High crossing knot complements with few tetrahedra

Neil Hoffman

Oklahoma State University

May 12, 2020

jt. work with Robert Haraway Warwick Geometry and Topology Online / International Centre for Mathematical Sciences (ICMS)

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Big Question(s)

Diagram to triangulation: Given a diagram *D* of a knot *K* how many tetrahedra are needed to make up a complement?

Triangulation to Diagram: Given a triangulation \mathcal{T} of a knot complement $S^3 \setminus K$, how many crossings could *K* have?

イロト 不得 トイヨト イヨト ヨー ろくで

Restatement:

c(K) minimum crossing number over all diagrams of K. t(K) minimum number of tetrahedra needed to triangulate a complement of K.

Diagram to triangulation: Coarsely bound t(K) by a function in c(K).

Triangulation to Diagram: Coarsely bound c(K) by a function in t(K).

Octahedralization

Octahedral Decomposition (attributed to D. Thurston) $t(K) \le 4c(K)$ using octahedra.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Triangulation to Diagram: Is c(K) bounded by a **polynomial** function in t(K)?

No!

Theorem (Haraway-H)

There is a constant *C* such that the complement of the torus knot $T_{F_{n+3},F_{n+2}}$ in S^3 can be triangulated with at most (2n-1) + C tetrahedra and $c(T_{F_{n+3},F_{n+2}}) \ge \varphi^{2n}$, where $\varphi = \frac{1+\sqrt{5}}{2}$.

Triangulation to Diagram: If $S^3 \setminus K$ hyperbolic, is c(K) bounded by a **polynomial** function in t(K)?

Still no!

Theorem (Haraway-H)

The complement of twisted torus knot $T(F_{n+5}, F_{n+4}, 2, 4)$ in S^3 can be triangulated with at most $2n - 1 + D_1 + D_2$ tetrahedra and $c(T(F_{n+5}, F_{n+4}, 2, 4)) \ge \varphi^{2n}$, where $\varphi = \frac{1+\sqrt{5}}{2}$.

Our construction here can be adapted to Satellite knot complements as well.

Bag of Tricks

Theorem (Murasugi)

A p/q torus knot $K_{p,q}$ with $p \ge q \ge 2$ has at least p(q - 1) crossings. More generally, if K is any knot presented as a homogeneous n-braid with braid index n, c(K) can be read from that diagram.

Two Gadgets

1.

Jaco and Rubinstein's Layered Solid Tori

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

t(K) bounding c(K)

Proposition (H-Haraway)

If K is a torus knot, there exists globally defined exponential function in t(K) that bounds c(K).

Theorem (Greene, Howie)

It is decidable if \mathcal{T} is the triangulation of an alternating knot complement.

イロト イポト イヨト イヨト ヨー のくぐ

Corollary (Juhász–Lackenby)

If *K* is alternating, c(K) is bounded by an function of $7t(K)^3 \cdot 2^{14t(K)+4}$.

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで