Sublinearly Morse Boundary

Yulan Qing

joint projects with Ilya Gekhtman, Kasra Rafi and Giulio Tiozzo

June 2020

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 のへぐ

Gromov boundary of a $\delta-{\rm hyperbolic}$ space

 A point in the boundary is a geodesic ray or a family of quasi-geodesic rays up to fellow traveling.

n(9, 2)

・ロト ・ 戸 ・ ミ ヨ ト ・ 日 ・ う ら ぐ

cone topology

Gromov boundary of a hyperbolic space is QI-invariant.

Key: geodesics are Morse in a Gromov hyperbolic space.

A quasi-geodesic ray γ is Morse if given any pair (q, Q), there exists constant n(q, Q) such that all (q, Q)-quasi-geodesics whose endpoints are on γ stays inside the n(q, Q)-neighbourhood of γ .

Visual boundary of CAT(0) spaces

- geodesics, up to fellow travel.
- cone topology

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

-Croke-Kleiner: the visual boundary is not Ql-invariant.

Morse boundary(Charney-Sultan, Cordes): Morse geodesics.

-Not large enough from the point of view of random walk.

κ -Morse boundary

Space: (X, \mathfrak{o}) is a proper, geodesic space, with a fixed base-point \mathfrak{o} .

Points in the boundary: families of quasi-geodesic rays starting at o.

Fix a sublinear function $\kappa(t)$. Let $||x|| = d(\mathfrak{o}, x)$. A κ -neighbourhood around a quasi-geodesic γ is a set of point x

$$\mathcal{N}_{\kappa}(\gamma, \textit{n}) := \{x \mid \textit{d}(x, \gamma) \leq \textit{n} \cdot \kappa(\|x\|)\}$$

Figure: A κ -neighbourhood of γ

- ロ ト - 4 目 ト - 4 目 ト - 三 目

 $\mathcal{A} \mathcal{A} \mathcal{A}$

A quasi-geodesic ray γ is κ -Morse if there exists a proper function $m_{\gamma} : \mathbb{R}^2 \to \mathbb{R}$ such that for any sublinear function κ' and for any r > 0, there exists R such that for any (q, Q)-quasi-geodesic β with $m_{\gamma}(q, Q)$ small compared to r, if

 $d_{X}(\beta_{R},\gamma) \leq \kappa'(R) \quad \text{then} \quad \beta|_{r} \subset \mathcal{N}_{\kappa}(\gamma,m_{\gamma}(q,Q))$ The function m_{γ} will be called a Morse gauge of γ . $(q,Q) \quad (k'(R)) \quad$ Equivalence class: given two quasi-geodesics α , β based at \mathfrak{o} , we say that $\beta \sim \alpha$ if they sublinearly track each other: i.e. if

$$\lim_{r\to\infty}\frac{d(\alpha_r,\beta_r)}{r}=0.$$

Let $\partial_{\kappa}X$ denote the set of equivalence class of κ -Morse quasi-geodesic rays, equipped with coarse cone topology.

Theorem (Q-Rafi, Q-Rafi-Tiozzo)

Let X be a proper, geodesic metric space, then $\partial_{\kappa}X$ is a topological space that is quasi-isometrically invariant, and metrizable.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Examples:

- ► Z²
- ► **H**²
- $\blacktriangleright \mathbb{Z} \star \mathbb{Z}^2$

Figure: A tree of flats.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - 釣��

Definition of Coarse cone Topology

We define the set $\mathcal{U}(\beta, r) \subseteq X \cup \partial_{\kappa} X$ as follows.

• An equivalence class $\mathbf{a} \in \partial_{\kappa} X$ belongs to $\mathcal{U}(\beta, r)$ if for any (q, Q)-quasi-geodesic $\alpha \in \mathbf{a}$, where $m_{\beta}(q, Q)$ is small compared to r, we have the inclusion [2]

 $|\alpha|_r \subset \mathcal{N}_{\kappa}(\beta, m_{\beta}(q, Q)).$

U(B, r, e)

 $U(\beta, r)$

im plaid,

Random walk and Poisson boundaries

Let $\langle S \rangle$ be a symmetric generating set with a probability distribution μ . A random walk is a process on a group G where sample paths are $s_{r_1}s_{r_2}s_{r_3}..., s_{r_i} \in \langle S \rangle$.

Figure: A random walk.

Definition

Given a finitely generated group and a probability measure μ with finite support, its *Poisson boundary* is the maximal measurable set to which almost all sample paths converge, with hitting measure ν arising from μ .

Kaimanovich: Let G be a hyperbolic group, then Gromov boundary is a model for it's associated Poisson boundary.

Theorem (Gekhtman-Q-Rafi)

Let X be a rank-1 CAT(0) space, and $G \curvearrowright X$ geometrically. Then there exists a κ such that the Poisson boundary can be identified with $\partial_{\kappa}G$.

Theorem (Q-Rafi-Tiozzo)

the Poisson boundary can be identified with $\partial_{\kappa}G$ for the following groups.

- Right-angled Artin groups, $\kappa(t) = \sqrt{t \log t}$.
- Relative hyperbolic groups, $\kappa(t) = \log t$
- Mapping class groups, $\kappa(t) = \log^d t$
- Hierarchically hyperbolic groups, $\kappa(t) = \log^d t$

Two ingredients.

2.

1. Almost every sample path tracks a κ -Morse geodesic ray, we need sublinear excursion.

Sisto-Taylor: Projections systems.

- Relative hyperbolic groups
- Curve complex of subsurfaces in mapping class group.
- Hierarchically hyperbolic groups.

Let G be a group and let $(S, Z_0, \{\pi_Z\}_{Z \in S}, \pitchfork)$ be a projection system on G. Let (w_n) be a random walk on G. Then there exists $C \ge 1$ so that, as n goes to ∞ ,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

$$\mathbb{P}(\sup_{Z \in S} d_Z(1, w_n) \in [C^{-1} \log n, C \log n]) \to 1$$
2. Maximality: the tracking is sublinear. Sisto, Tiozzo, Maher-Tiozzo, Karlsson-Margulis, Q-Rafi-Tiozzo.

For CAT(0) spaces there are also two steps.

A unit speed, parametrized geodesic ray τ in X is said to be frequently contracting if there is a number N > 0 such that for each R > 0 and $\theta \in (0, 1)$ there is an $L_0 > 0$ such that for $L > L_0$ length θL subsegment of $\tau([0, L])$ contains N-(strongly) contracting subsegment of length at least R.

- 1. A generic sample path tracks a frequently contracting geodesic ray.
 - Stationary measure: follow the proof of Baik-Gekhtman-Hamstadt.
 - Patterson Sullivan measure (defined by Ricks): Birkhoff ergodic theorem.

2. A frequently contracting geodesic ray is sublinearly Morse. (Gekhtman-Q-Rafi)

Other hyperbolic-like properties of the sublinearly Morse quasi-geodesics.

- $\partial_{\kappa} X$ is a visibility space.(Q-Zalloum)
- a κ-Morse geodesics ray has at least quadratic κ-lower-divergence.
 (Q-Murray-Zalloum)
- In CAT(0) spaces, κ -Morse is equivalent to κ -contracting. (Q-Rafi)

Figure: A sublinearly contracting geodesic ray

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Question

When does a group G has a ∂_κG that can be identified with the Poisson boundary?

Thank you!

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 のへぐ