High crossing knot complements with few tetrahedra

Neil Hoffman

Oklahoma State University

$$
\text { May 12, } 2020
$$

jt. work with Robert Haraway
Warwick Geometry and Topology Online / International Centre for Mathematical Sciences (ICMS)

Big Question(s)

Diagram to triangulation: Given a diagram D of a knot K how many tetrahedra are needed to make up a complement?

Triangulation to Diagram: Given a triangulation \mathcal{T} of a knot complement $S^{3} \backslash K$, how many crossings could K have?

Restatement:

$c(K)$ minimum crossing number over all diagrams of K.
$t(K)$ minimum number of tetrahedra needed to triangulate a complement of K.

Diagram to triangulation: Coarsely bound $t(K)$ by a function in $c(K)$.

Triangulation to Diagram: Coarsely bound $c(K)$ by a function in $t(K)$.

Octahedralization

Octahedral Decomposition (attributed to D. Thurston) $t(K) \leq 4 c(K)$ using octahedra.

Triangulation to Diagram: Is $c(K)$ bounded by a polynomial function in $t(K)$?

No!

Theorem (Haraway-H)

There is a constant C such that the complement of the torus knot $T_{F_{n+3}, F_{n+2}}$ in S^{3} can be triangulated with at most $(2 n-1)+C$ tetrahedra and $c\left(T_{F_{n+3}, F_{n+2}}\right) \geq \varphi^{2 n}$, where $\varphi=\frac{1+\sqrt{5}}{2}$.

Triangulation to Diagram: If $S^{3} \backslash K$ hyperbolic, is $c(K)$ bounded by a polynomial function in $t(K)$?

Still no!
Theorem (Haraway-H)
The complement of twisted torus knot $T\left(F_{n+5}, F_{n+4}, 2,4\right)$ in S^{3} can be triangulated with at most $2 n-1+D_{1}+D_{2}$ tetrahedra and $c\left(T\left(F_{n+5}, F_{n+4}, 2,4\right)\right) \geq \varphi^{2 n}$, where $\varphi=\frac{1+\sqrt{5}}{2}$.

Our construction here can be adapted to Satellite knot complements as well.

Bag of Tricks

Theorem (Murasugi)

A p/q torus knot $K_{p, q}$ with $p \geq q \geq 2$ has at least $p(q-1)$ crossings. More generally, if K is any knot presented as a homogeneous n-braid with braid index $n, c(K)$ can be read from that diagram.

Two Gadgets

1.
2.

Jaco and Rubinstein's Layered Solid Tori

$0(123)-0(230)$

$t(K)$ bounding $c(K)$

Proposition (H-Haraway)

If K is a torus knot, there exists globally defined exponential function in $t(K)$ that bounds $c(K)$.

Theorem (Greene, Howie)
It is decidable if \mathcal{T} is the triangulation of an alternating knot complement.

Corollary (Juhász-Lackenby)
If K is alternating, $c(K)$ is bounded by an function of $7 t(K)^{3} \cdot 2^{14 t(K)+4}$.

Thank you for your attention!

