FROM VEERING TRIANGULATIONS TO DYNAMIC PAIRS

SAUL SCHLEIMER AND HENRY SEGERMAN

Abstract

From a transverse veering triangulation (not necessarily finite) we produce a canonically associated dynamic pair of branched surfaces. As a key idea in the proof, we introduce the shearing decomposition of a veering triangulation.

1. Introduction

Mosher, inspired by work of (and with) Christy [14, page 5], and Gabai [14, page 4], introduced the idea of a dynamic pair of branched surfaces. These give a combinatorial method for describing and working with pseudo-Anosov flows in three-manifolds. Very briefly, suppose that Φ is such a flow. Then Φ admits a transverse pair of foliations F^{Φ} and F_{Φ}, called weak stable and weak unstable, respectively. Carefully splitting both to obtain laminations, and then carefully collapsing, gives a dynamic pair of branched surfaces B^{Φ} and B_{Φ}. These again intersect transversely, and have other combinatorial properties that allow us to reconstruct Φ (up to orbit equivalence).

Agol, while investigating the combinatorial complexity of mapping tori, introduced the idea of a veering triangulation [1, Main construction]. For any pseudo-Anosov monodromy ϕ he provides a canonical periodic splitting sequence of stable train tracks $\left(\tau_{i}^{\phi}\right)$. This gives a branched surface B^{ϕ} in the mapping torus $M(\phi)$. Equally well, the splitting sequence of unstable tracks $\left(\tau_{\phi}^{i}\right)$ gives rise to the branched surface B_{ϕ}.

More generally, even when not layered [12, Section 4], a veering triangulation \mathcal{V} admits upper and lower branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$, obtained by gluing together standard pieces within each tetrahedron (Section 2.7). Our main result is that these may be isotoped into split position and there form a dynamic pair.

Theorem 10.1. Suppose that \mathcal{V} is a transverse veering triangulation. In split position, the upper and lower branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ form a dynamic pair; this position is canonical. If \mathcal{V} is finite then

Date: November 6, 2022.

Rem: SemiLocabs
split position is produced algorithmically in polynomial time; also the dynamic train track $B^{\mathcal{V}} \cap B_{\mathcal{V}}$ has at most a quadratic number of edges.

Before giving an outline of the proof of Theorem 10.1, we highlight the main difficulty.
Remark 1.1. Suppose that $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are in normal position within each tetrahedron. This is locally determined, and any other locally determined position can be obtained from normal position by local moves. In normal position, the branched surfaces may coincide on large regions, spanning many tetrahedra; see Section 2.7. Such a region may contain a vertical Möbius band; if so then any small isotopy making $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ transverse produces "bad" components of $M-\left(B^{\mathcal{V}} \cup B_{\mathcal{V}}\right)$. We give more details in Section 4.13 and an example in Figure 4.14B. \diamond

A more global procedure is thus required. To guide this, we define in Section 5 the shearing decomposition associated to \mathcal{V}. This is a decomposition of M into solid tori (and possibly solid cylinders in the non-compact case).

Theorem 5.10. Suppose that \mathcal{V} is a veering triangulation (not necessarily transverse or finite). Then there is an associated shearing decomposition of M canonically associated to \mathcal{V}.

Remark 1.2. The shearing decomposition is of independent interest. For example Theorem 5.10 is used by Tsang [20, Corollary 1.2] to show that a transitive pseudo-Anosov flow on a closed three-manifold admits a Birkhoff section with at most two boundary components on orbits of the flow.

With Theorem 5.10 in hand, we give a sequence of coordinatisations inside of the shearing regions. In particular each shearing region is foliated by horizontal cross-sections; see Definition 6.3. In Sections 7, 8 , and 9 we give a sequence of isotopies to improve the positioning of $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ relative to each other and relative to the horizontal cross-sections.

Remark 1.3. Our construction is "semi-local" in the following sense. Suppose that \mathcal{V} and \mathcal{V}^{\prime} are veering triangulations of manifolds M and M^{\prime}. Suppose that U and U^{\prime} are isomorphic red components (maximal connected unions of crimped red shearing regions). Then the isomorphism carries the dynamic pair for \mathcal{V} to that of \mathcal{V}^{\prime} (as intersected with U and $\left.U^{\prime}\right)$.

Finally, in Section 10 we verify that $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$, in their final split position form a dynamic pair.
1.4. Other work. After Mosher's monograph [14], other appearances of dynamic pairs in the literature include the following. Fenley [9, Section 8] gives an expostion of various examples due to Mosher and proves that leaves of the resulting weak stable and unstable folations have the continuous extension property. Given a uniform one-cochain, Coskunuzer [7, Main Theorem] follows Calegari [4, Theorem 6.2] in producing various laminations, which are collapsed to give a dynamic pair. Calegari [5, Sections 6.5 and 6.6] gives a useful exposition of dynamic pairs and their relation to pseudo-Anosov flows. In particular see his version of examples of Mosher [5, Example 6.49].

Closely related to our overall program is recent work of Agol and Tsang [2, Theorem 5.1]. Starting from a veering triangulation (with appropriate framing), they construct a pseudo-Anosov flow on the filled manifold. They do not use dynamic pairs; instead they apply a different construction of Mosher [14, Proposition 2.6.2]. They identify and remove infinitesimal cycles, which are similar in spirit to the vertical Möbius bands mentioned above. Their construction relies on making certain choices, so it is not canonical. Also, it is not clear if the resulting pseudo-Anosov flow recovers the original veering triangulation
1.5. Future work. This is the fourth paper in a series of five [17, 18,10] providing an exact dictionary between veering triangulations (framed with appropriate surgery coefficients) and pseudo-Anosov flows without perfect fits. Theorem 10.1 together with Mosher's work [14, Theorem 3.4.1] gives one direction of the dictionary. In service of our future work, in Appendix A we prove that the "leaf space" of the resulting pseudo-Anosov flow has maximal rectangles corresponding to (via the construction given in [18, Section 5.8]) the original veering tetrahedra.

Acknowledgements. We thank Lee Mosher for enlightening conversations regarding dynamic pairs.

2. Triangulations, train tracks, and branched surfaces

2.1. Ideal triangulations. Suppose that M is a connected threemanifold without boundary. Suppose that \mathcal{T} is a triangulation: a collection of model tetrahedra and a collection of face pairings. (We do not assume here that \mathcal{T} is finite.) We say that \mathcal{T} is an ideal triangulation of M if the quotient $|\mathcal{T}|$, minus its zero-skeleton, is homeomorphic to M [19, Section 4.2]. In this case, the degree of each edge of \mathcal{T} is necessarily finite. See Figure 2.2 for an example.

Figure 2.2. An ideal triangulation of the complement of the figure-eight knot in the three-sphere. Each edge is equipped with a colour - red (dotted) or blue (dashed) - and an orientation. These determine the face pairings. The flattening (into the plane) makes the triangulation taut and transverse. Note that the taut structure and the orientation determine the veering structure

Fig:VeerFigEight and thus the colours.

A model tetrahedron t is taut if every model edge is equipped with a dihedral angle of zero or π, subject to the requirement that the sum of the three dihedral angles at any model vertex is π. It follows that there are exactly two model edges in t with angle π; these do not share any vertex of t. The remaining four model edges, with angle zero, are called equatorial. A taut tetrahedron can be flattened into the plane with its equatorial edges forming its boundary; see Figure 2.2. A taut tetrahedron t contains an equatorial square: a disk properly embedded in t whose boundary is the four equatorial edges. A ideal triangulation \mathcal{T} of M is a taut triangulation if the model tetrahedra are taut and, for every edge e in $|\mathcal{T}|$, the sum of the dihedral angles of the models of e is 2π [12, Definition 1.1].

A taut model tetrahedron t is transverse if every model face is equipped with a co-orientation (in or out of t), subject to the requirement that co-orientations agree across model edges of dihedral angle π and disagree across model edges of dihedral angle zero. See Figure 2.3A. A taut triangulation \mathcal{T} of M is a transverse taut triangulation if every model tetrahedron is transverse taut and, for every face f in $|\mathcal{T}|$, the associated face pairing preserves the co-orientations of the two model faces [12, Definition 1.2], [13, page 370].

Recall that all model tetrahedra are oriented. A taut model tetrahedron t is veering if every model edge is equipped with a colour, red or blue, subject to the following.

Fig:TransverseEdge

Fig:Transverse

(A) Co-orientations and angles in a transverse taut tetrahedron.

(B) Co-orientations around edges (B) Co-orientations around edges
can be deduced from the coorientations on the faces of the orientations on t
model tetrahedra.

Figure 2.3

- Viewing any model face (from the outside of the tetrahedron) the non-equatorial edge is followed, in anticlockwise order, by a red equatorial edge.
Suppose that t is a veering tetrahedron. If the two non-equatorial edges of t are both red (blue) then we call t a red (blue) fan tetrahedron. If the two non-equatorial edges of t have different colours then we call t a toggle tetrahedron. See Figure 2.4A for all four of the possible veering model tetrahedra. Note that the taut structure and the orientation of t determine the colouring of its equatorial edges.

Suppose now that \mathcal{T} is a transverse taut triangulation of M. Then \mathcal{T} is a transverse veering triangulation if there is a colouring of the edges of $|\mathcal{T}|$ making all of the model tetrahedra veering [1, Main construction], [12, Definition 1.3]. By the previous paragraph, when such a colouring exists it is unique. Also, if the colouring existsn then the orientations of the model tetrahedra of \mathcal{T} induce an orientation on M. The possible gluings between the various kinds of veering tetrahedra are recorded in Figure 2.4A.
2.5. Train tracks. For background on train tracks we refer to [15] as well as [19, Chapter 8]. Suppose that \mathcal{V} is a transverse veering triangulation. Suppose that f is a face of \mathcal{V}. Let t and t^{\prime} be the tetrahedra above and below f, respectively. We now define the upper and lower train tracks τ^{f} and τ_{f} in f. The upper track τ^{f} consists of one switch at each edge midpoint and two branches perpendicular to the edges [1, Figure 11]. The two branches meet only at the switch

Figure 2.4. In both subfigures, above and below we have toggle tetrahedra while left and right we have, respectively, blue and red fan tetrahedra. A black arrow indicates a possible gluing from an upper face of the initial tetrahedron to a lower face of the terminal. Note that fan tetrahedra of different colours never share a face. Finally, inside each tetrahedron t on the left (right) we draw the branched surface $B^{t}\left(B_{t}\right)$.
on the non-equatorial edge of t (the tetrahedron above f). The lower track τ_{f} is defined similarly, except the two branches now meet at the switch on the non-equatorial edge of t^{\prime} (the tetrahedron below f). We call the region immediately between the two branches, adjacent to the shared switch, a track-cusp. See Figure 2.6. Starting in Section ?? we also discuss slightly more general train tracks in slightly more general surfaces.

Fig:LowerTrack
(A) The two taut tetrahedra (above and below) adjacent to a face f.
(B) The upper train (C) The lower train
track $\tau^{f} . \quad$ track τ_{f}

Figure 2.6
2.7. Branched surfaces. We refer to [5, Section 6.3] for general background on branched surfaces.

Suppose that M is an oriented three-manifold equipped with a transverse veering triangulation \mathcal{V}. Suppose that t is a model tetrahedron of \mathcal{V}. The four faces $\left(f_{i}\right)$ of t contain their upper tracks τ^{i}. These form a graph in ∂t, transverse to the edges of t. This graph bounds a normal quadrilateral and also a pair of normal triangles [6, page 4]. We arrange matters so that the three normal disks meet only along the lower faces of t, so that they are transverse to the equatorial square of t, and so that the union of the normal disks is a branched surface, denoted B^{t}. We call B^{t} the upper branched surface in t. We define B_{t}, the lower branched surface in t similarly, using the lower tracks τ_{i} instead of the upper. We finally define $B^{\mathcal{V}}=\cup_{t} B^{t}$ and $B_{\mathcal{V}}=\cup_{t} B_{t}$ to be the upper and lower branched surfaces for \mathcal{V} in normal position. See Figure 2.9A.

We define the horizontal branched surface $B(\mathcal{V})$ to be the union of the faces of \mathcal{V}. Here we isotope the faces of \mathcal{V}, near their boundaries, to meet the one-skeleton of \mathcal{V} as shown in Figure 2.3B. The horizontal branched surface $B(\mathcal{V})$ is taut [13, page 374]; this explains the name taut ideal triangulations.

The branch locus $\Sigma=\Sigma(B)$ of a branched surface B is the subset of non-manifold points. Each component of $B-\Sigma$ is a sector of B. For $B^{\mathcal{V}}$ (and $B_{\mathcal{V}}$) a generic point of its branch locus is locally adjacent to exactly three sectors. The vertices of $B^{\mathcal{V}}$ (and $B_{\mathcal{V}}$) are the points of the branch locus locally meeting six sectors. Note that, since we have removed the zero-skeleton from $|\mathcal{V}|$, the horizontal branched surface $B(\mathcal{V})$ has no vertices [13, page 371].

We may move $B^{\mathcal{V}}$ into dual position by applying a small upward isotopy of $B^{\mathcal{V}}$. See Figure 2.9B. This done, every tetrahedron t of \mathcal{V} contains exactly one vertex of $B^{\mathcal{V}}$ and every face of \mathcal{V} contains exactly one point of the branch locus. We arrange matters so that the vertex of $B^{\mathcal{V}}$ in t is halfway between the lower edge and the equatorial square of t. Applying a small downward isotopy to $B_{\mathcal{V}}$ produces its dual position. We again arrange matters so that the vertex of $B_{\mathcal{V}}$ in t is halfway between the upper edge (of t) and the equatorial square.

Remark 2.8. In dual position, both $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are isotopic to the dual two-skeleton of \mathcal{V}. See [10, Remark 6.4].

We now restate [10, Corollary 6.12].
Lemma 2.10. Suppose that M is an oriented three-manifold equipped with a transverse veering triangulation \mathcal{V}. In the universal cover, every subray of every branch line of $\widetilde{B}^{\mathcal{V}}$ and of $\widetilde{B}_{\mathcal{V}}$, in dual position, meets toggle tetrahedra.

Figure 2.9. Two positions of the upper branched surface in a tetrahedron.

3. Dynamics

Suppose that M is a connected oriented three-manifold equipped with a riemannian metric. We follow Mosher [14, page 36] for the next two definitions.

Definition 3.1. A dynamic vector field X on M is simply a nonvanishing vector field. If M has boundary then we require X to be tangent to the boundary of M.

The dynamic vector field X gives us a local notion of upwards (the direction of X).

Definition 3.2. Suppose that M is a three-manifold and X is a dynamic vector field. Suppose that $B^{*} \subset M$ is a properly embedded branched surface. We say that B^{*} is a stable dynamic branched surface with respect to X if it has the following properties.

- For any point p of any sector of B^{*}, there is a tangent to the sector, at p, which makes a positive dot product with X. Choosing the largest such gives a vector field X^{*} on B^{*}. Integrating X^{*} gives the upwards semi-flow.
- X^{*} is transverse to the branch locus of B^{*} and points from the side with fewer sheets to the side with more sheets.
- X^{*} is never be orthogonal to the branch locus.

The only change needed to define an unstable dynamic branched surface B_{*} is that X_{*} points from the side with more sheets to the side with fewer.

Remark 3.3. The terms stable and unstable come from the fact that any pseudo-Anosov flow Φ leads to a pair of two-dimensional foliations [5, page 226]. These are the weak stable foliation F^{Φ} and the weak unstable foliation F_{Φ}. If L is a leaf of F^{Φ} then any two flow lines ℓ and ℓ^{\prime} in L

Cor: DualDynamizo§

Sec: DynamicPairs
242

are asymptotic in forward time. Finally, the stable branched surface B^{Φ} carries F^{Φ}.

Suppose that t is one of the four model transverse veering tetrahedra (shown in Figure 2.4). Let X_{t} be a non-vanishing vector field in t with the following properties.

- The vector field X_{t} is orthogonal to each face of t.
- Each orbit of X_{t} connects a lower face of t with an upper face.
- The branched surfaces B^{t} and B_{t} (in dual position) are stable and unstable with respect to X_{t}.
Now suppose that \mathcal{V} is a transverse taut veering triangulation. We define $X_{\mathcal{V}}$ by gluing together the vector fields X_{t}.

Corollary 3.4. The upper and lower branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ (in dual position) are, with respect to $X_{\mathcal{V}}$, stable and unstable dynamic branched surfaces.

4. DYnamic pairs

In this section, following Mosher [14, page 52], we give our definition of a dynamic pair of branched surfaces. This done, we discuss the main difficulties in proving Theorem 10.1.
4.1. Complementary components. Suppose that M is a connected oriented three-manifold equipped with a riemannian metric. Suppose that X is a dynamic vector field on M, as in Definition 3.1. Suppose that B^{*} and B_{*} are stable and unstable dynamic surfaces with respect to X. Suppose further that B^{*} and B_{*} meet transversely.
Definition 4.2. Suppose that C is a component of $M-\left(B^{*} \cup B_{*}\right)$. We call C a pinched tetrahedron if the closure of C (in the induced path metric on C) is a three-ball, which meets four triangles, with two belonging to $B^{*}-B_{*}$ and two belonging to $B_{*}-B^{*}$. We call these four triangles the faces of C. Each pair of faces meets in a simple arc; altogether these six arcs form the one-skelet one-skeleton of a tetrahedron. The two faces from $B^{*}-B_{*}$ meet in a single arc of the branch locus of B^{*}. Similarly, the two faces from $B_{*}-B^{*}$ meet in a single arc of the branch locus of B_{*}. See Figure 4.3A.

Definition 4.4. We call a foliation of (a three-dimensional region of) M horizontal if it is everywhere transverse to X, to B^{*}, and to B_{*}. 厄

The birth, life, and death of a pinched tetrahedron play out on the two-dimensional leaves of such a horizontal foliation.

Definition 4.5. Suppose that C is a pinched tetrahedron for B^{*} and B_{*}. Since C is simply connected, for the purposes of this definition we may assume that M is simply connected. Suppose that $\left(H_{s}\right)_{s \in \mathbb{R}}$ is a horizontal foliation of a ball in M containing C. As s increases, we move upwards, in the direction of X. Let $\tau^{s}=H_{s} \cap B^{*}$ and $\tau_{s}=H_{s} \cap B_{*}$ be the upper and lower tracks in H_{s} respectively. Let $C_{s}=C \cap H_{s}$. There are four special times $a<b<c<d$ as follows.

- At time a, the pinched tetrahedron C is born as a track-cusp of τ^{a} crosses an arc of τ_{a}, moving forwards.

f : DynamicTorusShel2b \emptyset

- For $s \in(a, b)$, the disk C_{s} is a green trigon. It has two sides and a track-cusp in τ^{s}. The remaining side is in τ_{s}.
- At time b, the track-cusp of τ^{b} (on the same branch line) crosses another arc of τ_{b}, still moving forward.
- For $s \in(b, c)$, the disk C_{s} is a quadragon. Its four sides alternate between τ^{s} and τ_{s}.
- At time c, a track-cusp of τ_{c} crosses an arc of τ^{c}, moving backwards.
- For $s \in(c, d)$, the disk C_{s} is a purple trigon. It has two sides and a track-cusp in τ_{s}. The remaining side is in τ^{s}.
- At time d, the pinched tetrahedron C dies as the track-cusp of τ_{d} (on the same branch line) crosses an arc of τ^{d}, still moving backwards.

Figure 4.3B shows $\tau^{s} \cup \tau_{s}$ for six representative generic heights.
Definition 4.6. Suppose that C is a component of $M-\left(B^{*} \cup B_{*}\right)$. We call C a dynamic torus shell if it is homeomorphic to $T^{2} \times(0,1)$. We require that for any ϵ the image of $T^{2} \times(0, \epsilon)$ in C is an end of M. The other end of C must have closure (in the path metric) homeomorphic to $T^{2} \times(1 / 2,1]$. The boundary of this must meet, in alternating fashion, annuli from $B^{*}-B_{*}$ and from $B_{*}-B^{*}$. The annuli from $B^{*}-B_{*}$ are the stable annuli of C while the annuli from $B_{*}-B^{*}$ are the unstable annuli of C. See Figure 4.7.

Figure 4.7. A section of an annulus or torus shell. The central grey cylinder represents an end of M.

Taking infinite degree covers of any dynamic torus shell yields (periodic) dynamic annulus shells and dynamic plane shells. More generally, such shells need not be periodic. This occurs only when neither B^{*} nor B_{*} is compact. There are two types of dynamic annulus shell. In one, the frontier is a bi-infinite alternating union of stable and unstable annuli. In the other, the frontier is a finite alternating union of stable

Itm:Transversalitay2

Itm:Transience@

Rem: ShellsMeente
and unstable strips of the form $[0,1] \times \mathbb{R}$. There is only one type of dynamic plane shell. Here the frontier is a bi-infinite alternating union of stable and unstable strips. Thus for any dynamic shell C, the components of the frontier (after cutting along $B^{*} \cap B_{*}$) are stable and unstable annuli or strips. These annuli or strips are the faces of the dynamic shell C.

Definition 4.8. Suppose that C is a complementary region. Suppose that F is an unstable face of C. The components of $F-B_{*}^{(1)}$ are called the subfaces of F. The subfaces of a stable face are defined similarly.

We are now equipped to give our definition of a dynamic pair.
Definition 4.9. We say that B^{*} and B_{*} form a dynamic pair if they satisfy the following.
(1) (Transversality): The branched surfaces B^{*} and B_{*} intersect transversely.
(2) (Components): Every component of $M-\left(B^{*} \cup B_{*}\right)$ is either a pinched tetrahedron or a dynamic shell.
(3) (Transience): For every component F of $B_{*}-B^{*}$ there is an unstable face $F^{\prime} \subset F$ of some dynamic shell so that F^{\prime} is a sink for the vertical semi-flow restricted to F. The corresponding statement also holds for $B^{*}-B_{*}$.
(4) (Separation): No distinct pair of subfaces of dynamic shells are glued in M.

Definition 4.10. Suppose that B^{*} and B_{*} form a dynamic pair. Then we define the dynamic train track to be the intersection $B^{\mathcal{V}} \cap B_{\mathcal{V}}$.

Remark 4.11. Dynamic shells (and pinched tetrahedra) may meet each other or themselves along intervals of the dynamic train track. For an example, see Figure 9.12.

Our Definition 4.10 is taken directly from [14, page 54]. Note that our Definition 4.9 is more restrictive than Mosher's [14, page 52]. Mosher allows dynamic shells to meet along subfaces while we do not. He also allows solid torus pieces. We do not require (or allow) solid torus pieces in the cusped case. In the closed case they are necessary; we deal with this as follows.

Remark 4.12. Suppose that γ is a curve in T, a torus boundary component of M. Suppose that C is a torus shell containing T. Suppose that γ meets the dynamic train track (projected from C to T) at least four times. Then Dehn filling M along γ converts C into a solid torus piece $C(\gamma)$. After filling all torus boundary components we arrive at the closed case.

The branched surfaces of a dynamic pair are positioned so as to mimic the relative positions of the stable and unstable foliations of a pseudo-Anosov flow. The transversality of the foliations implies that the branched surfaces should be transverse, and also should not have various kinds of "bigon regions".
4.13. The naive push-off. As noted in Remark 1.1, in normal position the branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ coincide in (at least) all normal quadrilaterals in all fan tetrahedra. To try and fix this, we choose orientations on the edges of $\mathcal{V}^{(1)}$. We then push $B_{\mathcal{V}}$ slightly in the directions of the edge orientations and pull $B^{\mathcal{V}}$ slightly against them. We call this pair of isotopies the naive push-off. In Examples 4.15 and 4.16 we see that this sometimes works and sometimes does not. The way in which the naive push-off fails is instructive; as noted in Remark 1.1 the obstructions are non-local.

Figure 4.14. Canonical triangulations of the figure-eight knot complement and its sibling. Each column shows three slices: the upper and lower faces of, and an equatorial square through, one of the tetrahedra. In the figure-eight knot complement, $B^{\mathcal{V}}$ (green) and $B_{\mathcal{V}}$ (purple) have been naively pushed off each other to produce a dynamic pair. In the sibling, this does not work.

Example 4.15. In Figure 4.14A we draw an exploded view of the veering triangulation on the figure-eight knot complement, as previously introduced in Figure 2.2. The upper and lower train tracks are the result of intersecting $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ with the faces and equatorial squares of the veering tetrahedra. The naive push-off keeps the dynamic branched surfaces dual to the horizontal branched surface $B=B(\mathcal{V})$ and makes them transverse to each other. Note that no pair of train tracks in any horizontal cross-section form a bigon.

In fact, the push-off makes $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ into a dynamic pair. Parts (1) and (4) of Definition 4.9 can be checked cross-section by cross-section. For part (2), we have labelled cross-sections through the four pinched tetrahedra A_{i} through D_{i}, with subscripts indicating the vertical order. One must check that as we move vertically through the manifold, the sections through the regions assemble to form pinched tetrahedra (see Figure 4.3B) and dynamic torus shells. Note that in Figure 4.14A, as we move downwards from the middle section to the bottom of the two tetrahedra, regions C_{1} and D_{1} go from being quadragons to being green trigons (and then disappear), but the trigonal stage is not shown. Part (3) must be checked by hand.

Example 4.16. Consider the veering triangulation on the figure-eight knot sibling, shown in Figure 4.14B. Again we push $B_{\mathcal{V}}$ in the direction of the orientations of the edges; this time bigons appear in several of the horizontal cross-sections. In fact there is no orientation of the edges that leads to a dynamic pair via the naive push-off. This is because the mid-surface for the figure-eight knot sibling is not transversely orientable. For more details see Remark 5.30.

Even if it works, the naive push-off requires making a choice. Thus the resulting dynamic pair is not canonically associated to the initial veering triangulation.

Instead of simply isotoping the branched surfaces horizontally, we will try to "split" them closer to the stable and unstable foliations of the hypothesised pseudo-Anosov flow. To control these splitting isotopies, we must define various decompositions of M (in Sections 5 and 6). We then describe a sequence of isotopies, of each of $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$, through the new decompositions (in Sections 7, 8, and 9).

5. Shearing Regions, mid-bands, and the mid-surface

Here we give a decomposition of a veering triangulation into a canonical collection of shearing regions. Each of these is either a solid torus or a solid cylinder. We use these to define the mid-bands and the mid-surface.

earingDecomposition

Def:IdealSolizd

Def:TautSolizd§

Def:ShearingRegions

5.1. Shearing regions.

Definition 5.2. An ideal solid torus U is a solid torus $D^{2} \times S^{1}$, together with a non-empty discrete subset of $\left(\partial D^{2}\right) \times S^{1}$, called the ideal points of U. We define an ideal solid cylinder in similar fashion, replacing S^{1} by \mathbb{R}.

Definition 5.3. A taut solid torus (cylinder) U is a ideal solid torus (cylinder) decorated with a paring locus γ containing all of the ideal points of U. The paring locus is a multi-curve $\gamma=\gamma(U)$ meeting every meridional disk exactly twice. There is at least one ideal point on every component of γ. A taut solid torus U has a mid-band B; this is either an annulus or a Möbius band, properly embedded in U and disjoint from γ. The mid-band of a taut solid cylinder is instead a strip, $[0,1] \times \mathbb{R}$. In all cases, every boundary compression of the mid-band is required to meet the pairing locus.

Definition 5.4. A transverse taut solid torus (cylinder) U is a taut solid torus (cylinder) where $\partial U-\gamma$ has two components, called the upper and lower boundaries $\partial^{+} U$ and $\partial^{-} U$. These are equipped with transverse orientations that point out of and into U, respectively. Note that all taut solid cylinders can be equipped with such an orientation.

In a transverse taut solid torus the mid-band is necessarily an annulus. In a taut solid cylinder it is necessarily a strip.

Definition 5.5. A shearing region U is a taut solid torus or cylinder, together with a colour (red or blue) and a squaring of $\partial U-\gamma$, with vertices at the ideal points. All edges contained in the paring locus γ are the opposite colour to U and are called longitudinal. All edges not in γ are the same colour as U and are called helical. The helical edges form a helix that spirals right or left (as U is red or blue); the helix meets every meridional disk exactly once, transversely. We give the mid-band $B \subset U$ the same colour as U itself.

See Figure 5.6 F for the local model of a red shearing region.
Definition 5.7. Suppose that \mathcal{U} is a collection of model shearing regions. Let $\mathcal{U}^{(0)}$ be the union of the ideal points. Suppose furthermore that the shearing regions are glued along all of their squares, respecting the colours of edges and so that every edge has exactly two helical models. We call \mathcal{U} a shearing decomposition of $\left|\mathcal{U}-\mathcal{U}^{(0)}\right|$. The decomposition is called transverse if all of the shearing regions in \mathcal{U} are transverse, and the gluings respect the transverse orientations on the squares.

Figure 5.6. Top and side views of the construction of a red shearing region.

Suppose that \mathcal{V} is a veering triangulation (not necessarily transverse or finite). Recall from Section 2 that there are blue and red fan tetrahedra as well as toggle tetrahedra. Cutting a veering tetrahedron along its equatorial square results in a pair of half-tetrahedra; see Figure 5.6B. In every half-tetrahedra there is a unique (up to isotopy) half-diamond: this is a triangle, properly embedded in the half-tetrahedron, meeting only the edges of the colour of the π-edge, and those only exactly once at each midpoint. We give a half-diamond the colour of the edges it meets. See Figure 5.8. We arrange matters so that the two half-diamonds in a fan tetrahedron meet along their bases, and so form a full diamond. The two half-diamonds in a toggle t meet in exactly one point: the center of the equatorial square of t. For each half-diamond in a toggle, we colour in black all (but a small neighbourhood of the vertices) of its intersection with the equatorial square. We call this arc the boundary

Figure 5.8. Diamonds and half-diamonds. Each half-diamond in a toggle

Fig:HalfDiamonds

Fig:LineField
earingDecompositiond
arc of the half-diamond. (In Definition 5.25, the union of the boundary arcs will give the boundary of the mid-surface.) Again, see Figure 5.8.
 has a boundary arc, shown here in black.

Figure 5.9. In Figure 5.9A we see adjacent half-diamonds in a veering triangulation. In Figure 5.9B we see an unpleasant possibility for adjacent half-diamonds in a taut triangulation.

Theorem 5.10. Suppose that \mathcal{V} is a veering triangulation (not necessarily transverse or finite). Then there is a shearing decomposition of M canonically associated to \mathcal{V}.
Proof. Suppose that t is a half-tetrahedron and d is its half-diamond. Fix a vertical line field on d as shown in the left-most half-diamond of Figure 5.9A. Let f and f^{\prime} be the triangular faces of t. The colour of d is the majority colour of the edges of t. Thus the colour of t and d matches the majority colour of both f and f^{\prime}. Suppose that t is glued to another half-tetrahedron, t^{\prime}, across f^{\prime}. Let d^{\prime} be the half-diamond of t^{\prime}. Thus d^{\prime} and d have the same colour.

Note that the π-edges of t and t^{\prime} are distinct edges of the model face f^{\prime}. (This follows from the definition of a veering triangulation: see Figure 2.6A.) Thus, as shown in Figure 5.9A, we can locally extend the vertical line field on d, through f^{\prime}, to d^{\prime}. See Figure 5.6E. Let $f^{\prime \prime}$
be the other triangular face of t^{\prime}. Continuing in this fashion in both directions, we obtain a shearing region. The union of the half-diamonds is the mid-band. See Figure 5.11.

Figure 5.11. A red shearing region, with embedded mid-band. The boundary arc of the toggle half-diamond is drawn in black.

Fig:SolidTorus

Rem:Fractionatbs

We give examples of mid-bands in Figures 5.12 and 5.13. These are taken from the veering census [11].
Remark 5.14. If \mathcal{V} is transverse then the half-tetrahedra in a shearing region alternate between being the upper and lower halves of tetrahedra. That is, the transverse structure on \mathcal{V} induces a transverse structure on the associated shearing decomposition.
Remark 5.15. Suppose that \mathcal{V} is a finite veering triangulation. We may interpret each shearing solid torus as a fractional Dehn twist. A transverse structure on \mathcal{V} equips M with an "upwards" dynamical system. Thus the shearing decomposition (canonically) factors the system as a product of fractional Dehn twists.
Question 5.16. Let $\gamma(U)$ be a core curve for the shearing region U. Performing certain Dehn fillings along $\gamma(U)$ produces new veering triangulations; see [16] and also [21, Definition 4.1]. Let $\gamma(\mathcal{V})$ be the union of the curves $\gamma(U)$.

Fig:eLMkbcddddedde m004.

Fig:gLLAQbecdffffhhnkqnc
(c) gLLAQbecdfffhhnkqnc_120012, s227.

Figure 5.12. For each example we draw the mid-annuli above and then, in one column per tetrahedron, its upper and lower faces. Drawn on the faces are the intersections with $B^{\mathcal{V}}$ and $B^{\mathcal{V}}$ after the straightening isotopy. See Figures 7.6, 7.7, and 7.8.

Suppose that U and V are a pair of regions. Suppose that the upper boundary of U equals the lower boundary of V. That is, suppose that

Figure 5.13. A veering triangulation for m 115 from the SnapPea census [8]. This is fLLQccecddehqrwjj_20102 in the census of transverse veering triangulations [11]. As in Figure 5.12, we show the mid-annuli above and the tetrahedron faces below.
$\partial^{+} U=\partial^{-} V$. Then $\gamma(V)$ is parallel to $\gamma(U)$; accordingly we delete $\gamma(V)$ from $\gamma(\mathcal{V})$.

Now $\gamma(\mathcal{V})$ is a link canonically associated to M and \mathcal{V}. What are the geometric properties of $M-\gamma(\mathcal{V})$?

Sec:Crimping
5.17. Crimping. Shearing regions give more global coordinates than do individual tetrahedra. Moreover, the interiors of shearing regions are standardised. Here we introduce the crimped shearing decomposition of M. This ensures that the union of the shearing regions of a fixed colour is a manifold (with various inward and outward paring loci) containing all of the edges of that colour. One dimension down, crimping improves the way that the red (blue) mid-bands meet. After crimping, their union is the mid-surface $\mathcal{S}_{R}\left(\mathcal{S}_{B}\right)$. Crimping is similar to the process of folding, in a train track, all switches with both in- and out-degree bigger than one.

The crimped shearing decomposition is obtained from the shearing decomposition (Theorem 5.10) as follows.

Definition 5.18. Let $E(\mathcal{V})$ be the union of the equatorial squares of all tetrahedra. Thus $E(\mathcal{V})$ is a branched surface. Accordingly we call $E(\mathcal{V})$ the equatorial branched surface.

Figure 5.19. Top row: an edge $e \in \mathcal{V}^{(1)}$ before and after crimping on the right. No crimping is required on the left. Bottom row: Both sides are crimped. The veering edges are drawn in red, the crimped edges are drawn in grey, and the boundary arcs are drawn in black. The neighbourhoods $N_{r}(e)$

Fig:Crimping and $N_{\ell}(e)$, and the crimped rectangles are shaded red.

Note that an edge $e \in \mathcal{V}^{(1)}$ lies in the branch locus of $E(\mathcal{V})$ if and only if the degree of $e($ in $E(\mathcal{V})$) is at least three. Suppose that there are at least two squares to the right of e. Let $N_{r}(e)$ be a collar neighbourhood to the right side of e, taken inside of $E(\mathcal{V})$. (We choose the size of the collar neighbourhood so that it meets the boundary arcs of the relevant half-diamonds each in a single point.) So $N_{r}(e)$ contains e and a rectangle for every equatorial square to its right. See Figure 5.19 (upper left) for pictures of a possibility for $N_{r}(e)$. We define $N_{\ell}(e)$ similarly, again when there are at least two squares to the left of e. Again see Figure 5.19 (lower left). We form the crimped equatorial branched surface $E_{c}(\mathcal{V})$ by crimping edges, as follows.

- Fold together all rectangles in $N_{r}(e)$ to obtain a single rectangle; do the same to the right collar $N_{\ell}(e)$.
After crimping, as needed, the right and left of every edge, the veering edges of $\mathcal{V}^{(1)}$ are disjoint from the branch locus of $E_{c}(\mathcal{V})$. Also, there are no vertices in $E_{c}(\mathcal{V})$. Thus we call the components of $E_{c}^{(1)}(\mathcal{V})$ crimped
edges. Each crimped edge meets an endpoint of each of two boundary arcs. See Figure 5.19 (right) for pictures of possibilities for $E_{c}(\mathcal{V})$.

Suppose that we had to crimp the right side of e. That is, before crimping, $N_{r}(e)$ contained two or more rectangles. Then, after crimping, there is a single crimped rectangle between e and the crimped edge immediately to the right of e. In our figures we will always colour the crimped edges in grey. Since we draw pictures in the cusped manifold, we will refer to the crimped rectangle as a crimped bigon.

Crimping moves the equatorial square of a toggle tetrahedron into $E_{c}(\mathcal{V})$. There it is subdivided, by the crimped edges, into four crimped bigons and one toggle square.
Definition 5.20. For each corner of each toggle square we take a very small (three-dimensional ball) neighbourhood; this is the station associated to that corner. The station is divided into two regions. These are

- an even small smaller neighbourhood of the corner, called the platform, and
- the station minus the platform, called the yard.

The two boundary arcs (of the mid-surface) in the toggle tetrahedron lie inside of the toggle square. They end at the midpoints of the crimped edges and divide the toggle square into four symmetric regions. See Figure 5.21 A . The veering hypothesis implies that a crimped bigon meets, along its crimped edge, exactly two toggle squares: one at the top and one at the bottom of a stack of fan tetrahedra. Similarly, the equatorial square of a fan tetrahedron is subdivided into two crimped bigons and one fan square. See Figure 5.21b.

We define the (closures taken in the path metric of) components of $M-E_{c}(\mathcal{V})$ as crimped shearing regions. See Figure 5.22. Let U be a model crimped shearing region. As before, we write $\partial^{+} U$ and $\partial^{-} U$ for the upper and lower boundaries of U. Suppose that e and e^{\prime} bound a crimped bigon B with $e \in \mathcal{V}^{(1)}$ and e^{\prime} a crimped edge. If B lies in either $\partial^{+} U$ or $\partial^{-} U$ then we say that e and e^{\prime} are helical for U. If $B \cap U=e^{\prime}$ then we say that e and e^{\prime} are longitudinal for U. Note that $\partial^{+} U \cap \partial^{-} U$ is the collection of longitudinal crimped edges for U.

As before, we assign U the colour of its helical edges. This colour is opposite to that of each edge of $\mathcal{V}^{(1)}$ that is parallel, across a crimped bigon, to the longitudinal crimped edges of U.

Within U, we replace each triangle of the original triangulation with a corresponding crimped triangle. The sides of each crimped triangle consist of two helical edges, one on $\partial^{+} U$ and one on $\partial^{-} U$, and a single longitudinal crimped edge.

Figure 5.21. The toggle square has four adjacent crimped bigons, the fan square has two. Here we draw the boundary arcs (of the half diamonds immediately above and below) on the toggle square in black. The crimped edges are drawn in dashed grey. The corners of the toggle square are contained in their associated stations which are here represented as grey dots.

(A) View from the side.

Fig:CrimpedShearingF
(в) View from above, with the mid-band.

Figure 5.22. A crimped red solid torus, and incident blue crimped bigons. The crimped edges are drawn in grey and meet the boundary arc in its endpoints.

Def:Monochromatis58

ComponentBoundariess

The union of the crimped shearing regions is again homeomorphic to M; together they form the crimped shearing decomposition of M.

Definition 5.23. The union of the red crimped shearing regions is the red part of the crimped shearing decomposition. A connected component of the red part is a red component. We define the blue part and blue components similarly.

Each red component is a handlebody with inward and outward paring loci. The red part contains all of the red edges of $\mathcal{V}^{(1)}$. Furthermore, its material boundary is the union of the toggle squares. Analogous statements are true for blue components and the blue part.
5.24. The mid-surface. The mid-bands sit within the crimped shearing regions in exactly the same way that they sat within the original shearing regions. See Figure 5.22B. We may now glue the mid-bands to each other along their boundaries obtain a surface.

Definition 5.25. The union of the red mid-bands in the red part gives the red mid-surface \mathcal{S}_{R}. We build the blue mid-surface \mathcal{S}_{B} in a similar fashion. We define the mid-surface to be $\mathcal{S}=\mathcal{S}_{R} \cup \mathcal{S}_{B}$.

Note that each component of \mathcal{S}_{R} sits inside, and is a deformation retract of, a red component of the crimped shearing decomposition. In particular, \mathcal{S}_{R} meets all red edges but no blue edges. A similar statement holds for \mathcal{S}_{B}. Each boundary arc of \mathcal{S}_{R} meets precisely one boundary arc of \mathcal{S}_{B}; these intersect in a single point at the center of the corresponding toggle square. Lemma 2.10 implies the following.

Corollary 5.26. Every diagonal path in the mid-surface eventually meets a toggle tetrahedron. In particular, every component of \mathcal{S}_{R} and of \mathcal{S}_{B} has at least one boundary component.

Example 5.27. In Figure 5.13 the red mid-surface has two diagonal paths, both traversing two half-diamonds. The blue mid-surfaces also has two diagonal paths, one traversing six half-diamonds and the other traversing ten.

Every boundary component of the mid-surface runs alternatingly along boundary arcs contained in the upper and lower boundaries of crimped shearing regions. In Figures 5.12 and 5.13 we give several examples; the boundary arcs are indicated by thick black lines. In Figure 5.12A both mid-surfaces are once-holed tori; each boundary component of each mid-surface consists of two boundary arcs. In Figure 5.12 B both mid-surfaces are copies of $N_{3,1}$: the non-orientable
surface with one boundary component and three cross-caps. In Figure 5.12C both mid-surfaces are copies of $N_{2,1}$: the once-holed Klein bottle. (This last was the first example of a non-fibered veering triangulation; see [12, Section 4].) Finally, in Figure 5.13 the mid-surfaces are a pair of once-holed Klein bottles, with one having greater area than the other.

Remark 5.28. Mid-surfaces also allow one to see the walls of a veering decomposition, as defined by Agol and Tsang [2, Definition 3.3]. For example, in Figure 5.13 there is a wall of width three consisting of the tetrahedra 4 and 1.
5.29. Labelling the mid-surface. We now describe the labelling scheme for the mid-surfaces used in the census [11]. This is useful when drawing pictures and discussing examples. Suppose that \mathcal{V} is a finite transverse veering triangulation. We number the tetrahedra, the faces, the edges, and the vertices of the tetrahedra using the conventions from Regina [3]. Regina also provides us with orientations for the edges of $\mathcal{V}^{(1)}$; we will alter these to make them agree, as much as possible, with transverse orientations of mid-annuli.

We give four examples in Figures 5.12 and 5.13. For each example, we draw its mid-annuli and, in one column per tetrahedron, the upper and lower faces for each tetrahedron (viewed from above). On each face we draw the upper (green) and lower (purple) train tracks. (Where these intersect, the intersection is coloured grey.)

In order to draw a mid-band $A=A(U)$ we choose a transverse orientation for it; this then induces a transverse orientation on each half-diamond d of A. In the examples of Figures 5.12 and 5.13 the mid-bands are all annuli and the transverse orientation points into the page.

We label the vertices, edges, and face of the half-diamond d as follows.

- Suppose that v is a vertex of d. We label v with the number of the edge e in $\mathcal{V}^{(1)}$ which contains v. Note that e is helical for U. We append this number with one of the symbols from $\{\cdot, \mathrm{x}\}$. The x means that the orientation of e agrees with the transverse orientation on d; the dot means the opposite. (The x represents the fletching of an arrow, while the dot represents the arrowhead.)
- Suppose that ϵ is a diagonal edge of d. We label ϵ with the number of the face f in $\mathcal{V}^{(2)}$ which contains ϵ; we place the label at the midpoint of ϵ. The vertices of ϵ are already labelled with the numbers of two of the three edges of f. Let e be the third edge of f. Note that e is longitudinal for U. We draw a small
copy of e on top of ϵ and label the copy with the number of e (in the other colour, and using a smaller font). Note that ϵ and e cobound a rectangle in f; we use this rectangle to transport the orientation of e to ϵ. Finally, we draw the arrow dotted or solid as the transverse orientation on d points towards or away from e. (That is, as drawn in Figure 5.12, the edge e is behind or in front of A.)
- Suppose that ϵ is the base of a half-diamond d. If d lies in a toggle then we draw a thick black line on ϵ, to indicate the boundary arc on d.
- Finally, we label d itself with the number of the tetrahedron that contains d.

Suppose that A and B are mid-annuli. Let $\partial^{-} A$ be the lower boundary of A, minus the open boundary arcs. Thus $\partial^{-} A$ is either a single line, a single circle, or a collection of intervals and at most two rays. We define $\partial^{+} B$ similarly. Suppose that A and B are glued to each other, say with a component γ of $\partial^{-} A$ meeting a component of $\partial^{+} B$. (It is also possible for A, say, to be glued to itself.) We call the gluing γ untwisted or twisted exactly as it does or does not faithfully transport the chosen transverse orientation on A to the one on B.

In Figures 5.12 and 5.13 we indicate a twisted gluing by drawing a small black circle about all vertices of the affected boundary circle or sub-arc. In our examples in Figure 5.12 we have chosen the transverse orientations of the mid-annuli so as to minimize the number of half-twists required.

Remark 5.30. If all gluings are untwisted then the mid-surface is transversely orientable and thus orientable. Conversely, if the mid-surface is orientable then there is a choice of transverse orientations for the midbands that ensures that all gluings are untwisted. The naive push-off discussed in Section 4.13 should produce a dynamic pair when and only when the mid-surface is orientable.

Thus, if one is willing to pass to a double cover, then there should be edge orientations making the naive push-off work. However this push-off will not be invariant under the deck transformation.

6. Bigon coordinates

In this section we place a coordinate system on the crimped shearing regions (introduced in Section 5.17). We also give a refinement of the crimped shearing decomposition of M and introduce the horizontal cross-sections.

Let B be a coordinate bigon: a oriented disk with two marked points x and y in its boundary. The points x and y are the corners of B. We equip ∂B with the induced orientation. The two arcs of $\partial B-\{x, y\}$ are denoted by $\partial^{+} B$ and $\partial^{-} B$ respectively. We arrange matters so that $\partial^{+} B$ is the arc running from y to x.

We equip B with a pair of transverse foliations: the horizontal arcs all meet both corners while the vertical arcs all meet $\partial^{+} B$ and $\partial^{-} B$. We orient the former from x to y and the latter from $\partial^{-} B$ to $\partial^{+} B$. See Figure 6.1A.

We subdivide B into a pair of sub-bigons called θ^{B} (upper) and θ_{B} (lower). These are shown in Figure 6.1B.

Fig:BigonRegions

Figure 6.1

Recall that M is oriented and \mathcal{V} is transverse veering. Suppose that U is a model crimped shearing region. Thus U inherits an orientation and, by Remark 5.14, a notion of "upwards". We now choose a homeomorphism h between U and $B \times S^{1}$ or $B \times \mathbb{R}$, as U is a solid torus or cylinder. We require that h preserve the various orientations. In particular, the upper boundary of B must be sent to the upper boundary of U by h. We call h the bigon coordinates for U.

Let Θ^{U} be the image of $\theta^{B} \times S^{1}$ (or $\theta^{B} \times \mathbb{R}$) in U. We define Θ_{U} similarly. Note that the upper boundaries of U and Θ^{U} agree, as do the lower boundaries of U and Θ_{U}. That is, $\partial^{+} U=\partial^{+} \Theta^{U}$ and $\partial^{-} U=\partial^{-} \Theta_{U}$. Also, we have $\partial^{-} \Theta^{U}=\partial^{+} \Theta_{U}$. We take $\Theta^{\mathcal{V}} \subset M$ to be the union of the Θ^{U}, taken over all model crimped shearing regions and then projected to M. We define $\Theta_{\mathcal{V}}$ similarly. The interiors of $\Theta^{\mathcal{V}}$ and $\Theta_{\mathcal{V}}$ are disjoint and their union is M; this is the Θ-decomposition.

Remark 6.2. Suppose that U is a blue shearing region. We arrange the metric in U (coming from bigon coordinates) to ensure the following.
(1) In the induced coordinates on $\partial^{+} U$ the (pullbacks of the) blue edges of $\mathcal{V}^{(1)}$ are straight and, when viewed from above, have

Def:CrossSectiong

717
718
719
720
721
722
723
724
725
726
727
728
729
slope $\sqrt{3}$. Similarly, the blue edges in $\partial^{-} U$ are straight and, when viewed from above, have slope $-\sqrt{3}$.
(2) For any toggle square S in $\partial^{ \pm} U$ its corners are very slightly more than one-quarter of the way along the adjacent longitudinal crimped edges.
(3) For $p \in U$ we take $B(p, U)$ to be the coordinate bigon in U containing p. Then the two notions of vertical (coming from the coordinate bigons $B(p, U)$ and the transverse veering structure) agree. Furthermore, the intersection of the mid-band $A(U)$ with any $B(p, U)$ is the central vertical arc of the latter.
See Figure 5.22 . We similarly give bigon coordinates to red model crimped shearing regions.

We use the following notations for the various coordinate arcs and surfaces in bigon coordinates.
Definition 6.3. Suppose that U is a model crimped shearing region. Fix $p \in U$.

- As above, $B(p, U)$ is the coordinate bigon containing p.
- Let $x(p, U)=p \times S^{1}(p \times \mathbb{R})$ be the horizontal circle (line) in U through p.
- Let $y(p, U)$ be the leaf of the horizontal foliation of $B(p, U)$, through p.
- Let $z(p, U)$ be the leaf of the vertical foliation of $B(p, U)$, through p.
- Let $Y(p, U)$ be the union of the leaves $z(q, U)$ as q ranges over $x(p, U)$. We call $Y(p, U)$ the vertical band in U through p.
- Let $Z(p, U)$ be the union of the leaves $x(q, U)$ as q ranges over $y(p, U)$. We call $Z(p, U)$ the (horizontal) cross-section in U through p.
- Finally, we define $X(p, U)=B(p, U)$.

Note that the upper and lower boundaries of Θ^{U} and Θ_{U} are horizontal cross-sections.

7. Straightening and Shrinking

Here we define the straightening and shrinking isotopies. These are applied to the upper and lower branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$, respectively. These isotopies are local: in each tetrahedron they (and the resulting shrunken position) depend only on the combinatorics of that tetrahedron and its immediate neighbours.

We start in dual position (shown in Figure 2.9B). We straighten the branched surfaces to move as many sectors as possible into the

741

:PictureConventiorrs \oint

Rem:TangentsShearnd
mid-surface \mathcal{S}. We shrink the branched surfaces to move vertices of $B^{\mathcal{V}}$ down into $\Theta_{\mathcal{V}}$ and those of $B_{\mathcal{V}}$ up into $\Theta^{\mathcal{V}}$.

We now describe in detail the upper straightening and shrinking isotopies of $B^{\mathcal{V}}$. The corresponding lower isotopies of $B_{\mathcal{V}}$ are defined similarly.
7.1. Straightening. First, we straighten: beginning from dual position (shown in Figure 2.9B) in a fan tetrahedron t, we move the sectors of B^{t}, meeting the majority colour edges, to coincide with the two half-diamonds of t. In a toggle tetrahedron t, we move the sectors of B^{t}, meeting the edges of the same colour as the uppermost edge, to contain the upper half-diamond of t.

The resulting position of B^{t}, in the various crimped half-tetrahedra, is shown in Figures 7.6, 7.7, and 7.8. Each figure has a 180° symmetry about its central vertical axis. We give a global picture of the result in Figure 7.10.

Remark 7.2. In our pictures of cross-sections we shade (in grey) all toggle squares. Along a branch interval of $B^{\mathcal{V}}$ within a crimped solid torus, track-cusps are labelled with the same letter. As we move from an upper boundary to a lower the labels, on track-cusps of B^{ν}, advance by one letter. Track-cusps of $B_{\mathcal{V}}$ are indicated with small triangles.

Remark 7.3. In Figure 7.10 the upper boundary of the blue crimped solid torus U is glued to the lower boundary of U along the fan squares, by a 180° rotation and a (left) shear. As a result, the blue helical veering edges and the red longitudinal veering edges (adjacent to fan squares) match on the top and bottom of U. The red longitudinal veering edges adjacent to the toggle squares do not match. This is because they are glued to the red crimped solid torus V. The upper and lower boundaries of V are also glued, by a 180° rotation and a (right) shear, along the red crimped bigons.

Remark 7.4. Suppose that U is a crimped shearing region. Suppose that H and K are $\partial^{-} U$ and $\partial^{+} U$. Let τ^{H} and τ^{K} be the intersections of $B^{\mathcal{V}}$ with H and K. So τ^{H} and τ^{K} are train tracks. We arrange matters so that τ^{H} meets longitudinal crimped (helical veering) edges of H with a tangent vector which is parallel to the helical veering (longitudinal crimped) edges of H. We do the same for τ^{K}. This ensures that tangent vectors match up when sheared by the gluing maps (as in Remark 7.3).

Suppose that H_{s} parametrises the cross-sections of U, with $H_{0}=H$ and $H_{1}=K$. As s increases from 0 to 1 , the tangent vectors of branches meeting longitudinal crimped edges shear. See Figure 7.10.

Fig:UpperHalfTet

Fig:LowerHalfFan

StraightenedDynami783
784

Sec:Shrinking

Remark 7.5. Observe that all vertices of $B^{\mathcal{V}}$ now lie along the central curve of the middle cross-sections of the crimped shearing regions. (That is, inside of $\partial^{-} \Theta^{\mathcal{V}}=\partial^{+} \Theta_{\mathcal{V}}$.)

Figure 7.6. Straightened B^{t} in an upper half-tetrahedron (either toggle or fan).

(A) Three-quarter view.

(B) Top view.

Figure 7.7. Straightened B^{t} in a lower half-tetrahedron (fan).

Remark 7.11. As noted in Corollary 3.4 the branched surface $B^{\mathcal{V}}$, when in dual position, is dynamic. Straightening makes parts of $B^{\mathcal{V}}$ vertical. However, the branch locus remains transverse, and not orthogonal, to vertical. Thus the straightened $B^{\mathcal{V}}$ is again dynamic.
7.12. Shrinking. Next we shrink: in each crimped shearing region U, we form a very small collar Γ^{U} of $\partial^{+} U$, obtained as a union of horizontal cross-sections $Z(p, U)$. Note that Γ^{U} is disjoint from the vertices of $B^{\mathcal{V}}$. We now move $B^{\mathcal{V}}$ by a proper isotopy of U which preserves x and y coordinates (in bigon coordinates) and permutes the cross-sections

Figure 7.8. Straightened B^{t} in a lower half-tetrahedron (toggle).

Figure 7.9. Straightened $B^{\mathcal{V}}$ in a crimped shearing region.
$Z(p, U)$. The isotopy carries the bottom of Γ^{U} downwards to $\partial^{-} \Theta^{U}$ and evenly redistributes the cross-sections below Γ^{U} inside of Θ_{U}.

Before the isotopy, $B^{\mathcal{V}}$ was transverse to the equatorial squares. After the isotopy, $B^{\mathcal{V}}$ is almost vertical in all of Θ^{U}. The intersections of $B^{\mathcal{V}}$

Figure 7.10. The intersection of $B^{\mathcal{V}}$ (and $B_{\mathcal{V}}$), after straightening, with various horizontal cross-sections of the crimped shearing decomposition of fLLQccecddehqrwji_20102. Compare with Figure 5.13. We indicate the position of track-cusps with letters or small triangles; sometimes we use a "whisker" pointing from a letter or triangle to the track-cusp itself.

796 with $\partial^{+} U$ and $\partial^{-} U$ are unchanged by the shrinking isotopy. Note that 797 the shrinking isotopy maintains the 180° symmetry of the branched 798 surfaces B^{t}. In Figure 7.13 we show the intersection of the shrunken $799 B^{\mathcal{V}}$ (and $B_{\mathcal{V}}$) with various horizontal cross-sections.

Figure 7.13. The intersection of $B^{\mathcal{V}}$ (and $B_{\mathcal{V}}$), after shrinking, with various horizontal cross-sections of the crimped shearing decomposition of fLLQccecddehqrwjj_20102. Compare with Figure 7.10.
runkenTangentsSheæod

Rem: ShrunkenDynamisoz

Remark 7.14. Note that the shearing of tangent vectors, as in Remark 7.4, now occurs in $\Theta_{\mathcal{V}}$ for $B^{\mathcal{V}}$ (and in $\Theta^{\mathcal{V}}$ for $B_{\mathcal{V}}$).

Remark 7.15. Shrinking permutes cross-sections; thus by Remark 7.11 the shrunken branched surface B^{ν} is again dynamic.

8. Parting

Here we define the parting isotopies. These are applied to the upper and lower branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$, respectively. These isotopies are again local: in each tetrahedron they (and the resulting parted position) depend only on the combinatorics of that tetrahedron and its immediate neighbours.

We now concentrate on $B^{\mathcal{V}}$. We start in shrunken position (shown in Figure 7.13). In each cross-section of $\Theta^{\mathcal{V}}$, and near each crimped edge, we will move $B^{\mathcal{V}}$ towards the correct station (corner) of the relevant toggle square. We also will isotope branches of B^{ν} in cross-sections of $\Theta^{\mathcal{V}}$ to be (almost) line segments (in bigon coordinates). As in shrunken position, the parted position of $B^{\mathcal{V}}$ in $\Theta^{\mathcal{V}}$ will almost be a product.

This done, we will move $B^{\mathcal{V}}$ carefully downward in $\Theta_{\mathcal{V}}$. This makes the intersection of $B^{\mathcal{V}}$ with the cross-sections into a sequence of train tracks as follows. As they move up through $\Theta_{\mathcal{V}}$ they first perform a neighbourhood splitting where track-cusps move along their parting routes. They next perform a graphical isotopy where the track-cusps are (almost) motionless and the branches straighten to become (almost) line segments.

The branched surface $B_{\mathcal{V}}$ moves in a similar way, but swapping $\Theta^{\mathcal{V}}$ and $\Theta_{\mathcal{V}}$. The ideas of neighbourhood splitting and graphical isotopy will be used once (in sapce) in this section and three times (in time and in space) in Section 9. We use them to fill in the isotopy from parted position to the final position.
8.3. Parting in $\Theta^{\mathcal{V}}$. We now describe the parting isotopy in $\Theta^{\mathcal{V}}$.

Suppose that U is a crimped blue shearing region. Suppose that e^{\prime} is a crimped longitudinal edge for U. Suppose that e is the associated red veering edge and let C be the crimped bigon which e and e^{\prime} cobound. Suppose that $S \subset \partial^{+} U$ is the upper toggle square meeting e^{\prime}. We equip C with the anti-clockwise orientation, as viewed from above. This induces orientations on e and e^{\prime}. Let $c=C \cap B^{\mathcal{V}}$. The parting isotopy in Θ^{U} fixes $c \cap e$ and moves $c \cap e^{\prime}$ along e^{\prime}, against the orientation of e^{\prime} (given just above), until it arrives at the platform of the station at the corner of the toggle square S. (If, instead, U is red, then we move $c \cap e^{\prime}$ along e^{\prime}, following the orientation of e^{\prime}, again until it arrives at

Figure 8.1. The result B_{1} of the parting isotopy in $\Theta_{\mathcal{V}}$ where \mathcal{V} is fLLQccecddehqrwjj_20102. The five diagrams show (from the bottom moving up) $B_{1} \cap C_{s}$ for $s \in(0,1 / 4,1 / 2,3 / 4,1)$. The bottom cross-section contains blue helical edges.
the platform of its station.) To see this motion, compare top lines of Figures 7.13 and 8.2.

In $\partial^{+} U$ we also move track-cusps outwards in fan squares until they arrive close to the midpoint of a helical edge. In lower cross-sections of

Figure 8.2. The intersection of $B^{\mathcal{V}}$ (and $B_{\mathcal{V}}$), after parting, with various cross-sections of the crimped shearing decomposition of fLLQccecddehqrwjj_20102. Again, and as in Figure 7.13, the branched surface $B^{\mathcal{V}}$ is almost vertical in $\Theta^{\mathcal{V}}$ while $B_{\mathcal{V}}$ is almost vertical in $\Theta_{\mathcal{V}}$.
$843 \Theta^{U}$ we do the same, but now moving track-cusps until they almost meet
the projection (in bigon coordinates) of the midpoint of a helical edge.

Rem: AlmostProducot 5

Rem:UpGivesDow84

Remark 8.4. Thus $B^{\mathcal{V}}$ is almost a product in $\Theta^{\mathcal{V}}$. (In $\Theta^{\mathcal{V}}$ track-cusps move very slowly forward to preserve dynamism.)

Remark 8.5. Since $\partial^{+} \Theta^{\mathcal{V}}$ is glued to $\partial^{-} \Theta_{\mathcal{\nu}}$ parted position in the former determines parted position in the latter. Parted position is thus determined in fan and toggle squares, as shown in Figure 8.6. For our running example this is shown in the bottom and top rows of Figure 8.2.

Note that the track-cusps are slightly off the edges. This is so that they can very slowly move (horizontally) as we move up or down through cross-sections. We do this to ensure dynamism.

Figure 8.6. In prepared position the intersections of $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ with crosssections are straight lines except for inside of the stations and very close to the midpoints of helical edges. In stations, branches meeting longitudinal crimped edges have the same tangent as the adjacent helical crimped edge. Note that here U, the containing crimped shearing region, is blue.

Definition 8.7. Suppose that U is a crimped shearing region. Suppose that H is a cross-section in U. Suppose that α is a smooth arc in H. We say that α is graphical if its tangent vectors (including at its endpoints) have non-zero x-coordinate. That is, α is transverse to the foliation U by bigons.

Suppose that τ is a train track in H. We say that τ is graphical if all of its branches are graphical.

We will use the following lemma several times, in this section and the next.

Lemma 8.8. Suppose that τ is a graphical train track. Suppose that α is a train route in τ. Then the result of splitting τ along α is again graphical.

m:UpPartedGraphicæbo

Lemma 8.9. Suppose that H is any cross-section in $\Theta^{\mathcal{V}}$. The parted position of $B^{\mathcal{V}}$ in H is a train track for which all branches are graphical.

The same is true for the parted position of $B^{\mathcal{V}}$ in $\partial^{-} \Theta_{\mathcal{V}}$ except for those branches which are in a platform in $\partial^{-} \Theta_{\mathcal{V}}$ meeting a longitudinal crimped edge. It follows that any train route in $\partial^{-} \Theta_{\mathcal{V}}$ avoiding these branches is graphical.

Proof. Suppose that U is a crimped shearing region. As discussed in Section 8.3, prepared position in Θ^{U} is defined locally. From Figure 8.12 we see that all branches of the tracks (outside of the stations) are straight. Note that some branches appear to be parallel to the y-axis; however, those actually have slightly positive slope. This is due to our choice of location for the corners of the toggle squares (made in Remark $6.2(2))$. Thus all branches of the tracks are graphical.

The track inside of the stations, in both $\partial^{+} U$ and $\partial^{-} U$, are laid out according to Figure 8.6.
8.10. Parting in $\Theta_{\mathcal{V}}$. The parting isotopy in $\Theta_{\mathcal{V}}$ is more delicate. Here we introduce the definitions of a neighbourhood splitting and a graphical isotopy.

8.10.1. Parting routes.

Definition 8.11. Suppose that U is a crimped shearing region. Suppose that K is a branch line of $B^{\mathcal{V}}$ (before parting) meeting U. Let k_{0} and k_{1} be the intersections of K with $\partial^{-} U$ and $\partial^{+} U$ respectively. Let k_{1}^{\prime} be the projection of k_{1} (under bigon coordinates) to $\partial^{-} U$. In a slight abuse of notation, we use the same names for the corresponding trackcusps (and projection) in $\partial^{-} U$ and $\partial^{+} U$ after parting (as in Section 8.3). Then the parting route $\alpha\left(k_{0}\right)$ is the unique route from k_{0} to k_{1}^{\prime} carried by the parted track in $\partial^{-} U$.

Since the parting isotopy in $\Theta^{\mathcal{V}}$ is local, there are only a small number (in fact six) combinatorial possibilities for $\alpha\left(k_{0}\right)$. These are all shown in Figure 8.12.

- Suppose that k_{1} lies in a toggle square in $\partial^{+} U$.
- If k_{0} also lies in a toggle square (in $\partial^{-} U$) then we obtain the examples f and j in Figure 8.12B.
- Otherwise k_{0} does not lie in a toggle square and we obtain the examples e and i in Figure 8.12A.
- Suppose that k_{1} does not lie in a toggle square.
- Suppose that k_{1}^{\prime} lies in a toggle square.
- If k_{0} lies in a toggle square then we obtain the examples shown in Figure 8.12c.

Figure 8.12. Parting routes for the track-cusps in $\partial^{-} \Theta_{\mathcal{V}}$, where \mathcal{V} is fLLQccecddehqrwjj_20102. Here we draw a regular neighbourhood of the train track in green.

- Otherwise k_{0} does not lie in a toggle square and we obtain the examples d and h in Figure 8.12A.
- Suppose that k_{1}^{\prime} does not lie in a toggle square.
- If k_{0} lies in a toggle square then we obtain the examples a and g in Figure 8.12A.
- Otherwise k_{0} does not lie in a toggle square and we obtain the examples b and c in Figure 8.12A.
8.12.2. Neighbourhood splitting. Suppose that U is a crimped shearing region. Let H_{s} be the family of cross-sections of Θ_{U}, with $H_{0}=\partial^{-} \Theta_{U}$ and $H_{1}=\partial^{+} \Theta_{U}$. Recall that $B^{\mathcal{V}}$ in parted position is already specified in H_{0} and H_{1}. Instead of parametrising the parting isotopy explicitly, we specify parted position in $H_{s} \cap B^{\mathcal{V}}$ by giving a family of train tracks.

As s ranges over $\left[0,1 / 2\right.$] the intersections of $B^{\mathcal{V}}$ (in parted position) with the cross-sections H_{s} show a movie of a splitting. In detail: if k is a track-cusp in H_{0} we split k forward in a small neighbourhood of its parting route $\alpha(k)$. The result in one example is shown in the lower three rows of Figure 8.1. When two track-cusps k and ℓ meet, travelling in opposite directions, they split past each other. (If U is blue and there is (not) a toggle square above, this is a left (right) split. If U is red the directions swap.) Each track-cusp moves so that

- its x-coordinate moves at constant speed and
- its journey takes all of $[0,1 / 2]$.

As a consequence of the construction given in Definition 8.11, trackcusps in $H_{1 / 2}$ lie either on the centre line of the cross-section, or in platforms. See the middle row of Figure 8.1.

In addition, for branches which meet longitudinal crimped edges, we shear the tangent vector where they meet. We do this twice as fast as in Remark 7.14. This ensures that, in $H_{1 / 2}$, the tangent vector has the same slope as the helical edges in $\partial^{+} U$.

This describes the neighbourhood splitting.
Remark 8.13. Let $\tau^{1 / 2}$ be the resulting train track in $H_{1 / 2}$. The shearing described above and Lemmas 8.8 and 8.9 ensure that all branches of $\tau^{1 / 2}$ are graphical.

Let τ^{1} be the train track in $H_{1}=\partial^{+} \Theta_{U}=\partial^{-} \Theta^{U}$. By Remark 8.4, the train track τ^{1} is a very small folding of the train track in $\partial^{+} \Theta^{U}$. By Lemma 8.9, the train track τ^{1} is also graphical.
8.13.3. The graphical isotopy. For $s \in[1 / 2,1]$, we perform a graphical isotopy from $\tau^{1 / 2}$ to τ^{1}, as follows. By Remark 8.13, both train tracks are graphical and they are combinatorially isomorphic. Also their trackcusps are in (almost) the same places in bigon coordinates. For each point of each branch of $\tau^{1 / 2}$, we change its y-coordinate at constant speed, from its initial position in $\tau^{1 / 2}$ to its final position in τ^{1}. We also very slightly move track-cusps forward to maintain dynamicism. This describes the graphical isotopy.

See the upper three rows of Figure 8.1.
Lemma 8.14. The result of the parting isotopy in $\Theta^{\mathcal{V}}$ glued to the branched surface in $\Theta_{\mathcal{V}}$, produced by the neighbourhood splitting and graphical isotopy, is dynamic and is isotopic to $B^{\mathcal{V}}$ after shrinking.
Proof. The intersection of this branched surface with each cross-section is a train track. Moreover, by construction the track-cusps always move forwards as we move up through cross-sections. Therefore the branched surface is dynamic.

In Section 8.3 we explicitly describe an isotopy between the shrunken branched surface and the parted branched surface in $\Theta^{\mathcal{V}}$. Thus in $\Theta_{\mathcal{V}}$ the shrunken branched surface and the constructed branched surface meet $\partial^{-} \Theta_{\mathcal{V}}$ and $\partial^{+} \Theta_{\mathcal{V}}$ with the same combinatorics. It follows that the constructed branched surface is isotopic to the shrunken branched surface.

We call the result prepared position for $B^{\mathcal{V}}$. We define the lower preparatory isotopy of the lower branched surface $B_{\mathcal{V}}$ analogously.

Def:SplittingRou ๒4

8.15. Splitting routes. From now it will be convenient to work in the universal cover, rather than in M itself. Since our constructions are natural, they are automatically equivariant. In a slight abuse of notation we use the notation $B^{\mathcal{V}}$ instead of the more correct \widetilde{B}^{ν}. The splitting isotopies given in the next section are similar to the parting isotopies described above, but with two important changes. First, the motion of the parting isotopies through space is replaced by the motion of the splitting isotopies through time. Second, the parting routes are replaced by the splitting routes, which we now describe.

Definition 8.16. Suppose that $B^{\mathcal{V}}$ is in parted position. Suppose that $c=c_{0}$ is a point of a branch line C. Starting at c_{0}, we follow C upwards until it meets, for the first time, a toggle square $S=S(c)$. (This exists by Lemma 2.10.) Let U be the crimped shearing region meeting and immediately below S. Let $H_{1}=\partial^{+} U$. We define $c_{1}=C \cap H_{1}$. Let $\beta\left(c_{1}\right)$ be the train route with length zero carried by $B^{\mathcal{V}} \cap H_{1}$ which starts and ends at c_{1}. Since $\beta\left(c_{1}\right)$ has length zero, it consists of a tangent vector which points at the crimped edge of S which is longitudinal for U. Note that c_{1}, and thus $\beta\left(c_{1}\right)$, is contained in the intersection of S and a platform centred at some corner of S. For an example, see the picture of the station (meeting $B^{\mathcal{V}}$ in green) in Figure 8.6B.

We parametrise the subinterval $\left[c_{0}, c_{1}\right]$ of C by $[0,1]$. Fix s and t in $[0,1]$ with $s<t$. Let $\left[c_{s}, c_{t}\right] \subset\left[c_{0}, c_{1}\right]$ be the corresponding subinterval. Suppose that $\left[c_{s}, c_{t}\right]$ is contained inside a crimped shearing region U. There are now two cases as c_{s} lies in the interior of, or lies in the lower boundary of, U.

First suppose that c_{s} is in the interior of U. Let $H_{s}\left(H_{t}\right)$ be the cross-section of U through $c_{s}\left(c_{t}\right)$. Suppose that the train route $\beta\left(c_{t}\right)$, carried by $B^{\mathcal{V}} \cap H_{t}$, is given. We are given that $\beta\left(c_{t}\right)$ runs from c_{t} to a point inside of a station at the boundary of H_{t}. We then form the train route $\beta\left(c_{s}\right)$, carried by $B^{\mathcal{V}} \cap H_{s}$, as follows. The start of $\beta\left(c_{s}\right)$ is $c_{s} \in C$. The end of $\beta\left(c_{s}\right)$ is the projection (in bigon coordinates) of the end of $\beta\left(c_{t}\right)$. Note that the end of $\beta\left(c_{s}\right)$ is again a point in a station.

Suppose instead that c_{s} lies in the lower boundary of U. We form $\beta^{\prime}\left(c_{s}\right)$ by following the procedure given in the previous paragraph. If $\beta^{\prime}\left(c_{s}\right)$ does not meet any toggle squares then we set $\beta\left(c_{s}\right)=\beta^{\prime}\left(c_{s}\right)$ and note that the end point of $\beta\left(c_{s}\right)$ lies inside of the same station as $\beta\left(c_{t}\right)$. If $\beta^{\prime}\left(c_{s}\right)$ does meet a toggle square, then we truncate: we delete from $\beta^{\prime}\left(c_{s}\right)$ all intersections with toggle squares and keep only the segment meeting c_{s}, to obtain $\beta\left(c_{s}\right)$. In this case $\beta\left(c_{s}\right)$ ends on a helical crimped edge, inside the yard of some (possibly different) station. See Figure 8.6D.

ittingRoutesNoCrobes 2

We define $\beta(c)=\beta\left(c_{0}\right)$. This is the splitting route for c.
From their construction, we have that $\beta(c)$ is a train route in all cross-sections containing c. In each it runs from c to a point in a station. See Figure 8.17. When c is in a toggle square, $\beta(c)$ is completely contained in the platform, inside the station, and also within the toggle square.

Lemma 8.18. Suppose that H is any cross-section. Suppose that c and d are track cusps of $B^{\mathcal{V}} \cap H$. Then $\beta(c)$ and $\beta(d)$ do not cross: that is, after a small motion of $\beta(c)$ the two routes are disjoint.

Proof. We use the notation of Definition 8.16. Let $\left[c_{0}, c_{1}\right]$ and $\left[d_{0}, d_{1}\right]$ be the resulting branch intervals in the branch lines C and D containing c and d respectively. Let c_{s} and d_{t} be the last points in these branch intervals for which there is a horizontal cross-section H^{\prime} containing both. We deduce that H^{\prime} is the upper boundary of some crimped shearing region U.

Claim 8.19. $\beta\left(c_{s}\right)$ and $\beta\left(d_{t}\right)$ are disjoint, thus they do not cross.
Proof. If $s=1$ then $\beta\left(c_{s}\right)$ is contained in a station. In this case, if $\beta\left(d_{t}\right)$ meets $\beta\left(c_{s}\right)$ then (due to the truncation step of the construction) we find that $\beta\left(c_{s}\right)=\beta\left(d_{t}\right)$. Thus $c_{0}=d_{0}$ and we are done.

A similar proof deals with the case that $t=1$. We may now suppose that $s<1$ and $t<1$. Let T^{\prime} be the union of the toggle squares of H^{\prime}. Define $H^{\prime \prime}=H^{\prime}-T^{\prime}$. Note that each component of $H^{\prime \prime}$ also appears as a subsurface of the lower boundary of some crimped shearing region. Since c_{s} and d_{t} are the last points of $\left[c_{0}, c_{1}\right]$ and $\left[d_{0}, d_{1}\right]$ in a common crosssection, we find that c_{s} and d_{t} are necessarily in different components of $H^{\prime \prime}$. By construction $\beta\left(c_{s}\right)$ and $\beta\left(d_{t}\right)$ are also contained in these components, so are disjoint.

We now reparameterise $\left[c_{0}, c_{s}\right.$] and $\left[d_{0}, d_{t}\right]$ by the unit interval and rechoose our notation so that, for all $r \in[0,1]$, the track-cusps c_{r} and d_{r} lie in the same cross-section H_{r}. By the claim, when $r=1$ the routes $\beta\left(c_{r}\right)$ and $\beta\left(d_{r}\right)$ are disjoint in H_{r}. Let $\tau^{r}=B^{\mathcal{V}} \cap H_{r}$. The tracks τ^{r} fold as r decreases. Folding preserves the property of not crossing, and we are done.

9. The splitting isotopy

Suppose that the upper and lower branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are in prepared position. From this point on, our isotopies are fixed on the union of the toggle squares. That is, each isotopy is supported

Figure 8.17. Splitting routes $\beta(a)$ through $\beta(i)$ for the track-cusps in cross-sections of Θ_{U}, where U is the blue crimped solid torus of fLLQccecddehqrwji_20102. Compare with Figure 8.1A. For each splitting route, the subcurve which is the corresponding parting route is drawn with a dotted line.
in the interiors of the red and blue parts of the crimped shearing decomposition.

We now describe the upper and lower splitting isotopies of $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ respectively. These move $B^{\mathcal{V}}$ downwards and $B_{\mathcal{V}}$ upwards. The isotopies get their name from how the moving branched surfaces meet a fixed cross-section H; the intersection is a splitting sequence of train tracks in H.

We use $B_{t}^{\mathcal{V}}$ to denote the image of $B^{\mathcal{V}}$ at time $t \in[0,1]$. It now suffices, for each cross-section H, to

- describe the intersection $B_{t}^{\mathcal{V}} \cap H$ and
- check that the descriptions depend continuously on the choice of H.

9.1. The upper splitting isotopy in Θ^{ν}.

9.1.1. Neighbourhood splitting. For $t \in[0,1 / 2]$, we do the following. Suppose that H is a horizontal cross-section in $\Theta^{\mathcal{V}}$ and suppose that $c \in B^{\mathcal{V}} \cap H$ is a track-cusp. We split c forward in a small neighbourhood of its splitting route $\beta(c)$ until we reach the station containing the end of $\beta(c)$. For an example of the overall motion of the track-cusps see the lower three rows of Figure 9.2.

Applying Lemma 8.18, when two track-cusps c and d meet travelling in opposite directions, they split past each other, splitting to the left or right as determined by the combinatorics of their splitting routes. Each track-cusp moves at the constant speed required for its journey to take all of $[0,1 / 2]$. This and Lemma 8.18 ensure that track-cusps travelling in the same direction never meet.

The construction in Definition 8.16 ensures that when a track-cusp c enters a station it moves all the way to the platform (in the projection of $S(c)$) if there is no track-cusp already there. The track-cusp c then points at e^{\prime}, a longitudinal edge for the ambient crimped shearing region. See the picture of the station in Figure 9.2.

When a track-cusp c enters a station, and there is a track-cusp d already at the platform, then c only enters the yard. Furthermore, c remains outside of the projection of $S(d)$, pointing at the projection of its helical crimped edge. The construction in Definition 8.16 ensures that when multiple track-cusps arrive to the same station (and the platform is occupied) they line up in the yard, in order of their appearance. Again, see the picture of the station in Figure 9.2.

This describes the neighbourhood splitting.
9.1.2. The graphical isotopy. For $t \in[1 / 2,1]$, we do the following. Suppose that b is a branch of $B_{1 / 2}^{\mathcal{V}} \cap H$. Note that the endpoints of b lie
inside of stations. Also note that by Lemmas 8.8 and 8.9, the branch b is graphical. We isotope so that, at $t=1$, all branches of the train track are straight lines in bigon coordinates, other than in the stations. For each point of each branch, we change only its y-coordinate in bigon coordinates, moving at constant speed from its initial to its final position. This describes the graphical isotopy. See the upper three rows of Figure 9.2.

Remark 9.3. As in Remark 8.5, the intersection of the image of the upper splitting isotopy with cross-sections in $\Theta^{\mathcal{V}}$ determines the intersection of the image of the upper splitting isotopy with $\partial^{-} \Theta_{\mathcal{V}}$.
9.5. The upper splitting isotopy in $\Theta_{\mathcal{V}}$. Fix U, a blue crimped shearing region. We use H_{s} to denote the cross-section of Θ_{U} at height $s \in[0,1]$. (This matches the values for s given in the captions for Figures 9.2, 9.4, and 9.8.) It remains to describe the intersections $B_{t}^{\mathcal{V}} \cap H_{s}$. The intersections $B_{0}^{\mathcal{V}} \cap H_{s}$ are given by the preparatory isotopy. Also, $B_{t}^{\mathcal{V}} \cap H_{1}$ and (by Remark 9.3) $B_{t}^{\mathcal{V}} \cap H_{0}$ are already determined by the splitting and isotopy given in Section 9.1. This gives three sides of the "boundary of the isotopy". We now describe the fourth; that is, we describe $B_{1}^{\mathcal{V}} \cap H_{s}$ for $s \in[0,1]$.
9.5.1. Suffix routes. We wish to define the suffix routes for track-cusps of $B_{1}^{\mathcal{V}} \cap H_{0}$.
Definition 9.6. Suppose that k is a track-cusp of $B_{1}^{\mathcal{V}} \cap H_{0}$. Following our construction backwards, k is the endpoint of a splitting route $\beta\left(k^{\prime}\right)$ starting at k^{\prime} and carried by $B_{0}^{\mathcal{\nu}} \cap H_{0}$. Suppose that ℓ^{\prime} is the track-cusp of $B_{0}^{\mathcal{V}} \cap H_{1}$ on the same branch interval of $B_{0}^{\mathcal{V}} \cap U$ as k^{\prime}. Let ℓ be the endpoint of the splitting route $\beta\left(\ell^{\prime}\right)$ starting at ℓ^{\prime} and carried by $B_{0}^{\mathcal{V}} \cap H_{1}$.

Let $\beta^{\prime}\left(\ell^{\prime}\right) \subset B_{0}^{\mathcal{V}} \cap H_{0}$ be the result of folding $\beta\left(\ell^{\prime}\right)$ downward through $B_{0}^{\mathcal{V}} \cap U$. By construction, $\beta\left(k^{\prime}\right)$ is obtained from $\beta^{\prime}\left(\ell^{\prime}\right)$ by removing any intersection with toggle squares in $\partial^{-} U$ and taking the initial segment. Define $\gamma^{\prime}\left(k^{\prime}\right)=\beta^{\prime}\left(\ell^{\prime}\right)-\beta\left(k^{\prime}\right)$. Note that this is a train route in $B_{0}^{\mathcal{V}} \cap H_{0}$. By construction and by Lemma 8.18 none of the splitting routes in $B_{0}^{\mathcal{V}} \cap H_{0}$ cross $\gamma^{\prime}\left(k^{\prime}\right)$. We take the image of $\gamma^{\prime}\left(k^{\prime}\right)$ under the neighbourhood splitting and graphical isotopy defined in Section 9.1. The result is the suffix route $\gamma(k)$ which starts at k, is carried by $B_{1}^{\mathcal{V}} \cap H_{0}$, and which ends at (the projection in bigon coordinates of) ℓ.

Claim 9.7. The suffix route $\gamma(c)$ is carried by the graphical subtrack of $B_{1}^{\mathcal{V}} \cap H_{0}$ and so is graphical.

Figure 9.2. The splitting isotopy for the cross-section $\partial^{-} \Theta^{\mathcal{V}}=\partial^{+} \Theta_{\mathcal{V}}$ at the middle of $U,(s=1)$. Here U is the blue crimped solid torus for fLLQccecddehqrwjj_20102. Note that, as shown in the close-up views of a station, track-cusps never touch. The close-up views also show the projection under bigon coordinates of the toggle square $S(e)$ (as in Definition 8.16) above the station.

Proof. Recall that $H_{0}=\partial^{-} U$. Again by Lemmas 8.8 and 8.9, the train track $B_{1}^{\mathcal{V}} \cap H_{0}$ is graphical except for those branches which are in a platform in $\partial^{-} \Theta_{\mathcal{V}}$ meeting a longitudinal crimped edge. The

Figure 9.4. The splitting isotopy for the cross-section at the bottom of $\Theta_{U}(s=0)$, where U is the blue crimped solid torus for fLLQccecddehqrwjj_20102.

1125

1128 this (Lemma 8.8).

As in Section 8.12.2, we now perform a neighbourhood splitting (in space), replacing the parting routes α by the remaining routes γ. As s progresses through [0,1/2] we split a track-cusp c forward along $\gamma(c)$.

We now perform (in space) a graphical isotopy, analogous to the one described in Section 8.13.3. As s progresses through $[1 / 2,1]$, we graphically straighten the branches. As usual, the track-cusps move very slowly forwards to ensure dynamism. See Figure 9.8.

Now that the four sides of the isotopy are given, we fill in the interior. That is, we must describe the train-tracks $B_{t}^{\mathcal{V}} \cap H_{s}$ for $s, t \in(0,1)$. As usual, we begin by finding the routes needed for the neighbourhood splitting.

9.8.2. Prefix routes.

Definition 9.9. Suppose that s lies in $[0,1]$. Let k be a track-cusp in $B_{0}^{\mathcal{V}} \cap H_{s}$. Let ℓ be the track-cusp in $B_{0}^{\mathcal{V}} \cap H_{1}$ which is on the same branch interval (of $B_{0}^{\mathcal{V}}$) as k. Let ℓ^{\prime} be the endpoint of the route $\beta(\ell)$. Let k^{\prime} be the track-cusp in $B_{1}^{\mathcal{V}} \cap H_{s}$ which is on the same branch interval (of $B_{1}^{\mathcal{V}}$) as ℓ^{\prime}.

We define the prefix route $\delta(k)$ to be the prefix of $\beta(k)$ which ends at the point of $\beta(k)$ with the same x-coordinate as k^{\prime}.

For each fixed s, we perform the neighbourhood splitting (for $t \in$ $[0,1 / 2]$) and graphical isotopy (for $t \in[1 / 2,1]$). During the neighbourhood splitting, each track-cusp moves from its position in $B_{0}^{\mathcal{V}} \cap H_{s}$ to its position in $B_{1}^{\mathcal{V}} \cap H_{s}$.

This completes the definition of the upper splitting isotopy. The lower splitting isotopy of $B_{\mathcal{V}}$ is defined analogously, with the roles of Θ^{U} and Θ_{U} reversed. Note that both the upper and lower splitting isotopies are continuous by construction.

We apply the splitting isotopies to $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ beginning from prepared position. We call the result split position. For examples, see Figures 9.11 and 9.12.
9.10. Split position. We make the following observations.

Lemma 9.13. In split position, the branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are dynamic.

Proof. In split position the branched surface $B^{\mathcal{V}}$ is transverse to the cross-sections of all crimped shearing regions. Furthermore, we have arranged that track-cusps always move forwards as we move up through cross-sections. The same argument applies to the lower splitting isotopy, acting on $B_{\mathcal{V}}$.

Figure 9.8. The result $B_{1}^{\mathcal{V}}$ of the splitting isotopy in Θ_{U} where U is the blue crimped solid torus for fLLQccecddehqrwjj_20102. The five diagrams show (from the bottom moving up) $B_{1}^{\mathcal{V}} \cap H_{s}$ for $s \in(0,1 / 4,1 / 2,3 / 4,1)$. The bottom cross-section contains blue helical edges. In the uppermost magnifying glass we have also drawn the (projection in bigon coordinates) of the upper toggle square.

Lemma 9.14. Suppose that G and H are cross-sections in Θ^{U} with G above H. Then with $B^{\mathcal{V}}$ in split position, the projection of τ^{G} to H in

Figure 9.11. The intersection of $B^{\mathcal{V}}$ (and $B \mathcal{V}$), in split position, with various cross-sections of the crimped shearing decomposition of fLLQccecddehqrwjj_20102. Compare with Figure 8.2.
bigon coordinates is carried by, and is up to a small isotopy equal to, τ^{H}. The same holds for $B_{\mathcal{V}}$ in Θ_{U}.

Proof. Let τ_{t}^{G} be the intersection of G and $B_{t}^{\mathcal{V}}$. Define τ_{t}^{H} similarly. Suppose that C is the branch line through track-cusps c of τ_{0}^{G} and d of τ_{0}^{H}. Following the construction given in Section 9.1, we obtain train routes $\beta(c) \subset \tau_{0}^{G}$ and $\beta(d) \subset \tau_{0}^{H}$. Since there are no toggle squares strictly between G and H, the forward endpoint of $\beta(c)$ projects to the forward endpoint of $\beta(d)$. Thus after the neighbourhood and graphical isotopies, τ_{1}^{G} projects to τ_{1}^{H} (after moving the track-cusps of τ_{1}^{H} slightly forward).

Lemma 9.15. Suppose that $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are in split position. Suppose that U is a blue shearing region. Suppose that H is either $\partial^{+} U$, the upper boundary of U, or $\partial^{-} U$, the lower boundary. Let $\tau^{H}=H \cap B^{\mathcal{V}}$ and $\tau_{H}=H \cap B_{\mathcal{V}}$.

(A) Blue solid torus. (B) Red solid torus.

Figure 9.12. Split position for the figure-eight knot sibling with veering triangulation cPcbbbdxm_10. The four pinched tetrahedra are labelled A through D. To obtain the pictures for the figure-eight knot complement with veering triangulation cPcbbbiht_12, alter these figures by requiring that the orientation on every helical edge points upwards. (To relabel the pinched tetrahedra, start with those given at the top of Figure 9.12A and propagate outwards.)
(1) Outside of the stations, the branches of τ^{H} and τ_{H} are straight lines (in bigon coordinates).
(2) Outside of toggle squares, the branches of τ^{H} have strictly positive slope and the branches of τ_{H} have strictly negative slope.
(3) Inside of each toggle square, outside of the stations, there is exactly one branch of τ^{H} and exactly one branch of τ_{H}. These have strictly negative and strictly positive slope respectively.
(4) Each track-cusp is in a station.
(5) Suppose that e is a helical edge in H. Suppose that, of the two equatorial squares adjacent to e, at least one lies in a toggle tetrahedron. Then the stations of τ^{H} immediately adjacent to e

1194
1195
Itm:OneCusip
1197
rdCrossSectionSplínos
1209
1210
Itm:ThirdStraightt
1212
tm:ThirdGreenSlopezs m:ThirdPurpleSlopes

1215
1216
1217
Itm:ThirdTrackCuspas
1219
1220
are connected by a branch of τ^{H}. Similarly, the stations of τ_{H} are connected by a branch of τ_{H}.
(6) Every component of $H-\tau^{H}$ contains exactly one track-cusp, and exactly one ideal vertex of U. The same holds for $H-\tau_{H}$.
When U is a red shearing region, a similar statement holds, swapping the signs of slopes.

We generalise Lemma 9.15(6) to other cross-sections as follows.
Proposition 9.16. Suppose that U is a crimped shearing region. Let H be a cross-section of U. Then every component of $H-\tau^{H}$ contains exactly one track-cusp and exactly one ideal vertex of U. The same holds for $H-\tau_{H}$.
Proof. The result holds for $H^{\prime}=\partial^{-} U$ by Lemma 9.15(6). Moving upwards from H^{\prime} to H we perform splittings and graphical isotopies. Neither of these changes the combinatorics of a region of $H-\tau^{H}$.
Lemma 9.17. Suppose that $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are in split position. Suppose that U is a blue shearing region. Suppose that H is the lower boundary of $\Theta(U)$. Let $\tau^{H}=H \cap B^{\mathcal{V}}$ and $\tau_{H}=H \cap B_{\mathcal{V}}$.
(1) Outside of the stations, the branches of τ^{H} and τ_{H} are straight lines (in bigon coordinates).
(2) The branches of τ^{H} have strictly positive slope.
(3) Above each toggle square, outside of its stations, there is exactly one branch of τ_{H}. This branch has slope more positive than any branch of τ^{H}. The remaining branches of τ_{H} (not above toggle squares) have strictly negative slope.
(4) Each track-cusp is in station.

A similar statement holds for H the upper boundary of $\Theta(U)$. Finally, all of the above again holds, swapping slopes appropriately, when U is a red shearing region.
Proof. Let $G=\partial^{+} U$. By Lemma 9.15, statements (1) and (4) hold for τ^{G}. Also, (2) holds except that the slopes of branches have the wrong sign inside of toggle squares. By Lemma 9.14, these properties are carried to τ^{H}, and the shearing within $\Theta(U)$ corrects the signs of the slopes of branches coming from toggle squares in G. To obtain (3), we start from the lower boundary $K=\partial^{-} U$, and again use Lemma 9.14 to carry properties of τ_{K} up to τ_{H}. Finally, note that the only branches of τ^{H} with slope more positive than the exceptional branches of τ_{H} do not lie above a toggle square. (They lie above exactly one helical edge.)

Lemma 9.18. Suppose that $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are in split position. Suppose that U is a blue shearing region. Suppose that H is any cross-section of
U. Let $\tau^{H}=H \cap B^{\mathcal{V}}$ and $\tau_{H}=H \cap B_{\mathcal{V}}$. Let c be a cusp of U. Let E be the component of $H-\left(\tau^{H} \cup \tau_{H}\right)$ meeting c. Then the branches of τ^{H} appearing in the boundary of E have positive slope; the branches of τ_{H} appearing in the boundary of E have negative slope. There is a similar statement for a red shearing region.

Proof. First let $H=\partial^{-} U$. By Lemma 9.15(2) and (3), the only branches of the incorrect slope are in toggle squares. Appealing to Lemma 9.15(5), such branches are separated from the cusp c by other branches. Examining the neighbourhood and graphical isotopies, the conclusion holds in general.

Lemma 9.19. Each subray of each branch line of $B^{\mathcal{V}}$ and of $B_{\mathcal{V}}$, in split position, meets crimped shearing regions of both colours.

Proof. This follows from Lemma 2.10 and the fact that our isotopies do not change combinatorics in toggle squares.

10. The dynamic pair

Theorem 10.1. Suppose that \mathcal{V} is a transverse veering triangulation. In split position, the upper and lower branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ form a dynamic pair; this position is canonical. Furthermore, if \mathcal{V} is finite then split position is produced algorithmically in polynomial time and the dynamic train track $B^{\mathcal{V}} \cap B_{\mathcal{V}}$ has at most a quadratic number of edges.

The branched surfaces $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are individually dynamic by Lemma 9.13. We now verify the hypotheses of Definition 4.9. Again, it will be convenient to work equivariantly in the universal cover.
10.2. Transversality. Let U be a crimped shearing region. Recall that $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are now in split position.

Lemma 10.3. Suppose that H is a cross-section of U. Then the train-tracks τ^{H} and τ_{H} are transverse.

Proof. For $H=\partial^{-} U$, this follows from Lemma 9.15(2), (3), and (4).
Now suppose that H_{s} for $s \in[0,1]$ is a cross-section in Θ_{U}. Let $\tau^{s}=B^{\mathcal{V}} \cap H_{s}$ and let $\tau_{s}=B_{\mathcal{V}} \cap H_{s}$. The train-tracks τ^{s} perform the neighbourhood and then graphical isotopies as described in Section 9.5. Note that τ^{0} and τ_{0} are transverse by the previous paragraph. By Lemma 9.14, the train-tracks τ_{s} are all essentially the same in bigon coordinates. During the neighbourhood splitting (that is, for $s \in[0,1 / 2]$), the track-cusps of τ^{s} split forward in a small neighbourhood of (the

1269
projection of) τ^{0}. Thus the train-tracks τ^{s} and τ_{s} are transverse for $s \in[0,1 / 2]$.

By Lemma 9.17, the train-tracks τ^{1} and τ_{1} are transverse. We now consider $s \in[1 / 2,1]$. The graphical isotopy interpolates between $\tau^{1 / 2}$ and τ^{1}. Let b^{s} and c_{s} be branches of τ^{s} and τ_{s} respectively.
Claim. The branches b^{s} and c_{s} are transverse.
Proof. Let c_{0} be the projection of c_{s} down to $\partial^{-} U$. Suppose that c_{0} lies completely within a toggle square. If the projection of $b^{1 / 2}$ misses this toggle square then we are done. Otherwise let a^{s} be the linear segment of b^{s} which meets the toggle square. Since the isotopy is graphical, the slope of a^{s} is between that of $a^{1 / 2}$ and a^{1}. Applying Lemma 9.15(3) and Lemma $9.17(3)$ we find that the slope of c_{s} is bigger than that of a^{s}. We deduce that c_{s} is transverse to a^{s} and thus to b^{s}.

Suppose instead that c_{0} is disjoint from the toggle squares. In this case the proof is similar, but easier. Now the slope of c_{s} is always negative by Lemma $9.17(3)$. Also, the slope of a^{s} is always positive by Lemma $9.15(2)$, by Lemma $9.17(2)$, and by appealing to the graphical isotopy.

Let K be the lower boundary of $\Theta(U)$. By the claim (for $s=1$), the tracks τ^{K} and τ_{K} intersect transversely. Thus by Lemma 9.14, the same holds for τ^{H} and τ_{H} for every cross-section H in $\Theta(U)$.

Swapping the roles of upper and lower and repeating the argument proves that τ^{H} and τ_{H} are transverse for every cross-section H in Θ^{U}.
Lemma 10.4. Each branch interval of $B^{\mathcal{V}}$ in U is transverse to $B_{\mathcal{V}}$, and conversely.
Proof. It suffices to show that for each cross-section H, the track-cusps of τ^{H} and of τ_{H} are disjoint. By Lemma 9.14, in $\Theta_{U} \cup \Theta(U)$ the trackcusps of τ_{H} lie within small neighbourhoods of the endpoints of sidings of τ_{H}. The same holds for track-cusps of τ^{H} in $\Theta(U) \cup \Theta^{U}$. The trackcusps of τ^{H} remain away from the sidings of τ_{H} in the upper splitting isotopy in Θ_{U}. Similarly, the track-cusps of τ_{H} remain away from the sidings of τ^{H} in the lower splitting isotopy in Θ^{U}.

We record the following.
Remark 10.5. As H moves upwards, if a track-cusp of τ^{H} moves through τ_{H}, it does so going forwards. Similarly, whenever a track-cusp of τ_{H} moves through τ^{H}, it does so going backwards.

The above lemmas, together with the remark, prove that $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are transverse.
10.6. Separation. Recall from Remark 2.8 that both $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$ are isotopic (ignoring the branching structure) to the dual two-skeleton of \mathcal{V}. Suppose that C and D are components of $M-\left(B^{\mathcal{V}} \cup B_{\mathcal{V}}\right)$, each containing a cusp of M. Thus, by Proposition 9.16, each of C and D contains exactly one cusp of M. Suppose that F is a two-cell of the natural cell structure on $B^{\mathcal{V}} \cup B_{\mathcal{V}}$. Suppose that F meets C on one side and D on the other. Then we can find a proper arc dual to F, and thus disjoint from one of $B^{\mathcal{V}}$ or $B_{\mathcal{V}}$. This is a contradiction.
10.7. Components. We must show that every component C of M $\left(B^{\mathcal{V}} \cup B_{\mathcal{V}}\right)$ is either a dynamic shell or a pinched tetrahedron.
10.7.1. Dynamic shell. Suppose first that C contains one (thus by Proposition 9.16, exactly one) cusp c of M. Let v be a model of c where v is an ideal vertex of a red crimped shearing region U. Let $E=E(v, U)$ be the component of $U-\left(B^{\mathcal{V}} \cup B_{\mathcal{V}}\right)$ incident to v. Our goal now is to prove the following.

- E is a three-ball,
- the frontier of E in U consists of two vertical "half-bigons" (one from each of $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$),
- the boundary of E in $\partial^{+} U$ consists of two triangular faces, both meeting a single helical edge of $\partial^{+} U$, and
- the boundary of E in $\partial^{-} U$ consists of two triangular faces, both meeting a single helical edge of $\partial^{-} U$.
Fix a cross-section H of U. Looking into H from the vertex v, we see a siding of τ_{H} meeting the boundary of H to our left and a siding of τ^{H} meeting the boundary of H to our right. Appealing Lemma 9.18, the frontier of $H \cap E$ consists of branches of τ^{H} and τ_{H} intersecting precisely once. Stacking the cross-sections together, shows that E is a three-ball with the desired properties.

A similar argument applies for a blue shearing region U. Here the half-bigon of $B^{\mathcal{V}}$ is to the left, and the half-bigon of $B_{\mathcal{V}}$ is to the right.

Taking the union of the three-balls $E(v, U)$, as v ranges of the models of c, gives C. The half-bigons glue to give the stable and unstable faces of C. Note that any one half-bigon meets only finitely many others because the edges of \mathcal{V} have finite degrees. Therefore, the $E(v, U)$ glue together to form a dynamic shell.
10.7.2. Pinched tetrahedron. Suppose instead that the component C does not contain any cusp c of M. We must show that C is a pinched tetrahedron. To show this, we will need the following definition and lemma.
xtendedCrossSectipr4

Definition 10.8. Suppose that $H \subset U$ is a cross-section. We define the bigon extension \vec{H} as follows. The boundary of H consists of some number of longitudinal crimped edges. Each such edge e cobounds a crimped bigon B with a coloured edge e^{\prime}. For each edge e we glue a new copy of B onto H to obtain \bar{H}.

Note that the bigon extension \vec{H} may contain many copies of the same crimped bigon. For example, Figure 8.2A shows several extended cross-sections, each extended with multiple copies of the two crimped bigons incident to the single red longitudinal edge. (Note however that in that figure we have not drawn the intersection of the branched surfaces with these crimped bigons.)

Lemma 10.9. Suppose that H is a cross-section of a crimped shearing region U, meeting C. Then each component of the intersection $C \cap \vec{H}$ is either a trigon or a quadragon, as defined in Definition 4.5. Moreover, as H moves up through U, components change according to the sequence given in Definition 4.5.
Proof. Suppose that U is a red crimped shearing region. Let $\left(H_{t} \mid t \epsilon\right.$ [0,1]) be the cross-sections of U. Thus $H_{0}=\partial^{-} U$.

Claim. Suppose that R is such a component of $C \cap \bar{H}_{0}$. Then R is either a trigon or a quadragon.

Proof. First suppose that R is entirely contained within $H=H_{0}$. From the first four items of Lemma 9.15, the boundary of R consists of three or four branch lines from τ^{H} and τ_{H}. If there are four then they alternate between τ^{H} and τ_{H} and R is a quadragon. If there are three then two lie in the same train track and meet at a track-cusp. Thus R is a trigon.

Now suppose that R is not entirely contained within H. By Lemma 9.15(5), the component R meets a crimped bigon B and contains the midpoint of the crimped edge. The frontier of R in B consists of exactly one arc from each of τ^{B} and τ_{B}, meeting at a point. The claim now follows in a manner similar to the previous paragraph.

More generally, suppose that the claim holds with H_{t} replacing H_{0}. Let $\tau^{t}=H_{t} \cap B^{\mathcal{V}}$ (green) and $\tau_{t}=H_{t} \cap B_{\mathcal{V}}$ (purple). Remark 10.5 tells us that as t increases, there are only two combinatorial changes:
(1) Track-cusps of τ^{t} move forwards through branches of τ_{t}.
(2) Track-cusps of τ_{t} move backwards through branches of τ^{t}.

The first move simultaneously creates a new green trigon and converts a green trigon into a quadragon. The second move simultaneously deletes a purple trigon, and converts a quadragon into a purple trigon. These
are both moves between stages in the life of a pinched tetrahedron, as given in Definition 4.5, as required. This proves Lemma 10.9.

Suppose that C is a complementary component of $M-\left(B^{\mathcal{V}} \cup B_{\mathcal{V}}\right)$ which does not contain a cusp of M. We now show that the crosssections that meet C undergo the above moves, and thus C is a pinched tetrahedron.

Let H be a cross-section through a crimped shearing region U, and let R be a region of $\bar{H}-\left(B^{\mathcal{V}} \cup B_{\mathcal{V}}\right)$. Using Proposition 9.16 twice, gives track-cusps s^{R} and s_{R} of τ^{H} and τ_{H} respectively, so that R is a subset of the component of $\vec{H}-\tau^{H}$ containing s^{R}, and is also a subset of the component of $\bar{H}-\tau_{H}$ containing s_{R}.

First suppose that R is a green trigon. Thus R contains s^{R}. We must show that this track-cusp eventually crosses a purple arc, turning R into a quadragon. By Lemma 9.19, moving up, (the branch line containing) s^{R} eventually enters the bottom of a crimped shearing region V through a toggle square. If the region R persists into $\partial^{-} V$, and is still a green trigon, then moving up through Θ_{V}, the track-cusp s^{R} splits forwards and hits the purple arc given by Lemma 9.15(5). This turns R into a quadragon.

Moving down instead of up, a similar argument shows that every green trigon is born at some point. Similar arguments also show that as we move up purple trigons eventually die, and that as we move down, purple trigons eventually turn into quadragons.

Lastly we must show that no quadragon can remain a quadragon forever. Suppose that Q is a quadragon in a cross-section H. The green sides of Q determine a track-cusp s^{Q}. As we move down, (the branch line containing) s^{Q} is eventually inside a toggle square within a cross-section $K=\partial^{-} U$. Using Lemma 9.15(5), we observe that the component of $\bar{K}-B^{\mathcal{V}}$ containing s^{Q} has no quadragons. Therefore Q is no longer a quadragon. A similar argument shows that quadragons must eventually become trigons as we move upwards.

This completes the proof that components of $M-\left(B^{\mathcal{V}} \cup B_{\mathcal{V}}\right)$ are either dynamic shells or pinched tetrahedra.
10.10. Transience. Suppose that F is a component of $B_{\mathcal{V}}-B^{\mathcal{V}}$. Choose a point $x \in F$. Let U be a crimped shearing region containing x, and let H be the cross-section of U containing x. Proposition 9.16 implies that there is one ideal vertex v of U in the component of $H-\tau^{H}$ containing x. Let c be the cusp of M containing v. By Section 10.7, there is a unique dynamic shell C containing c.

Separating $C \cap H$ from x within $H-\tau^{H}$ is a finite collection of regions R_{i} of $H-\left(\tau^{H} \cup \tau_{H}\right)$. As we flow upwards, even when we move from one shearing region to the next, each of these regions evolves according to Definition 4.5. In particular they all eventually collapse. Moreover, by Remark 10.5, no new regions are created between (the image of) x and C. So the image of x eventually flows into an unstable face of C. The same argument applies to components of $B^{\mathcal{V}}-B_{\mathcal{V}}$, flowing downwards.
10.11. Canonicity and complexity. In our construction, we make no arbitrary choices. Thus split position is canonical. In particular, if one changes the orientation of the manifold or reverses the direction of the flow then only names will change and not the underlying combinatorics of the dynamic pair.

Now suppose that \mathcal{V} is a finite transverse veering triangulation. Let $|\mathcal{V}|$ denote the number of veering tetrahedra. In building the shearing decomposition (Theorem 5.10), we produce $2|\mathcal{V}|$ half-tetrahedra and perform $2|\mathcal{V}|$ gluings. This requires linear time. In producing the crimped shearing decomposition (Section 5.17), the work is now proportional to the sum of the edge degrees, which is $6|\mathcal{V}|$. This again requires linear time.

To specify the split positions of $B^{\mathcal{V}}$ and $B_{\mathcal{V}}$, it suffices to determine the position of every track-cusp c in each horizontal cross-section H appearing in the Θ-decomposition of every crimped shearing region U. The branch intervals of B^{U} lie close to the sidings except, possibly, in the lower half of Θ_{U}. Taking $H=\partial^{-} U$, and supposing that the siding for c lies in a toggle square, we find that c splits forward in the (space) neighbourhood splitting described in Section 9.5. The path of c is exactly the train route $\beta(c)$ described in Section 9.1. The naive algorithm given there takes time at most quadratic in the degree of the relevant longitudinal edge of U. Since the longitudinal edges partition the sum of the edge degrees, the total complexity of computing the train routes $\beta(c)$ is at most quadratic.

We now bound the number of edges in the dynamic train track $B^{\mathcal{V}} \cap B_{\mathcal{V}}$. Suppose that $\left(U_{i}\right)_{i=1}^{m}$ is a collection of blue crimped shearing regions with the following properties.
(1) $U=U_{1}$ has at least one toggle square in $\partial^{-} U$.
(2) $V=U_{m}$ has at least one toggle square in $\partial^{+} V$.
(3) For $i=1,2, \ldots, m-1$, the upper boundary of U_{i} equals the lower boundary of U_{i+1}.
(4) There are no toggle squares in this shared cross-section.
(5) The length of U, and thus of all of the U_{i}, is n.

We allow m to be one (and thus $U=V$). We also allow n to be one.

Let H be the lower boundary of $\Theta(U)$. The track τ_{H} has $2 n$ branches (outside of a small neighbourhood of the sidings). Each of these branches is a line segment in H. By Lemma $9.17(3)$, each branch of τ_{H} above a toggle square has projection to $\partial^{-} U$ contained within that toggle square. The remaining branches of τ_{H} have projections that avoid the toggle squares. Thus no branch of τ_{H} wraps all the way around H.

Let K be the upper boundary of $\Theta(V)$. By a similar argument, τ^{K} has $2 n$ branches (outside of a small neighbourhood of the sidings). Again, each is a line segment in K. Furthermore, all of these are either below toggle squares or have slope greater than $1 / n$. The track τ^{H} is obtained from τ^{K} by shearing. After moving from K to the lower boundary of $\Theta(V)$, branches below toggle squares now have large positive slope while all other branches become slightly shallower, and so all branches now have slope greater than $1 /(n+1)$. Pushing down through $\left(U_{i}\right)$, we arrive at H. By induction, the branches of τ^{H} have slope greater than $1 /(n+m)$. Thus any branch of τ^{H} wraps at most $(m+n) / n$ times around H. Thus each branch of τ^{H} meets each branch of τ_{H} at most $[(m+n) / n]+1$ times. There are $(2 n)^{2}$ such pairs, for a total of at most $4 n(m+2 n)$ intersections. This counts all edges of the dynamic train track above Θ_{U} and below Θ^{V}. Edges of the dynamic train track either continue or merge in pairs as we descend from H to $\partial^{-} U$. Thus there are at most an additional $4 n(m+2 n)$ edges in Θ_{U}. Likewise there are at most an additional $4 n(m+2 n)$ edges in Θ^{V}.

There are now two cases. If $m \geq n$ then the size of the dynamic train track in $\cup_{i} U_{i}$ is $O(n m)$; this is proportional to the number of tetrahedra in $\cup_{i} U_{i}$. If $m \leq n$ then the size is instead $O\left(n^{2}\right)$; this is bounded above by the square of the number of tetrahedra in $\cup_{i} U_{i}$. Summing, we deduce that the size of the dynamic train track is at most quadratic in $|\mathcal{V}|$.

This completes the proof of Theorem 10.1.

Question 10.12. There is a sequence $\left(\mathcal{V}_{k}\right)_{k=2}^{\infty}$ of veering triangulations with the following properties.

- \mathcal{V}_{k} has k tetrahedra.
- \mathcal{V}_{k+1} is obtained from \mathcal{V}_{k} by horizontal veering Dehn surgery (along a Möbius band) [16].
- The size of the dynamic train track of \mathcal{V}_{k} grows quadratically with k.

1501 Thus we may ask if there is some other canonical construction of a 1502 dynamic pair which yields a smaller dynamical flow graph.

Appendix A. From equatorial squares to maximal RECTANGLES

For our future work, we require an analysis of maximal rectangles in the leaf space for the "flow" associated to a given veering triangulation. We proceed as follows.

Suppose that M is a three-manifold. Suppose that \mathcal{V} is a veering triangulation of M. Let \mathcal{U} be the associated crimped shearing decomposition of M, as defined in Section 5.17.

Definition A.1. Suppose that t is a veering tetrahedron of \mathcal{V}. Let $E=E(t)$ be its equatorial square. Let e_{0}, e_{1}, e_{2}, and e_{3} be the veering edges of E. Recall that $E_{c}(\mathcal{V})$ is the crimped branched surface. Let n_{i} be a small regular neighbourhood of e_{i} taken in $E_{c}(\mathcal{V})$. Let $s_{i}=n_{i}-E$.

Let U and V be the crimped shearing regions above and below s_{i} respectively. Let H_{i} be the component of $\partial^{-} U \cap \partial^{+} V$ containing s_{i}. We define $X=X(t)=E \cup\left(\cup_{i} H_{i}\right)$ to be the cross associated to the tetrahedron t.

As usual, we define $\tau^{X}=X \cap B^{\mathcal{V}}$, and similarly define τ_{X}. These are train tracks properly embedded in X. Let $\tau(X) \subset X$ be the graph dual to the union $\tau^{X} \cup \tau_{X}$. In a small abuse, we place vertices of $\tau(X)$, if dual to a cusp region, at the associated cusp. We colour an edge e^{\prime} of $\tau(X)$ green or purple as its dual edge e lies in τ_{X} or τ^{X} respectively. A rectangle in X is an embedded disk in X whose sides in $\tau(X)$ alternate in colour exactly four times.

Lemma A.3. There is a unique rectangle $R=R(t)$ in $X=X(t)$ which contains the vertices of t.

Proof. Fix an edge e of the equatorial square $E=E(t)$. Let c and d be the cusps at the two ends of e. Let Y be the component of $X-e$ not containing E. Suppose that the siding immediately adjacent to c, in Y, lies in τ^{Y}. Thus the siding immediately adjacent to d, in Y, lies in τ_{Y}. By Proposition 9.16 there is a (unique) component F of $Y-\tau_{Y}$ containing c. Similarly there is a component G of $Y-\tau^{Y}$ containing d. By Lemma 9.15(1) and (2), the regions F and G intersect in a quadragon. We deduce that there is a path in the dual graph (to $\tau^{Y} \cup \tau_{Y}$) from c to d that changes colour, from purple to green, exactly once. See Figure A.2.

Suppose that the siding immediately adjacent to c, in Y, instead lies in τ_{Y}. Then a similar argument finds a path in the dual graph from c to d that changes colour, from green to purple, exactly once.

Figure A.2. The first row shows the cross for the equatorial square for tetrahedron 1 in fLLQccecddehqrwjj_20102. The third row shows the cross for the equatorial square for tetrahedron 0 . In both cases the maximal rectangle is shaded in grey. The second row shows the T-shape for the unique face shared by tetrahedra 1 and 0 . The face rectangle is shaded in dark grey. The vertices and edges of the dual graph are shown only on the boundary of the rectangles. The cusps are shown with black dots while other regions are indicated with yellow dots. Corners of the rectangles are drawn with larger yellow dots.

Doing the above for all four edges of E gives the boundary of the desired rectangle $R=R(t)$. Since ∂R contains one cusp in each of its four (monochromatic) sides, R is maximal and thus unique.

Note that $R(t)$ receives a cellulation from its intersection with τ^{X} and τ_{X}. We use $R^{(1)}(t)$ to denote the edges of $R(t)$ belonging to τ^{X}. Similarly, $R_{(1)}(t)$ denotes the edges of $R(t)$ belonging to τ_{X}. We now turn to constructing rectangles for the faces of \mathcal{V}.

Definition A.4. Suppose that f is a veering face of \mathcal{V}. Let e_{0}, e_{1}, and e_{2} be its veering edges. Two of these, say e_{1} and e_{2} are the same colour. Let c_{i} be the vertex of f opposite e_{i}. Let W^{\prime} be the shearing region (in the shearing decomposition), containing f. Let W be the corresponding crimped shearing region. The edges e_{1} and e_{2} are helical in ∂U; also there is a longitudinal crimped edge e_{0}^{\prime} in ∂U that cobounds a crimped bigon B with e_{0}. Let n_{0} be a small regular neighbourhood of e_{0} taken in $E_{c}(\mathcal{V})$. Let $s_{0}=n_{0}-B$.

Let U and V be the crimped shearing regions above and below s_{0} respectively. Let H_{0} be the component of $\partial^{-} U \cap \partial^{+} V$ containing s_{0}. We take H to be the central cross-section of $\Theta(W)$. We define $T=T(f)=H \cup H_{0}$ to be the T-shape associated to f.

The proof of the following is similar to that of Lemma A.3, replacing Lemma 9.15 by Lemma 9.17 .

Lemma A.5. There is a unique rectangle $R=R(f)$ in $T=T(f)$ which contains the vertices of f.

Again, $R(f)$ receives a cellulation from the tracks τ^{T} and τ_{T}.
Proposition A.6. Suppose that f is an upper face of the tetrahedra t in \mathcal{V}. Let $T=T(f)$ and $X=X(t)$. The natural flow from $R(f) \subset T$ to
$R(t) \subset X$ takes

- distinct cusps to distinct cusps;
- vertices to vertices;
- edges of $R^{(1)}(f)$ to edges of $R^{(1)}(t)$;
- edges of $R_{(1)}(f)$ to vertices, or to edges of $R_{(1)}(t)$; and
- faces of $R(f)$ to either edges of $R^{(1)}(f)$, or to faces of $R(t)$.

There is a similar statement when f is a lower face of t.
References
[1] Ian Agol. Ideal triangulations of pseudo-Anosov mapping tori. In Topology and geometry in dimension three, volume 560 of Contemp. Math., pages 1-17. Amer. Math. Soc., Providence, RI, 2011, arXiv:1008.1606. [1, 5]
[2] Ian Agol and Chi Cheuk Tsang. Dynamics of veering triangulations: infinitesimal components of their flow graphs and applications, 2022, arXiv:2201.02706. [3, 26]
[3] Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-dimensional topology, 1999-2021. [26]
[4] Danny Calegari. Bounded cochains on 3-manifolds, 2001. [3]
[5] Danny Calegari. Foliations and the geometry of 3-manifolds. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2007. [3, 6, 8]
[6] McA. Gordon Cameron. The theory of normal surfaces. Based on lecture notes; typeset by Autumn Kent. [7]
[7] Baris Coskunuzer. Uniform 1-cochains and genuine laminations. Topology, 45(4):751-784, 2006. [3]
[8] Marc Culler, Nathan Dunfield, and Jeffrey R. Weeks. SnapPy, a computer program for studying the geometry and topology of three-manifolds. [21]
[9] Sérgio R. Fenley. Foliations with good geometry. J. Amer. Math. Soc., 12(3):619676, 1999. [3]
[10] Steven Frankel, Saul Schleimer, and Henry Segerman. From veering triangulations to link spaces and back again. Preprint. [3, 7]
[11] Andreas Giannopolous, Saul Schleimer, and Henry Segerman. A census of veering structures. [19, 21, 26]
[12] Craig D. Hodgson, J. Hyam Rubinstein, Henry Segerman, and Stephan Tillmann. Veering triangulations admit strict angle structures. Geom. Topol., 15(4):20732089, 2011, arXiv:1011.3695. [1, 4, 5, 26]
[13] Marc Lackenby. Taut ideal triangulations of 3-manifolds. Geom. Topol., 4:369395,2000 , arXiv:math/0003132. [4, 7]
[14] Lee Mosher. Laminations and flows transverse to finite depth foliations. Preprint, 1996. $[1,3,8,9,10,12]$
[15] R. C. Penner and J. L. Harer. Combinatorics of train tracks, volume 125 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. [5]
[16] Saul Schleimer and Henry Segerman. Veering Dehn surgery. In preparation. [19, 60]
[17] Saul Schleimer and Henry Segerman. Essential loops in taut ideal triangulations. Algebr. Geom. Topol., 20(1):487-501, 2020, arXiv:1902.03206. [3]
[18] Saul Schleimer and Henry Segerman. From loom spaces to veering triangulations, 2021, arXiv:2108.10264. [3]
[19] William P. Thurston. Geometry and topology of three-manifolds. Lecture notes, 1978. [3, 5]
[20] Chi Cheuk Tsang. Constructing Birkhoff sections for pseudo-Anosov flows with controlled complexity, 2022, 2206.09586. [2]
[21] Chi Cheuk Tsang. Veering branched surfaces, surgeries, and geodesic flows, 2022, 2203.02874. [19]

