Nielsen-Thurston Classification, Revisited

W Camille Horley

[Horbey-T] Give a new proof of the Nielsen -Thurston classification of mapping classes & ner representatives for poendo-Ansons.

Tool : Bero' approach using Thurston metric on Teichmüller Space

Defn: A 15 filling if X-A 15 à union of ideal polygons.

Defn: Suppose A is Julling on X.

Say X to 1- symmetrie if each ideal polygon PJ X-L is regular. Isome Noto: When I is maxim X is always & - symmetrie. PJ XLY

Mapping Class Group:
$$\Gamma(S) = Homeot(S)/vootopy$$

Niehen - Trunton Clossification
Thin: if $\phi \in \Gamma(S)$ is not stealucible or finite order,
then ϕ has a representative $f \in Homeot(S)$
which is pseudo-Anosov :
I
I a pair of transverse (wignlar) measured philitions
 $F_{+} : F_{-}$ on $S : : K : -1 : + f(F_{\pm}) = K^{\pm 1}F_{\pm}$

Tools of the two Proofs
T(S) = { wotopy closes of complex / hyperbolic {
structure on S
X,Y \in T(S)

$$d(x,Y) = \log inf {K_{f}} : f: X \to Y wotopi to ids]
- Teichmille hetric dreid: The QC constant
- Thurston metric drive L & Supechty constant$$

- . Both are geodesic metric sysces
- · T(S) 2 T(S) by sometries.

) T_φ = inf d (T, φ(T)) >0
YeT(S)
2) Min Set (4) = {X = T(S) | T_φ = d(X, φ(X))] + Ø
denne = K = C^{T+} >1 & X = MinSet(4)
Rad of Proof Dirige.
[Bers] Shows Ho quadractic differential q
associated to [X, φ(X)] is φ-invariant.
Apply Teichvällen's External Map Thm.
[H:T]) Find a geodesic lanunation X
on X which is φ-invariant
Irreducible = X is filling
[
$$\lambda = tension$$
 lan from X to $\phi(X)$]

2) Show X is A-circumscribing
(Each P of X-A circumscribes a borogon,)
? I a choice of h in each P s.t
dual horocyclic foliction F too
$$\phi(F)=KF$$
.
[Uses typ revenes of Grötgach's Thin]

3) Promote X ~> X A-symmetric

4) Build optimel Lipschilz maps
$$\hat{X} \rightarrow \Phi(\hat{X})$$

generalizing Thurston's stretch maps

,

