A Strong Haken Theorem

Outgrowth of work with M. Freedman on Powell Conjecture

Warwick/ICMS/Zoom 12 May 2020

Suppose T is a Heegaard surface for a compact orientable 3-manifold M, so $M=A \cup_{T} B$. Recall:

Definition

- (M, T) is reducible if there is a sphere in M intersecting T in a single essential circle.
- (M, T) is ∂-reducible if there is a properly embedded disk in M intersecting T in a single essential circle.

Foundational: allows controlled reduction $/ \partial$-reduction of (M, T).
Theorem

- (Haken, 1968) If M is reducible, so is (M, T).
- (Casson-Gordon 1983) If M is ∂-reducible, so is (M, T); moreover the ∂-reducing disks have the same boundary.

Suppose T is a Heegaard surface for a compact orientable 3-manifold M, so $M=A \cup_{T} B$. Recall:

Definition

- (M, T) is reducible if there is a sphere in M intersecting T in a single essential circle.
- (M, T) is ∂-reducible if there is a properly embedded disk in M intersecting T in a single essential circle.

Foundational: allows controlled reduction $/ \partial$-reduction of (M, T).
Theorem

- (Haken, 1968) If M is reducible, so is (M, T).
- (Casson-Gordon 1983) If M is ∂-reducible, so is (M, T); moreover the ∂-reducing disks have the same boundary.

Only indirect relation between reducing sphere for M and reducing sphere for $(M, T), \&$ ditto for ∂-reducing disks.

Theorem (Strong Haken)

[Suppose M has no $S^{1} \times S^{2}$ summands] and M contains a properly embedded surface S consisting of ∂-reducing disks and reducing spheres for M. Then T can be isotoped so that each component of S is a ∂-reducing disk or a reducing sphere for (M, T).

The condition that each 2 -sphere is separating is used frequently in the proof, but may not be necessary.

For the talk we take S a disk with $\partial S \subset \partial_{-} B=\partial M$.
(Hence A is a handlebody.)

Let Σ denote a spine of B, that is (a thin regular neighborhood of) the union of ∂B and a graph in B such that B deformation retracts to $\Sigma . \Delta \subset A$ is a complete collection of meridians of A, so $A-\Delta$ consists of 3 -balls.

Will think: $\Delta \subset A=M-\Sigma$.
Consider an edge e of Σ that is disjoint from Δ; that is, $\partial \Delta$ nowhere runs along e. A point on e corresponds to a meridian of B whose boundary lies on $A-\Delta=3$ - balls.
So the boundary of the meridian also bounds a disk in A. Thus the point on e corresponds to a a reducing sphere for T. So call such an edge a reducing edge of Σ.

Lemma

Suppose a spine Σ and a complete collection of meridians Δ for A have been chosen to minimize $(|\Sigma \cap S|,|\partial \Delta \cap S|)$ Then Σ intersects S only in reducing edges.
Notes:

- We do not care about the number of circles in $\Delta \cap S$.
- If $S \cap \Sigma=\partial S, S$ is a ∂-reducing disk for (M, T)
$(\Sigma \cup \Delta) \cap S$ can be viewed as a graph Γ in S in which $\Sigma \cap S$ are vertices and $\Delta \cap S$ are the edges. (Regard ∂S as 'vertex at ∞ '.)

End of Phase I: Only reducing edges of Σ intersect S

Intermission: Lollypops in compression-bodies.

Let W be a 3-manifold and $\delta:\left(S^{1}, p\right) \rightarrow\left(\partial W,{ }^{*}\right)$ a generic immersion that is null-homotopic in W. Then \exists crossing resolutions of δ so that δ, pushed into W rel *, bounds disk in W.

More technically:
Theorem (Freedman-S, 2017 - Lollypop Theorem)
Let $\partial W \times[0,1)$) be a boundary collar. There is a height function $h: S^{1} \rightarrow[0,1)$ so that $h(p)=0, h\left(S^{1}-p\right) \subset(0,1)$ and the image of $\delta^{\prime}: S^{1} \rightarrow \partial W \times[0,1)$ defined by $\delta^{\prime}(\theta)=(\delta(\theta), h(\theta))$ is an embedded curve bounding a disk in M.

Corollary

Suppose C is a compression-body with $p \in \partial_{+} C$ and $q \in \operatorname{interior}(C)$. Suppose α, β are two arcs from p to q in C.
Then, perhaps first sliding the end of β at p around a closed path in $\partial_{+} C$ and allowing points of the arc β to pass through the arc α, β can be isotoped rel endpoints to α in C.

Proof uses two compressionbody - facts:

- $\pi_{1}\left(\partial_{+} C\right) \rightarrow \pi_{1}(C)$ surjective and
- complement of spine (C) is boundary collar.

End of Intermission

Phase 2: Choosing reducing spheres disjoint from S

Let \Re be the reducing spheres in M associated to all edges of Σ that intersect S. Let M_{\Re} be a component of $M-\Re$.
\mathfrak{R} appears in M_{\Re} like flowers with blossoms (the reducing spheres) on ∂M_{\Re}, and stems (the reducing edges) mostly inside $M_{\mathfrak{R}}$.

$M_{\mathfrak{R}}$

Important note: $M_{\Re}-\Sigma$ is handlebody A cut along reducing disks; i. e. still a handlebody.

Proposition (Stem Swapping)

The complex Σ^{\prime} obtained from Σ by replacing the stem σ with σ^{\prime} is also a spine for T. That is, T is isotopic to a regular neighborhood of Σ^{\prime}.

Proof: Apply Lollypop Corollary to σ and σ^{\prime}, arcs in handlebody $A \cap M_{\mathfrak{R}}$ ending at a very fat point: the blossom.

Let $c \subset \mathfrak{R} \cap S$ be innermost in S, bounding disk $E \subset S$, and let $D \subset R_{0}$ be the disk c bounds in \mathfrak{R}.

Problem: If replace D with E, R_{0} is no longer reducing sphere.

Solution: first do stem swaps:

Then replace $D \subset R_{0}$ to get new reducing sphere R_{1}, reducing $|\Re \cap S|$. Eventually \mathfrak{R} and S disjoint.

Note: $|\Sigma \cap \Re|$ may increase. We don't care.

Phase 3: Swap reducing edges off of S

Proposition

Suppose Σ intersects S only in reducing edges, and the associated set \mathfrak{R} of reducing spheres is disjoint from Σ. Then T can be isotoped so that S is a ∂-reducing disk for T.

Swaps clearing S of final vertices

Proof: Swap stems as shown. Then $S \partial$-reduces T. QED
Note: It's tempting to pull blossoms through S, but this alters isotopy class of S.

Example (courtesy A. Zupan)

The initial setting is of a Heegaard split 3-manifold $M=M 1 \# M_{2} \# M_{3}$. Spine for M_{3} shown as blue, including torus boundary conponent. Part of A shown is solid torus.

Target sphere S is sum of reducing spheres for M_{1}, M_{2} along tube in M_{3} shown in red.

The initial setting

Rightmost edge turns color and begins to slide on the rest of the spine, towards a stem-swap:

The slide begins

Because $\pi_{1}(\partial A) \rightarrow \pi_{1}(A)$ is surjective, and the slides take place in ∂A, one can slide end of arc on the rest of Σ until it is homotopic rel end points to the red path shown.

Edge now homotopic to (extended) red tube

Now apply Lollypop Theorem: edge now goes right through the tube, never intersecting S. S has become reducing sphere for (M, T).

Green edge isotoped into red tube

