Chapter 1

Results

Volumes of knot complements

A hyperbolic structure on a three-manifold is a complete metric of constant negativ.e sec-
tional curvature. On knot and link complements such a structure always has a finite volume.
Not all knot and link complements admit a hyperbolic structure, but for those that do
Mostow’s Rigidity Theorem states that the hyperbolic structure is unique. This implies that

the volume of the hyperbolic structure is a topological invariant of the knot or link.

A hyperbolic manifold is one which admits a hyperbolic structure, and a hyperbolic

knot or link is one whose complement is hyperbolic.

Bill Thurston [TH1] has proved that every knot which is neither a torus knot, a con-
nected sum, nor a satellite is hyperbolic. Since connected sums are excluded from the knot
tables, and satellites tend to have large numbers of crossings, one would expect most knots in
the knot tables to be hyperbolic, and the remaining few to be torus knots. This is in fact the
case. With the exception of 3;, 5, 7;, 8;9and 9;, which are all torus knots, all the knots up
through nine crossings are hyperbolic. The surprise is that, for a given number of crossings,
the knots are more or less arranged in order of increasing volume (see Table 1). (The excep-
tions are that the nonalternating knots—8;o through 8, and 9,, through 9,—have been
pushed to the end of each group, and for some reason a new series of 9-crossing knots starts at
935.) This suggests that the measure of complexity originally used to order these knots within
their groups is compatible with using volume as a measure of complexity. This is remarkable
in that the knots were originally ordered in 1927 (or possibly earlier), 50 years before any dis-
cussion of hyperbolic volumes. On the other hand, the whole idea of grouping knots by cross-

ing number seems to have very little to do with hyperbolic volume.

The volumes listed in Table 1 are all distinct, so volume is a complete knot invariant for
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Table 1
VOLUMES OF KNOT COMPLEMENTS

knot31  torus knot knot99 8.016816

knot910 8.773457

knot4l  2.029883 knot911 8.288589
knot912 8.836642

knot51  torus knot knot913 9.135094
knot52  2.828122 knot914 8.954989
knot915 9.885499

knot61 3.163963 knot916 9.883007
knot62  4.400833 knot917 9.474580
knot63  5.693021 knot918 10.057730
knot919 10.032547

knot71  torus knot knot920 9.644304
knot72  3.331744 knot921 10.183266
knot73  4.592126 knot922 10.620727
knot74  5.137941 knot923 10.611348
knot75  6.443537 knot924 10.833729
knot76  7.084926 knot925 11.390305
knot77  7.643375 knot926 10.595841
: knot927 10.999981

knot81 3.427205 knot928 11.563177
knot82  4.935243 knot929 12.205856
knot83  5.238684 knot930 11.954527
knot84  5.500486 knot931 11.686312
knot85  6.997189 knot932 13.099900
knot86  7.475237 knot933 13.280456
knot87  7.022197 knot934 14.344581
knot88  7.801341 knot935 7.940579
knot89  7.588180 knot936 9.884579
knot810 8.651149 knot937 10.989450
knot811 8.286317 knot938 12.932859
knot812 8.935857 knot939 12.810310
knot813 8.531232 knot940 15.018343
knot§14 9.217800 knot941 12.098936
knot815 9.930648 knot942 4.056860
knot816 10.579022 knot943 5.904086
* knot817 10.985908 knot944 7.406768
o knot818 12.350906 knot945 8.602031
knot819 torus knot knot946 4.751702
knot820 4.124903 knot947 10.049958
knot821 6.783714 knot948 9.531880

knot949 9.427074
knot91  torus knot
knot92  3.486660
knot93  4.994856
knot94  5.556519
knot95  5.698442
knot96  7.203601
knot97  8.014861
knot98  8.192348
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hyperbolic knots of at most 9 crossings. However, this is no longer true once knots of 10 cross-
ings are permitted: 94, and 10,3, both have volume 4.056860..., but their complements are not
homeomorphic. You can tell the complements are not homeomorphic because the set of
volumes you get by doing Dehn surgery on 9, is different than the set you get by doing Dehn
surgery on 10;3,. Similarly, knot 5, and the 12-crossing knot shown below have the same

volume 2.828122.. even though their complements are not homeomorphic.
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5, (nonstandard projection) A 12-crossing knot
with the same volume

This last pair of knots are part of an infinite family of such examples which can be obtained
by surgery on the following two-component link. The Dehn surgery space (for surgeries on

the unknotted component with the knotted component left complete) is shown below.




surgery on cusp #2
cusp #1 complete

number of simplices = 6 complete volume = 5.333490
5.28 5.26 5.23 5.18 5.07 4.85 4,46 4.58 4.89
|
5.28 5.25 5.21 5.14 4.98 4.61 4.06 4.55 4.93
I
5.27 5.24 5.19 5.e8 4;83 4.12 3.76 4.58 4.98
5.26 5.22 5.15 4.99 4?56 2.83 3.66 4.67 5.83
|
5.25 5.20 5.10 4.85 4i02 0.00 3.76 4.79 5.08
5.23 5.17 5.03 4.61 [ 2?67] 2.00 4.06 4.91 5.13
|
5.21 5.13 4.92 4.12 } .00 4.46 5.01 5.16
— 5.19—— 5.08—— 4.75 2.83 ! 2.83 4.75 5.08—— 5.19—

Dan Ruberman recently found an example of two nonequivalent knots which have
identical volumes at corresponding points in their Dehn surgery spaces. (Such knots are so-

called ‘mutants’ of one another.)

Random knots

Bruce Ramsay has written a program to generate ‘random’ knots. The program thinks of
a knot in E£3 in terms of its three coordinate functions, x(t), y(t) and z(t). Because the knot is
a closed loop, these functions are periodic, and can be approximated by Fourier series. Revers-
ing this chain of reasoning, Bruce’s program generates random Fourier coefficients (from some
predetermined distribution) and uses them to construct a knot. As you might expect, a projec-
tion of a random knot has a lot of unnecessary crossings. Bruce has written another program
which removes unnecessary crossings, and does some additional simplification. I ran Bruce’s

programs in tandem, recording the number of crossings in each simplified projection. Here are

the results:




number of number of
crossings  occurrences

0 1448

1 0

2 0

3 433

4 154

5 161

6 135

7 116

8 72

9 50
10 35
11 25
12 21
13 10
14 11
15 8
16 4
17 5
18 2
19 1
20 1
>20 0

(My program was not prepared to interpret some supplementary messages produced by Bruce’s
program, and as a result a few unknots were erroneously counted as knots of higher complex-

ity.)

I'intentionally set the complexity fairly low, and the program produced lots of unknots and
knots of few crossings. 1 saved the knots whose projections had exactly 9 crossings, and later

identified them by computing their volumes. Here are the results:




number of
occurrences  knot volume

9-42 4.056860
9-44 7.406768
9-43 5.904086
9-45 8.602031
9-19  10.032547
9-18  10.057730
9-9 8.016816
9-46 4.751702
9-32  13.099900
9-23  10.611348
9-17 9.474580
9-12 8.836642
9-11 8.288589
9-5 5.698442
8-21 6.783714
6-2 4.400833
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In addition, there was one knot which didn’t admit a hyperbolic structure; it turned out to be

the connected sum of a trefoil and knot 6,.

These results are interesting for two reasons:

(1) These ‘random’ 9-crossing knots, which turned up in a batch of low complexity knots,
have an average volume of 7.13.., whereas the set of all 9-crossings knots has an average
volume of 9.56.. . This suggests that volume is a better measure of complexity than is the

number of crossings.

(2) These ‘random’ knots tend to be nonalternating. Mathematicians often restrict themselves
to alternating knots because they are easier to work with, but it seems that if we are looking

for generic behavior we should look at nonalternating knots instead.




Dehn surgery on knots

Here is a picture of the Dehn surgery space for the knot 9,

knot944
number of simplices = 9 complete volume = 7.406768
7.20 7.19 7.18 7437 £ A7 il. 56 7.186 7.16 7.16
|
7.00 6.96 6.93 6.89 6.87 6.86 6.85 6.87 6.89
|
6.35 6.09 5.80 5.52 5.33 5.27 5.35 5.56 5.89
|

-[ 4.84]—[ 3.10] ! }

+ : [ 3.10]—[ 4.84]-
(See the appendix for an explanation of the square brackets.)

This knot has the following two properties:

(1) Only the trivial surgery gives a nonhyperbolic manifold.

(2) The only other nonhyperbolic integer point is (2,0). This ‘surgery’ corresponds to an orbi-

fold with an order 2 singularity along the knot.

Other knots with these two properties are 63, 75—74, 8,—8,5, 8,,, 96— %33 936—938, 943— s and

s
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Some knots are even more restrictive. On 94, for example, the trivial surgery is the

only nonhyperbolic integer point:

knotg947
number of simplices = 11 complete volume = 10.049958
9.97 9.97 9.96 9.95 9.95 9.94 9.94 9.93 9.92
|
9.89 9.87 9.86 9.84 QIBZ 9.80 9.78 9.75 9.73
9.58 9.50 9.40 9.27 9.12 8.95 8.78 8.61 B.47
|
-[ 6.91]—[ 4.86]—][ ©.79] - + + [ @.79]—[ 4.88]—[ 6.91]-

The knots 85, 934, 930—94; and 949 also have this property. It may seem that having two
nonhyperbolic points, like 944, is much more common than having only one nonhyperbolic
point like the knots just mentioned. But this is only because the majprity of knots of 9 or
fewer crossings are algebraic in the sense of Conway (i.e. they are obtained as boundaries of
unknotted twisted bands plumbed together in a tree-like pattern, see Dave Gabai’s thesis [G)
for a di;‘:cussion). Most knots of higher complexity are not algebraic, and have hyperbolic
structures at all integer point except (1,0). To demonstrate this 1 had Bruce’s program generate

ten random knots of high complexity. Their volumes are as shown below:

knot #1 70.156482
knot #2 54.470278
knot #3 54.097557
knot #4 38.183820
knot #5 83.514835
knot #6 63.659180
knot #7 66.381787
knot # 88.412151
knot #9 74.326097
knot #10  65.231157

One of these knots (#7) was hyperbolic at all integer points except (1, 0) and (2, 0); all the rest

were hyperbolic at (2, 0) as well.
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The figure-eight knot is the only knot which isn’t hyperbolic at (3,0) (it admits a
Euclidean structure there) and all knots are hyperbolic at (n,0) when n>3. This follows from
Bill Dunbar’s work [D] which shows that the figure-eight knot is the only knot with a
nonhyperbolic geometric structure at (3,0), together with Thurston’s theorem that orbifolds
with 1-dimensional singular sets admit geometric structures. (Knots whose complements

aren’t hyperbolic to begin with are, of course, excluded from the discussion.)

The very simplest knots have more nonhyperbolic integer points. For knots of 9 or
fewer crossings these ‘interesting’ Dehn surgery spaces fall into two categories. The first

category is typified by the structure of knot 6;:

knot61
number of simplices = 4 complete volume = 3.163963
|
2.94 2.91 2.88 2.84 2.81 2.78 2.76 2.75 2.74
|
2.72 2.63 2.52 2.41 2.3 2.25 2.24 2.27 2.35
|
1.94 1.40 DEC .00 .00 0.00 DEC [ 1.61] 2.13

' " I ' } [ @.65]—[ 1.65]—[ 2.18]— 2 47—

There are two integer points, namely (0,1) and (4,1), corresponding to manifolds which decom-
pose along incompressible tori. These two points are the endpoints of a line of manifolds with
degenerate hyperbolic structures. These manifolds are Seifert fibered spaces. This line of
Seifert fibered spaces is horizontal in all examples up through 9 crossings. The Dehn surgery
spaces for the other knots in this category appear in an appendix. In the case of (0,1) surgery
on the figure-eight knot the degenerate hyperbolic structure turns out to be a solv-geometry
structure, but this is the only such example among allisurgeries on knots (this is a consequence
of Dave Gabai’s recent result that if a surgery on a knot gives a manifold which fibers over a

circle, then the knot complement itself also fibers over a circle).
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knot820
number of simplices = 5 complete volume = 4.1249063
3.90 3.87 3.82 3:78 3.73 3.68 3.64 3.62 3.62
|
S 3.66 3.54 3.40 3.24 3.e8 2599 3.00 3.12
3.42 [ 3.142) [ 2.65] [ 1.91] DEC 0.00 2.00 [ 1.44] 2.57
|
— 2.77 LT R } t + + + 1071 2.77—

In some Dehn surgery spaces, such as the one for knot 8, shown above, one of the end-
points of the horizontal line occurs at a noninteger point. In the case of 8 it occurs at (2:2/3,

1). These endpoints seem to occur only at points with rational coordinates.

The other category of Dehn surgery space found among knots of at most 9 crossings is

represented by the Dehn surgery space of knot 93

knot93
number of simplices = 6 complete volume = 4.994856
4.97 4.96 4.96 4.96 4.96 4.96 4.95 4.95 4.95
4.91 4.90 4.89 4.88 4.87 4.85 4.83 4.80 4.77
4.14 3.83 [ 3.34] [ 2:52] DEC [ 1.9e] [ 2.58] 2.98 3.43
— 4.55—— 4.64—— 4. 71—— 4,76—— 4 .80 4.82 4.85 4.87 4. 88—
8 9 10 11 12 13 14 15 16

There is only one nonhyperbolic integer point off the horizontal axis, and it represents a mani-
fold containing an incompressible torus which decomposes the manifold into two pieces. The

Dehn surgery spaces for the other knots in this category also appear in the appendix.

I invented the above two categories purely for expository purposes. For knots of more
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than 9 crossings they are inadequate. For example, the Dehn surgery space of the 12-crossing
knot referred to earlier has nonhyperbolic points at (-16, 1) through (-20, 1) and also at (-37,
2). There seems to be some regularity to the structure of all these Dehn surgery spaces, but
I'm not yet ready to conjecture what it is. The same patterns seem to appear in the Dehn sur-
gery spaces of knots of high complexity, only there the corners of the nonhyperbolic region
are all at noninteger points (presumably as the volume of the knot goes up the nonhyperbolic

region gets smaller).

Table 2 shows the number of nonhyperbolic integer surgeries for each knot of 9 or
fewer crossings. As it stands the table is not particularly orderly. The number of nonhyper-
bolic surgeries doesn’t correlate well with the number of crossings, and even within a group,
e.g. the 9-crossing knots, some of the knots with lots of nonhyperbolic surgeries occur near the
beginning of the group while others occur near the end. In contrast, look at Table 3 and see
what happens when the knots are ordered by volume. The number of nonhyperbolic sur-

geries correlates well with volume.

Bill Thurston has often said that crossing number is a silly knot invariant. We now

have two more pieces of evidence to support this opinion:

(1) The character of the Dehn surgery space correlates well with volume, but poorly with

crossing number.

(2) Bruce Ramsay’s random knot program, when set for low complexity, generates knots of

low volume but not necessarily low crossing number.

It would be interesting to compile knot tables ordered by volume without regard to crossing
number. As well as reflecting a more natural property of the knots, this table would be more
convenient to use than the standard tables: you wouldn’t have to find any special projection of
the knot; you could start with any projection, compute the volume, and quickly look up the
knot. The major drawback of this scheme is that the set of volumes of knot complements has

accumulation points. For example, the twist knots—which can be all be obtained by surgery
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Table 2
Number of Nonhyperbolic Dehn Surgeries

knot99

knot910
knot911
knot912
knot913
knot914
knot915
knot916
knot917
knot918
knot919
knot920
knot921
knot922
knot923
knot924
knot925
knot926
knot927
knot928
knot929
knot930
knot931
knot932
knot933
knot934
knot935
knot936
knot937
knot938
knot939
knot940
knot941
knot942
knot943
knot944
knot945
knot946
knot947
knot94§
knot949
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knot31
knot51
knot71
knot819
knot91
knot41
knot52
knot61
knot72
knot81
knot92
knot942
knot820
knot62
knot73
knot946
knot82
knot93
knot74
knot83
knot84
knot94
knot63
knot95
knot943
knot75
knot821
knot85
knot87
knot76
knot96
knot944
knot86
knot89
knot77
knot88§
knot935
knot97
knot99
knot98
knot811
knot911
knot813
knot945
knot810
knot910
knot912
knot812
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Table 3

Number of Nonhyperbolic Dehn Surgeries
(knots ordered by volume)

torus knot
torus knot
torus knot
torus knot
torus knot
2.029883
2.828122
3.163963
3.331744
3.427205
3.486660
4.056860
4124903
4400833
4.592126
4.751702
4935243
4.994856
5.137941
5.238684
5.500486
5.556519
5.693021
5.698442
5.904086
6.443537
6.783714
6.997189
7.022197
7.084926
7.203601
7.406768
7.475237
7.588180
7.643375
7.801341
7.940579
8.014861
8.016816
8.192348
8.286317
8.288589
8.531232
8.602031
8.651149
8.773457
8.836642
8.935857

all
all
all
all
all
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knot914
knot913
knot814
knot949
knot917
knot948
knot920
knot916
knot936
knot915
knot815
knot919
knot947
knot918
knot921
knot816
knot926
knot923
knot922
knot924
knot817
knot937
knot927
knot925
knot928
knot931
knot930
knot941
knot929
knot818
knot939
knot938
knot932
knot933
knot934
knot940

8.954989
9.135094
9.217800
9.427074
9.474580
9.531880
9.644304
9.883007
9.884579
9.885499
9.930648
10.032547
10.049958
10.057730
10.183266
10.579022
10.595841
10.611348
10.620727
10.833729
10.985908
10.989450
10.999981
11.390305
11.563177
11.686312
11.954527
12.098936
12.205856
12.350906
12.810310
12.932859
13.099900
13.280456
14.344581
15.018343
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on the Whitehead link—have volumes which approach the Whitehead link’s volume of 3.66-,
s0 you have infinitely many knots with volume less than 3.66... Fortunately, this problem
does not aﬁpear insurmountable: infinite classes of knots (e.g. the twists knots) can be grouped
together with the two-component link which generates them (e.g. the Whitehead link). Simi-
larly, infinite collections of two-component links could be grouped together under a three-
component link, etc. A second problem is that there are different knots which have the same
volume, and you'd need to find some other invariant—such as the Jones polynomial, or the
volumes of various Dehn surgeries—to distinguish these. The advantage such tables would
offer, though, is that they would encourage people to think about knots in a more natural-

and hopefully more productive—way.

Other manifolds with cusps

It would be interesting to study all manifolds with cusps, rather than just knot and link
complements. (By a ‘cusp’ 1 mean an end homeomorphic to 72 x [0,1). One expects that in
most—but not all—cases a manifold with cusps can be given a hyperbolic structure of finite
volume.) Knot and link complements are atypical in that there is always a surgery which
gives §3. One method of getting at manifolds which are more typical would be to start with
a link complement and do Dehn surgery on, say, all the components but one. All orientable
manifolds with one cusp can be obtained in this way (the proof is an easy corollary of the

theorem that all closed orientable 3-manifolds can be obtained by Dehn surgery on §3).

This plan sounds nice in theory, but unfortunately certain computational difficulties
arise when the plan is carried out. First note that if one is looking for generic behavior, one
probably does not want to use the links in the standard tables. The reason is thatthe indivi-
dual components of each link are usually unknotted. Instead one would prefer to look at
links where the individual components are reasonably complex. As an example, I formed a
link by interweaving a figure-eight knot with a 5, knot. The complement of this link has a
volume of about 32.86, and its triangulation has 45 ideal simplices, so doing Dehn surgeries

was computationally very slow. The next problem was that one would like to be able to, say,
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do a trivial surgery on the 5, component and be left with a figure-eight knot complement, but
to do this you must reduce the volume of the manifold from 32.86 to 2.03. When you have
45 simplices, 2.03 is not a lot of volume to go around. The simplices get distorted, and many

of them degenerate entirely.

A better approach to the study of typical manifolds ;vith cusps may be to forget link
complements entirely. After all, if we want to study typical manifolds, there is no need insist
on starting with something which embeds in S3. Instead, we could make manifolds by ran-
domly assembling ideal tetrahedra and checking that the link of each ideal vertex is a torus.
If we do this stupidly—completely assembling each manifold before checking the cusps—the
computing time needed to generate a manifold will increase exponentially with the number
of ideal tetrahedra used. But by monitoring the cusps as it goes along—and immediately back-
ing off when the genus of a cusp gets too large--the process may run in polynomial time.
(Another advantage of this plan is that the program to generate the manifolds would be
noninteractive and could run at night. The interactive program SNAPPEA—the one with

which the user explores the Dehn surgery space—would be expected to run as quickly as it

does now.)




