f\left(V_{g}\right)=K V_{g}, \quad f\left(H_{q}\right)=\frac{1}{K} H_{q}$

New Proof + Now representative
The $[H-T]:$ if $\phi \in \Gamma(S)$ inst reducible or faint -oder, then $\exists$ a typ structure $X$ or $S$, a filling $\lambda$ po which $X$ is $\lambda$-symmetric, $K>1$, and a rep $f \in \phi$ sit:

1) $f: X \rightarrow X$ has Lypschk constant $K$, which s musial among all maps $X \subseteq$ rep $\phi$.
2) $f$ preserves the leaves of $\lambda: F=F_{x}(\lambda)$ acting by $f(F)=K F$.


Tools of the two Proop
$T(S)=\left\{\begin{array}{l}\text { isotopy closes of couplex / hypubticic } \\ \text { structive on } S\end{array}\right.$

$$
\left.\begin{array}{l}
X, Y \in T(s) \\
d(X, Y)=\log \text { in }\left\{K_{f}: f: X \rightarrow Y \text { wostoin to id }\right\}
\end{array}\right\}
$$

- Teichmillen metie dTead : $\sqrt{K_{f}}$ QC conataat
- Thustor metui din: $L_{f}$ Lupischty conatart
- Both one geodesic metric spoces
- $\Gamma(s) 2 T(s)$ dy isometries.

Leman: if $\phi \in \Gamma(s)$ b not reducitle o finteonder, then in ether metriv on $T(s), \phi$ is a fyppublolie somety,

$$
\begin{aligned}
& \text { 1) } \tau_{\phi}=\inf _{Y \in T(S)} d\left(Y_{1} \phi(Y)\right)>0 \\
& \text { 2) } \mu_{n} \operatorname{Set}(\phi)=\left\{x \in T(S) \mid \tau_{\phi}=d(x, \phi(x))\right\} \neq \phi \\
& \text { Lemman } \Rightarrow K=e^{\tau_{\phi}}>1 \text { i } \quad X \in \operatorname{maset}(\phi)
\end{aligned}
$$

Rest of Proof Parige .
[Bers] show the quadractic differential of aesocated to $[X, \phi(X)]$ is $\phi$-envanant. Aply Techomillan's Entramel Map Thm.
[H:T] 1) Fund a geodesic lamination $\lambda$ on $X$ which is $\phi$-unvanant

Irreducitl $\Rightarrow \lambda$ is fflling
$[\lambda=$ tension lam fron $X$ to $\phi(x)]$
2) Show $X, \lambda$-circumsurbing (Each P of $x-\lambda$ crraunscribes a horogon.)
$\therefore \exists$ a choice of $h$ in each $P$ s.t dual hovecalie folction $F$ tas $\phi(F)=K F$.
[Uses lyp reseor of Griotgochio Thm ]
3) Promote $x \leadsto \hat{x} \quad \lambda$-symmetric


$$
F=F_{\hat{x}}(\lambda)
$$

4) Build oftemal Jipscenal map $\hat{x} \rightarrow \phi(\hat{x})$
generalizing Thuston's stetch maps

Clasefication of shometies of $\Gamma(s) 2 T(s)$

| $[$ Beers Teichmiller metice | Thinaton Metion [Holeg-T] |
| :--- | :--- |
| $\phi$ elleptic $\Leftrightarrow \phi$ <br> is finte order | $"$ |



