A Strong Haken Theorem

Outgrowth of work with M. Freedman on Powell Conjecture

Warwick/ICMS/Zoom 12 May 2020

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Suppose T is a Heegaard surface for a compact orientable 3-manifold M, so $M = A \cup_T B$. Recall:

Definition

- (M, T) is reducible if there is a sphere in M intersecting T in a single essential circle.
- ► (M, T) is ∂-reducible if there is a properly embedded disk in M intersecting T in a single essential circle.

Foundational: allows controlled reduction/ ∂ -reduction of (M, T).

Theorem

- (Haken, 1968) If M is reducible, so is (M, T).
- Casson-Gordon 1983) If M is ∂-reducible, so is (M, T); moreover the ∂-reducing disks have the same boundary.

イロト 不得 トイヨト イヨト ヨー ろくで

Suppose T is a Heegaard surface for a compact orientable 3-manifold M, so $M = A \cup_T B$. Recall:

Definition

- (M, T) is reducible if there is a sphere in M intersecting T in a single essential circle.
- (M, T) is ∂-reducible if there is a properly embedded disk in M intersecting T in a single essential circle.

Foundational: allows controlled reduction/ ∂ -reduction of (M, T).

Theorem

- (Haken, 1968) If M is reducible, so is (M, T).
- Casson-Gordon 1983) If M is ∂-reducible, so is (M, T); moreover the ∂-reducing disks have the same boundary.

Only indirect relation between reducing sphere for M and reducing sphere for (M, T), & ditto for ∂ -reducing disks.

Theorem (Strong Haken)

[Suppose M has no $S^1 \times S^2$ summands] and M contains a properly embedded surface S consisting of ∂ -reducing disks and reducing spheres for M. Then T can be isotoped so that each component of S is a ∂ -reducing disk or a reducing sphere for (M, T).

The condition that each 2-sphere is separating is used frequently in the proof, but may not be necessary.

For the talk we take S a disk with $\partial S \subset \partial_{-}B = \partial M$. (Hence A is a handlebody.) Let Σ denote a spine of B, that is (a thin regular neighborhood of) the union of ∂B and a graph in B such that B deformation retracts to Σ . $\Delta \subset A$ is a complete collection of meridians of A, so $A - \Delta$ consists of 3-balls.

Will think: $\Delta \subset A = M - \Sigma$.

Consider an edge e of Σ that is disjoint from Δ ; that is, $\partial \Delta$ nowhere runs along e. A point on e corresponds to a meridian of B whose boundary lies on $A - \Delta = 3 - balls$. So the boundary of the meridian also bounds a disk in A. Thus the point on e corresponds to a a reducing sphere for T. So call such an edge a reducing edge of Σ .

イロト 不得 トイヨト イヨト ヨー ろくで

Lemma

Suppose a spine Σ and a complete collection of meridians Δ for A have been chosen to minimize $(|\Sigma \cap S|, |\partial \Delta \cap S|)$ Then Σ intersects S only in reducing edges.

Notes:

• We do not care about the number of circles in $\Delta \cap S$.

• If $S \cap \Sigma = \partial S$, S is a ∂ -reducing disk for (M, T)

 $(\Sigma \cup \Delta) \cap S$ can be viewed as a graph Γ in S in which $\Sigma \cap S$ are vertices and $\Delta \cap S$ are the edges. (Regard ∂S as 'vertex at ∞ '.)

End of Phase I: Only reducing edges of Σ intersect S

イロト イボト イヨト イヨト

Intermission: Lollypops in compression-bodies.

Let W be a 3-manifold and $\delta : (S^1, p) \to (\partial W, *)$ a generic immersion that is null-homotopic in W. Then \exists crossing resolutions of δ so that δ , pushed into W rel *, bounds disk in W.

More technically:

Theorem (Freedman-S, 2017 - Lollypop Theorem)

Let $\partial W \times [0,1)$ be a boundary collar. There is a height function $h: S^1 \to [0,1)$ so that h(p) = 0, $h(S^1 - p) \subset (0,1)$ and the image of $\delta': S^1 \to \partial W \times [0,1)$ defined by $\delta'(\theta) = (\delta(\theta), h(\theta))$ is an embedded curve bounding a disk in M.

Corollary

Suppose C is a compression-body with $p \in \partial_+ C$ and $q \in interior(C)$. Suppose α, β are two arcs from p to q in C. Then, perhaps first sliding the end of β at p around a closed path in $\partial_+ C$ and allowing points of the arc β to pass through the arc α , β can be isotoped rel endpoints to α in C.

Proof uses two compressionbody - facts:

- $\pi_1(\partial_+ C) \rightarrow \pi_1(C)$ surjective and
- complement of spine(C) is boundary collar.

End of Intermission

イロト イボト イヨト イヨト

Phase 2: Choosing reducing spheres disjoint from *S*

Let \mathfrak{R} be the reducing spheres in M associated to all edges of Σ that intersect S. Let $M_{\mathfrak{R}}$ be a component of $M - \mathfrak{R}$. \mathfrak{R} appears in $M_{\mathfrak{R}}$ like flowers with blossoms (the reducing spheres) on $\partial M_{\mathfrak{R}}$, and stems (the reducing edges) mostly inside $M_{\mathfrak{R}}$.

Important note: $M_{\mathfrak{R}} - \Sigma$ is handlebody A cut along reducing disks; i. e. still a handlebody.

Proposition (Stem Swapping)

The complex Σ' obtained from Σ by replacing the stem σ with σ' is also a spine for T. That is, T is isotopic to a regular neighborhood of Σ' .

Proof: Apply Lollypop Corollary to σ and σ' , arcs in handlebody $A \cap M_{\mathfrak{R}}$ ending at a very fat point: the blossom.

Let $c \subset \mathfrak{R} \cap S$ be innermost in *S*, bounding disk $E \subset S$, and let $D \subset R_0$ be the disk *c* bounds in \mathfrak{R} .

Problem: If replace D with E, R_0 is no longer reducing sphere.

Solution: first do stem swaps:

Then replace $D \subset R_0$ to get new reducing sphere R_1 , reducing $|\Re \cap S|$. Eventually \Re and S disjoint.

Note: $|\Sigma \cap \mathfrak{R}|$ may increase. We don't care.

Phase 3: Swap reducing edges off of S

Proposition

Suppose Σ intersects S only in reducing edges, and the associated set \Re of reducing spheres is disjoint from Σ . Then T can be isotoped so that S is a ∂ -reducing disk for T.

Swaps clearing S of final vertices

Proof: Swap stems as shown. Then $S \partial$ -reduces T. QED

Note: It's tempting to pull blossoms through S, but this alters isotopy class of S.

Example (courtesy A. Zupan)

The initial setting is of a Heegaard split 3-manifold $M = M1 \# M_2 \# M_3$. Spine for M_3 shown as blue, including torus boundary conponent. Part of A shown is solid torus.

Target sphere S is sum of reducing spheres for M_1 , M_2 along tube in M_3 shown in red.

Rightmost edge turns color and begins to slide on the rest of the spine, towards a stem-swap:

The slide begins

Because $\pi_1(\partial A) \to \pi_1(A)$ is surjective, and the slides take place in ∂A , one can slide end of arc on the rest of Σ until it is homotopic rel end points to the red path shown.

Edge now homotopic to (extended) red tube

Now apply Lollypop Theorem: edge now goes right through the tube, never intersecting S. S has become reducing sphere for (M, T).

Green edge isotoped into red tube