Covers and Curves

Spoint with Max Lahn
Yang (Sunny) Xiao

Q: Given a covering map $\pi: S' \to S$, how (if at all) can we determine π by looking at simple closed curves on S' and S?

Thm (Aougab-Lahn-L.-X) If $p: X \rightarrow S$ and $q: Y \rightarrow S$ are regular covers s.t. given any closed curve $x \in S$, I a simple elevation of x to X iff f a simple elevation of x to f, then $f \neq g$ are equivalent covers.

Why did we care?

Thm (Sunada) There exist hyperbolic surfaces which have the same unmarked length spectrum but which are not isometric.

Marked us. unmarked? curve + its length

Curve + its length

Curve + its length

Curve info

Curve

Q: What if we replace unmarked length spectrum with

unmarked simple length spectrum?

i.e. are hyperbolic metrics determined by their unmarked simple length spectrum?

We conjecture that the answer is YES!

Thm (Maungchang, 2018) Sunada's construction does not generically produce non-isometric surfaces with the same unmarked simple length spectrum.

Ex: $G = (\mathbb{Z}/8\mathbb{Z})^{\times} \times \mathbb{Z}/8\mathbb{Z}$ $H = \{(1,0), (3,0), (5,0), (7,0)\}$ and $K = \{(1,0), (3,4), (5,4), (7,0)\}$ are almost conjugate, but not conjugate.

> if for each conjugacy class C in G, |CaHI=|CaKI.

Thm (Maungchang, 2018) Let M_0 be a closed surface of genus 2. $\exists \rho: \pi_1(M_0) \rightarrow G$ s.t. for almost every $[m] \in T(M_0)$, M_H and M_K are not unmarked simple length iso-spectral.

10 10

How is this proved!

Find a curve $y \in M_0$ s.t. lifts to $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ on M_R lifts to $\beta_1, \beta_2, \beta_3, \beta_4$ on M_H

Show that $l_{M_{ij}}(\alpha_i) = l_{M_{ij}}(\beta_i)$.

But α_i are simple and β_i are not...

Remember our determined by their unmarked simple length spectrum?

A first step: Generalize Maungchang's construction (i.e. establish our conjecture for pairs of surfaces arising from Sunada's construction).

Want to show: If two covers of a surface arenit equivalent then there is a curve on the base surface that admits a different number of simple elevations to the two covers.

This turns out to be pretty tough...

-Assuming regularity helps a lot!

JJII

Thm (Aougab-Lahn-L.-X) If $p: X \rightarrow S$ and $q: Y \rightarrow S$ are regular covers s.t. given any closed curve $x \in S$, I a simple elevation of x to X iff f a simple elevation of x to f, then $f \neq g$ are equivalent covers.

-But regularity also doesn't help at all...

Covers arising from Sunada's construction are never regular!

Currently working with Tarik Aougab, Max Lahn, and Nick Miller to remove assumption of regularity.