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Abstract. From a transverse veering triangulation (not neces-
sarily finite) we produce a canonically associated dynamic pair of
branched surfaces. As a key idea in the proof, we introduce the
shearing decomposition of a veering triangulation.

1. Introduction4

Mosher, inspired by work of (and with) Christy [14, page 5], and5

Gabai [14, page 4], introduced the idea of a dynamic pair of branched6

surfaces. These give a combinatorial method for describing and working7

with pseudo-Anosov flows in three-manifolds. Very briefly, suppose that8

Φ is such a flow. Then Φ admits a transverse pair of foliations FΦ9

and FΦ, called weak stable and weak unstable, respectively. Carefully10

splitting both to obtain laminations, and then carefully collapsing, gives11

a dynamic pair of branched surfaces BΦ and BΦ. These again intersect12

transversely, and have other combinatorial properties that allow us to13

reconstruct Φ (up to orbit equivalence).14

Agol, while investigating the combinatorial complexity of mapping15

tori, introduced the idea of a veering triangulation [1, Main construction].16

For any pseudo-Anosov monodromy ϕ he provides a canonical periodic17

splitting sequence of stable train tracks (τϕi ). This gives a branched18

surface Bϕ in the mapping torus M(ϕ). Equally well, the splitting19

sequence of unstable tracks (τ iϕ) gives rise to the branched surface Bϕ.20

More generally, even when not layered [12, Section 4], a veering21

triangulation V admits upper and lower branched surfaces BV and BV ,22

obtained by gluing together standard pieces within each tetrahedron23

(Section 2.7). Our main result is that these may be isotoped into split24

position and there form a dynamic pair.25

Theorem 10.1. Suppose that V is a transverse veering triangulation.26

In split position, the upper and lower branched surfaces BV and BV27

form a dynamic pair; this position is canonical. If V is finite then28
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2 SAUL SCHLEIMER AND HENRY SEGERMAN

split position is produced algorithmically in polynomial time; also the29

dynamic train track BV ∩BV has at most a quadratic number of edges.30

Before giving an outline of the proof of Theorem 10.1, we highlight31

the main difficulty.32

Rem:Difficulty Remark 1.1. Suppose that BV and BV are in normal position within33

each tetrahedron. This is locally determined, and any other locally34

determined position can be obtained from normal position by local35

moves. In normal position, the branched surfaces may coincide on large36

regions, spanning many tetrahedra; see Section 2.7. Such a region may37

contain a vertical Möbius band; if so then any small isotopy making BV38

and BV transverse produces “bad” components of M − (BV ∪BV). We39

give more details in Section 4.13 and an example in Figure 4.14b. ◇40

A more global procedure is thus required. To guide this, we define41

in Section 5 the shearing decomposition associated to V. This is a42

decomposition of M into solid tori (and possibly solid cylinders in the43

non-compact case).44

Theorem 5.10. Suppose that V is a veering triangulation (not nec-45

essarily transverse or finite). Then there is an associated shearing46

decomposition of M canonically associated to V.47

Rem:Section Remark 1.2. The shearing decomposition is of independent interest.48

For example Theorem 5.10 is used by Tsang [20, Corollary 1.2] to show49

that a transitive pseudo-Anosov flow on a closed three-manifold admits50

a Birkhoff section with at most two boundary components on orbits of51

the flow. ◇52

With Theorem 5.10 in hand, we give a sequence of coordinatisations53

inside of the shearing regions. In particular each shearing region is54

foliated by horizontal cross-sections ; see Definition 6.3. In Sections 7,55

8, and 9 we give a sequence of isotopies to improve the positioning56

of BV and BV relative to each other and relative to the horizontal57

cross-sections.58

Rem:SemiLocal Remark 1.3. Our construction is “semi-local” in the following sense.59

Suppose that V and V ′ are veering triangulations of manifolds M and60

M ′. Suppose that U and U ′ are isomorphic red components (maximal61

connected unions of crimped red shearing regions). Then the isomor-62

phism carries the dynamic pair for V to that of V ′ (as intersected with63

U and U ′). ◇64

Finally, in Section 10 we verify that BV and BV , in their final split65

position form a dynamic pair.66
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Sec:Other
1.4. Other work. After Mosher’s monograph [14], other appearances67

of dynamic pairs in the literature include the following. Fenley [9,68

Section 8] gives an expostion of various examples due to Mosher and69

proves that leaves of the resulting weak stable and unstable folations70

have the continuous extension property. Given a uniform one-cochain,71

Coskunuzer [7, Main Theorem] follows Calegari [4, Theorem 6.2] in72

producing various laminations, which are collapsed to give a dynamic73

pair. Calegari [5, Sections 6.5 and 6.6] gives a useful exposition of74

dynamic pairs and their relation to pseudo-Anosov flows. In particular75

see his version of examples of Mosher [5, Example 6.49].76

Closely related to our overall program is recent work of Agol and77

Tsang [2, Theorem 5.1]. Starting from a veering triangulation (with78

appropriate framing), they construct a pseudo-Anosov flow on the filled79

manifold. They do not use dynamic pairs; instead they apply a different80

construction of Mosher [14, Proposition 2.6.2]. They identify and remove81

infinitesimal cycles, which are similar in spirit to the vertical Möbius82

bands mentioned above. Their construction relies on making certain83

choices, so it is not canonical. Also, it is not clear if the resulting84

pseudo-Anosov flow recovers the original veering triangulation85

1.5. Future work. This is the fourth paper in a series of five [17,86

18, 10] providing an exact dictionary between veering triangulations87

(framed with appropriate surgery coefficients) and pseudo-Anosov flows88

without perfect fits. Theorem 10.1 together with Mosher’s work [14,89

Theorem 3.4.1] gives one direction of the dictionary. In service of90

our future work, in Appendix A we prove that the “leaf space” of the91

resulting pseudo-Anosov flow has maximal rectangles corresponding92

to (via the construction given in [18, Section 5.8]) the original veering93

tetrahedra.94

Acknowledgements. We thank Lee Mosher for enlightening conversa-95

tions regarding dynamic pairs.96

2. Triangulations, train tracks, and branched surfaces97
Sec:TriangulationsSec:IdealTriangulation

2.1. Ideal triangulations. Suppose that M is a connected three-98

manifold without boundary. Suppose that T is a triangulation: a99

collection of model tetrahedra and a collection of face pairings. (We do100

not assume here that T is finite.) We say that T is an ideal triangulation101

of M if the quotient ∣T ∣, minus its zero-skeleton, is homeomorphic to102

M [19, Section 4.2]. In this case, the degree of each edge of T is103

necessarily finite. See Figure 2.2 for an example.104
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Figure 2.2. An ideal triangulation of the complement of the figure-eight
knot in the three-sphere. Each edge is equipped with a colour – red (dotted)
or blue (dashed) – and an orientation. These determine the face pairings. The
flattening (into the plane) makes the triangulation taut and transverse. Note
that the taut structure and the orientation determine the veering structure
and thus the colours.Fig:VeerFigEight

A model tetrahedron t is taut if every model edge is equipped with a105

dihedral angle of zero or π, subject to the requirement that the sum106

of the three dihedral angles at any model vertex is π. It follows that107

there are exactly two model edges in t with angle π; these do not share108

any vertex of t. The remaining four model edges, with angle zero, are109

called equatorial. A taut tetrahedron can be flattened into the plane110

with its equatorial edges forming its boundary; see Figure 2.2. A taut111

tetrahedron t contains an equatorial square: a disk properly embedded112

in t whose boundary is the four equatorial edges. A ideal triangulation113

T of M is a taut triangulation if the model tetrahedra are taut and, for114

every edge e in ∣T ∣, the sum of the dihedral angles of the models of e is115

2π [12, Definition 1.1].116

A taut model tetrahedron t is transverse if every model face is117

equipped with a co-orientation (in or out of t), subject to the requirement118

that co-orientations agree across model edges of dihedral angle π and119

disagree across model edges of dihedral angle zero. See Figure 2.3a. A120

taut triangulation T of M is a transverse taut triangulation if every121

model tetrahedron is transverse taut and, for every face f in ∣T ∣, the122

associated face pairing preserves the co-orientations of the two model123

faces [12, Definition 1.2], [13, page 370].124

Recall that all model tetrahedra are oriented. A taut model tetrahe-125

dron t is veering if every model edge is equipped with a colour, red or126

blue, subject to the following.127
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0 0

0

0

π

π

Fig:TransverseTet
(a) Co-orientations and angles
in a transverse taut tetrahe-
dron.

Fig:TransverseEdge
(b) Co-orientations around edges
can be deduced from the co-
orientations on the faces of the
model tetrahedra.

Figure 2.3Fig:Transverse

● Viewing any model face (from the outside of the tetrahedron)128

the non-equatorial edge is followed, in anticlockwise order, by a129

red equatorial edge.130

Suppose that t is a veering tetrahedron. If the two non-equatorial edges131

of t are both red (blue) then we call t a red (blue) fan tetrahedron. If132

the two non-equatorial edges of t have different colours then we call t a133

toggle tetrahedron. See Figure 2.4a for all four of the possible veering134

model tetrahedra. Note that the taut structure and the orientation of t135

determine the colouring of its equatorial edges.136

Suppose now that T is a transverse taut triangulation of M . Then T137

is a transverse veering triangulation if there is a colouring of the edges of138

∣T ∣making all of the model tetrahedra veering [1, Main construction], [12,139

Definition 1.3]. By the previous paragraph, when such a colouring exists140

it is unique. Also, if the colouring existsn then the orientations of141

the model tetrahedra of T induce an orientation on M . The possible142

gluings between the various kinds of veering tetrahedra are recorded in143

Figure 2.4a.144

Sec:TrainTracks
2.5. Train tracks. For background on train tracks we refer to [15]145

as well as [19, Chapter 8]. Suppose that V is a transverse veering146

triangulation. Suppose that f is a face of V. Let t and t′ be the147

tetrahedra above and below f , respectively. We now define the upper148

and lower train tracks τ f and τf in f . The upper track τ f consists of149

one switch at each edge midpoint and two branches perpendicular to150

the edges [1, Figure 11]. The two branches meet only at the switch151



6 SAUL SCHLEIMER AND HENRY SEGERMAN

Fig:UpperGluingAutomaton
(a) Upper tracks.

Fig:LowerGluingAutomaton
(b) Lower tracks.

Figure 2.4. In both subfigures, above and below we have toggle tetrahedra
while left and right we have, respectively, blue and red fan tetrahedra. A black
arrow indicates a possible gluing from an upper face of the initial tetrahedron
to a lower face of the terminal. Note that fan tetrahedra of different colours
never share a face. Finally, inside each tetrahedron t on the left (right) we
draw the branched surface Bt (Bt).Fig:GluingAutomaton

on the non-equatorial edge of t (the tetrahedron above f). The lower152

track τf is defined similarly, except the two branches now meet at the153

switch on the non-equatorial edge of t′ (the tetrahedron below f). We154

call the region immediately between the two branches, adjacent to the155

shared switch, a track-cusp. See Figure 2.6. Starting in Section ?? we156

also discuss slightly more general train tracks in slightly more general157

surfaces.158

f

Fig:TwoTautTetrahedra
(a) The two taut tetrahe-
dra (above and below) ad-
jacent to a face f .

τ f

Fig:UpperTrack
(b) The upper train
track τf .

τf

Fig:LowerTrack
(c) The lower train
track τf .

Figure 2.6Fig:UpperLowerTracks

Sec:BranchedSurfaces
2.7. Branched surfaces. We refer to [5, Section 6.3] for general back-159

ground on branched surfaces.160
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Suppose that M is an oriented three-manifold equipped with a trans-161

verse veering triangulation V . Suppose that t is a model tetrahedron of162

V . The four faces (fi) of t contain their upper tracks τ i. These form a163

graph in ∂t, transverse to the edges of t. This graph bounds a normal164

quadrilateral and also a pair of normal triangles [6, page 4]. We arrange165

matters so that the three normal disks meet only along the lower faces166

of t, so that they are transverse to the equatorial square of t, and so167

that the union of the normal disks is a branched surface, denoted Bt.168

We call Bt the upper branched surface in t. We define Bt, the lower169

branched surface in t similarly, using the lower tracks τi instead of the170

upper. We finally define BV = ∪tBt and BV = ∪tBt to be the upper and171

lower branched surfaces for V in normal position. See Figure 2.9a.172

We define the horizontal branched surface B(V) to be the union of173

the faces of V. Here we isotope the faces of V, near their boundaries,174

to meet the one-skeleton of V as shown in Figure 2.3b. The horizontal175

branched surface B(V) is taut [13, page 374]; this explains the name176

taut ideal triangulations.177

The branch locus Σ = Σ(B) of a branched surface B is the subset of178

non-manifold points. Each component of B −Σ is a sector of B. For179

BV (and BV) a generic point of its branch locus is locally adjacent to180

exactly three sectors. The vertices of BV (and BV) are the points of181

the branch locus locally meeting six sectors. Note that, since we have182

removed the zero-skeleton from ∣V ∣, the horizontal branched surface183

B(V) has no vertices [13, page 371].184

We may move BV into dual position by applying a small upward185

isotopy of BV . See Figure 2.9b. This done, every tetrahedron t of V186

contains exactly one vertex of BV and every face of V contains exactly187

one point of the branch locus. We arrange matters so that the vertex of188

BV in t is halfway between the lower edge and the equatorial square of189

t. Applying a small downward isotopy to BV produces its dual position.190

We again arrange matters so that the vertex of BV in t is halfway191

between the upper edge (of t) and the equatorial square.192

Rem:Dual Remark 2.8. In dual position, both BV and BV are isotopic to the dual193

two-skeleton of V . See [10, Remark 6.4]. ◇194

We now restate [10, Corollary 6.12].195

Lem:DualMeetsToggles Lemma 2.10. Suppose that M is an oriented three-manifold equipped196

with a transverse veering triangulation V. In the universal cover, every197

subray of every branch line of B̃V and of B̃V , in dual position, meets198

toggle tetrahedra. □199
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Fig:NormalUpperBranchedSurface
(a) Normal position.

Fig:DualUpperBranchedSurface
(b) Dual position.

Figure 2.9. Two positions of the upper branched surface in a tetrahedron.Fig:UpperBranchedSurface

3. Dynamics200
Sec:Dynamics

Suppose that M is a connected oriented three-manifold equipped201

with a riemannian metric. We follow Mosher [14, page 36] for the next202

two definitions.203

Def:DynamicVectorField Definition 3.1. A dynamic vector field X on M is simply a non-204

vanishing vector field. If M has boundary then we require X to be205

tangent to the boundary of M . ◇206

The dynamic vector field X gives us a local notion of upwards (the207

direction of X).208

Def:DynamicBranchedSurface Definition 3.2. Suppose that M is a three-manifold and X is a dy-209

namic vector field. Suppose that B∗ ⊂ M is a properly embedded210

branched surface. We say that B∗ is a stable dynamic branched surface211

with respect to X if it has the following properties.212

● For any point p of any sector of B∗, there is a tangent to the213

sector, at p, which makes a positive dot product with X. Choos-214

ing the largest such gives a vector field X∗ on B∗. Integrating215

X∗ gives the upwards semi-flow.216

● X∗ is transverse to the branch locus of B∗ and points from the217

side with fewer sheets to the side with more sheets.218

● X∗ is never be orthogonal to the branch locus.219

The only change needed to define an unstable dynamic branched surface220

B∗ is that X∗ points from the side with more sheets to the side with221

fewer. ◇222

Remark 3.3. The terms stable and unstable come from the fact that any223

pseudo-Anosov flow Φ leads to a pair of two-dimensional foliations [5,224

page 226]. These are the weak stable foliation FΦ and the weak unstable225

foliation FΦ. If L is a leaf of FΦ then any two flow lines ℓ and ℓ′ in L226
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are asymptotic in forward time. Finally, the stable branched surface227

BΦ carries FΦ. ◇228

Suppose that t is one of the four model transverse veering tetrahedra229

(shown in Figure 2.4). Let Xt be a non-vanishing vector field in t with230

the following properties.231

● The vector field Xt is orthogonal to each face of t.232

● Each orbit of Xt connects a lower face of t with an upper face.233

● The branched surfaces Bt and Bt (in dual position) are stable234

and unstable with respect to Xt.235

Now suppose that V is a transverse taut veering triangulation. We236

define XV by gluing together the vector fields Xt.237

Cor:DualDynamic Corollary 3.4. The upper and lower branched surfaces BV and BV238

(in dual position) are, with respect to XV , stable and unstable dynamic239

branched surfaces. □240

4. Dynamic pairs241
Sec:DynamicPairs

In this section, following Mosher [14, page 52], we give our definition242

of a dynamic pair of branched surfaces. This done, we discuss the main243

difficulties in proving Theorem 10.1.244

4.1. Complementary components. Suppose that M is a connected245

oriented three-manifold equipped with a riemannian metric. Suppose246

that X is a dynamic vector field on M , as in Definition 3.1. Suppose247

that B∗ and B∗ are stable and unstable dynamic surfaces with respect248

to X. Suppose further that B∗ and B∗ meet transversely.249

Def:PinchedTetrahedron Definition 4.2. Suppose that C is a component of M − (B∗ ∪ B∗).250

We call C a pinched tetrahedron if the closure of C (in the induced251

path metric on C) is a three-ball, which meets four triangles, with two252

belonging to B∗ − B∗ and two belonging to B∗ − B∗. We call these253

four triangles the faces of C. Each pair of faces meets in a simple254

arc; altogether these six arcs form the one-skelet one-skeleton of a255

tetrahedron. The two faces from B∗ −B∗ meet in a single arc of the256

branch locus of B∗. Similarly, the two faces from B∗ −B∗ meet in a257

single arc of the branch locus of B∗. See Figure 4.3a. ◇258

Definition 4.4. We call a foliation of (a three-dimensional region of)259

M horizontal if it is everywhere transverse to X, to B∗, and to B∗. ◇260

The birth, life, and death of a pinched tetrahedron play out on the261

two-dimensional leaves of such a horizontal foliation.262
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Fig:PinchedTet
(a) A pinched tetrahedron.

Fig:LifeAndDeath
(b) Birth, life,
and death.

Figure 4.3. The right shows horizontal slices through the left. See also
Figures 2.2, 2.3 and 2.6 of [14].Fig:PinchedTetBoth

Def:LifeAndDeath Definition 4.5. Suppose that C is a pinched tetrahedron for B∗ and263

B∗. Since C is simply connected, for the purposes of this definition264

we may assume that M is simply connected. Suppose that (Hs)s∈R is265

a horizontal foliation of a ball in M containing C. As s increases, we266

move upwards, in the direction of X. Let τ s =Hs ∩B∗ and τs =Hs ∩B∗267

be the upper and lower tracks in Hs respectively. Let Cs = C ∩Hs.268

There are four special times a < b < c < d as follows.269

● At time a, the pinched tetrahedron C is born as a track-cusp of270

τa crosses an arc of τa, moving forwards.271
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● For s ∈ (a, b), the disk Cs is a green trigon. It has two sides and272

a track-cusp in τ s. The remaining side is in τs.273

● At time b, the track-cusp of τ b (on the same branch line) crosses274

another arc of τb, still moving forward.275

● For s ∈ (b, c), the disk Cs is a quadragon. Its four sides alternate276

between τ s and τs.277

● At time c, a track-cusp of τc crosses an arc of τ c, moving back-278

wards.279

● For s ∈ (c, d), the disk Cs is a purple trigon. It has two sides280

and a track-cusp in τs. The remaining side is in τ s.281

● At time d, the pinched tetrahedron C dies as the track-cusp of282

τd (on the same branch line) crosses an arc of τ d, still moving283

backwards. ◇284

Figure 4.3b shows τ s ∪ τs for six representative generic heights.285

Def:DynamicTorusShell Definition 4.6. Suppose that C is a component of M − (B∗ ∪B∗). We286

call C a dynamic torus shell if it is homeomorphic to T 2
× (0,1). We287

require that for any ϵ the image of T 2
× (0, ϵ) in C is an end of M . The288

other end of C must have closure (in the path metric) homeomorphic to289

T 2
× (1/2,1]. The boundary of this must meet, in alternating fashion,290

annuli from B∗ −B∗ and from B∗ −B∗. The annuli from B∗ −B∗ are291

the stable annuli of C while the annuli from B∗ −B∗ are the unstable292

annuli of C. See Figure 4.7.293

Figure 4.7. A section of an annulus or torus shell. The central grey cylinder
represents an end of M .Fig:TorusShell

Taking infinite degree covers of any dynamic torus shell yields (peri-294

odic) dynamic annulus shells and dynamic plane shells. More generally,295

such shells need not be periodic. This occurs only when neither B∗296

nor B∗ is compact. There are two types of dynamic annulus shell. In297

one, the frontier is a bi-infinite alternating union of stable and unstable298

annuli. In the other, the frontier is a finite alternating union of stable299
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and unstable strips of the form [0,1] × R. There is only one type300

of dynamic plane shell. Here the frontier is a bi-infinite alternating301

union of stable and unstable strips. Thus for any dynamic shell C, the302

components of the frontier (after cutting along B∗ ∩B∗) are stable and303

unstable annuli or strips. These annuli or strips are the faces of the304

dynamic shell C. ◇305

Definition 4.8. Suppose that C is a complementary region. Suppose306

that F is an unstable face of C. The components of F −B(1)∗ are called307

the subfaces of F . The subfaces of a stable face are defined similarly. ◇308

We are now equipped to give our definition of a dynamic pair.309

Def:DynamicPair Definition 4.9. We say that B∗ and B∗ form a dynamic pair if they310

satisfy the following.311

Itm:Transversality (1) (Transversality): The branched surfaces B∗ and B∗ intersect312

transversely.313

Itm:Components (2) (Components): Every component of M − (B∗ ∪B∗) is either a314

pinched tetrahedron or a dynamic shell.315

Itm:Transience (3) (Transience): For every component F of B∗ − B∗ there is an316

unstable face F ′ ⊂ F of some dynamic shell so that F ′ is a sink317

for the vertical semi-flow restricted to F . The corresponding318

statement also holds for B∗ −B∗.319

Itm:Separation (4) (Separation): No distinct pair of subfaces of dynamic shells are320

glued in M . ◇321

Def:DynamicTrainTrack Definition 4.10. Suppose that B∗ and B∗ form a dynamic pair. Then322

we define the dynamic train track to be the intersection BV ∩BV . ◇323

Rem:ShellsMeet Remark 4.11. Dynamic shells (and pinched tetrahedra) may meet each324

other or themselves along intervals of the dynamic train track. For an325

example, see Figure 9.12. ◇326

Our Definition 4.10 is taken directly from [14, page 54]. Note that our327

Definition 4.9 is more restrictive than Mosher’s [14, page 52]. Mosher328

allows dynamic shells to meet along subfaces while we do not. He also329

allows solid torus pieces. We do not require (or allow) solid torus pieces330

in the cusped case. In the closed case they are necessary; we deal with331

this as follows.332

Remark 4.12. Suppose that γ is a curve in T , a torus boundary com-333

ponent of M . Suppose that C is a torus shell containing T . Suppose334

that γ meets the dynamic train track (projected from C to T ) at least335

four times. Then Dehn filling M along γ converts C into a solid torus336

piece C(γ). After filling all torus boundary components we arrive at337

the closed case. ◇338
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The branched surfaces of a dynamic pair are positioned so as to339

mimic the relative positions of the stable and unstable foliations of a340

pseudo-Anosov flow. The transversality of the foliations implies that341

the branched surfaces should be transverse, and also should not have342

various kinds of “bigon regions”.343
Sec:PushOff

4.13. The naive push-off. As noted in Remark 1.1, in normal position344

the branched surfaces BV and BV coincide in (at least) all normal345

quadrilaterals in all fan tetrahedra. To try and fix this, we choose346

orientations on the edges of V(1). We then push BV slightly in the347

directions of the edge orientations and pull BV slightly against them.348

We call this pair of isotopies the naive push-off. In Examples 4.15 and349

4.16 we see that this sometimes works and sometimes does not. The way350

in which the naive push-off fails is instructive; as noted in Remark 1.1351

the obstructions are non-local.352



14
SA

U
L

SC
H

L
E

IM
E

R
A

N
D

H
E

N
R
Y

SE
G

E
R

M
A

N

b4a6

d2
a2

b4 a6

b3

a5 b7

d1
b3 a5

a1c3

b2a4
b6

b2 a4
c2

a4 b6

c2
b2

a4b6

a3

b5a7

c1
a3b5

b1
d3

a2 b4
a6

a2b4
d2

Fig:Win
(a) The figure-eight knot complement with the veering
triangulation cPcbbbiht_12.

Fig:Fail
(b) The figure-eight knot sibling with the veering trian-
gulation cPcbbbdxm_10.

Figure 4.14. Canonical triangulations of the figure-eight knot complement and its sibling. Each column shows three slices:
the upper and lower faces of, and an equatorial square through, one of the tetrahedra. In the figure-eight knot complement,
BV (green) and BV (purple) have been naively pushed off each other to produce a dynamic pair. In the sibling, this does not
work.Fig:WinFail
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Exa:Win Example 4.15. In Figure 4.14a we draw an exploded view of the353

veering triangulation on the figure-eight knot complement, as previously354

introduced in Figure 2.2. The upper and lower train tracks are the355

result of intersecting BV and BV with the faces and equatorial squares of356

the veering tetrahedra. The naive push-off keeps the dynamic branched357

surfaces dual to the horizontal branched surface B = B(V) and makes358

them transverse to each other. Note that no pair of train tracks in any359

horizontal cross-section form a bigon.360

In fact, the push-off makes BV and BV into a dynamic pair. Parts (1)361

and (4) of Definition 4.9 can be checked cross-section by cross-section.362

For part (2), we have labelled cross-sections through the four pinched363

tetrahedra ai through di, with subscripts indicating the vertical order.364

One must check that as we move vertically through the manifold, the365

sections through the regions assemble to form pinched tetrahedra (see366

Figure 4.3b) and dynamic torus shells. Note that in Figure 4.14a,367

as we move downwards from the middle section to the bottom of the368

two tetrahedra, regions c1 and d1 go from being quadragons to being369

green trigons (and then disappear), but the trigonal stage is not shown.370

Part (3) must be checked by hand. ◇371

Exa:Fail Example 4.16. Consider the veering triangulation on the figure-eight372

knot sibling, shown in Figure 4.14b. Again we push BV in the direction373

of the orientations of the edges; this time bigons appear in several of374

the horizontal cross-sections. In fact there is no orientation of the edges375

that leads to a dynamic pair via the naive push-off. This is because376

the mid-surface for the figure-eight knot sibling is not transversely377

orientable. For more details see Remark 5.30. ◇378

Even if it works, the naive push-off requires making a choice. Thus379

the resulting dynamic pair is not canonically associated to the initial380

veering triangulation.381

Instead of simply isotoping the branched surfaces horizontally, we382

will try to “split” them closer to the stable and unstable foliations of the383

hypothesised pseudo-Anosov flow. To control these splitting isotopies,384

we must define various decompositions of M (in Sections 5 and 6). We385

then describe a sequence of isotopies, of each of BV and BV , through386

the new decompositions (in Sections 7, 8, and 9).387

5. Shearing regions, mid-bands, and the mid-surface388
Sec:NewCombinatorics

Here we give a decomposition of a veering triangulation into a canon-389

ical collection of shearing regions. Each of these is either a solid torus390

or a solid cylinder. We use these to define the mid-bands and the391

mid-surface.392
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Sec:ShearingDecomposition
5.1. Shearing regions.393

Def:IdealSolid Definition 5.2. An ideal solid torus U is a solid torus D2
×S1, together394

with a non-empty discrete subset of (∂D2
) × S1, called the ideal points395

of U . We define an ideal solid cylinder in similar fashion, replacing S1396

by R. ◇397

Def:TautSolid Definition 5.3. A taut solid torus (cylinder) U is a ideal solid torus398

(cylinder) decorated with a paring locus γ containing all of the ideal399

points of U . The paring locus is a multi-curve γ = γ(U) meeting every400

meridional disk exactly twice. There is at least one ideal point on every401

component of γ. A taut solid torus U has a mid-band B; this is either402

an annulus or a Möbius band, properly embedded in U and disjoint from403

γ. The mid-band of a taut solid cylinder is instead a strip, [0,1] ×R.404

In all cases, every boundary compression of the mid-band is required to405

meet the pairing locus. ◇406

Def:TransverseSolid Definition 5.4. A transverse taut solid torus (cylinder) U is a taut407

solid torus (cylinder) where ∂U −γ has two components, called the upper408

and lower boundaries ∂+U and ∂−U . These are equipped with transverse409

orientations that point out of and into U , respectively. Note that all410

taut solid cylinders can be equipped with such an orientation. ◇411

In a transverse taut solid torus the mid-band is necessarily an annulus.412

In a taut solid cylinder it is necessarily a strip.413

Def:ShearingRegion Definition 5.5. A shearing region U is a taut solid torus or cylinder,414

together with a colour (red or blue) and a squaring of ∂U − γ, with415

vertices at the ideal points. All edges contained in the paring locus γ416

are the opposite colour to U and are called longitudinal. All edges not417

in γ are the same colour as U and are called helical. The helical edges418

form a helix that spirals right or left (as U is red or blue); the helix419

meets every meridional disk exactly once, transversely. We give the420

mid-band B ⊂ U the same colour as U itself. ◇421

See Figure 5.6f for the local model of a red shearing region.422

Def:ShearingDecomposition Definition 5.7. Suppose that U is a collection of model shearing re-423

gions. Let U (0) be the union of the ideal points. Suppose furthermore424

that the shearing regions are glued along all of their squares, respecting425

the colours of edges and so that every edge has exactly two helical mod-426

els. We call U a shearing decomposition of ∣U −U (0)∣. The decomposition427

is called transverse if all of the shearing regions in U are transverse,428

and the gluings respect the transverse orientations on the squares. ◇429
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(a) Start with veering tetrahedra.
Fig:CutVeeringTet

(b) Cut into half-tetrahedra, select red half-
tetrahedra.

Fig:ShearHalfTets
(c) Shear.

Fig:PartHalfTets
(d) Bend.

Fig:GlueHalfTets
(e) Glue half-tetrahedra together.

Fig:Continuing
(f) Continue gluing.

Figure 5.6. Top and side views of the construction of a red shearing region.Fig:SolidTorusConstruction

Suppose that V is a veering triangulation (not necessarily transverse or430

finite). Recall from Section 2 that there are blue and red fan tetrahedra431

as well as toggle tetrahedra. Cutting a veering tetrahedron along its432

equatorial square results in a pair of half-tetrahedra; see Figure 5.6b.433

In every half-tetrahedra there is a unique (up to isotopy) half-diamond :434

this is a triangle, properly embedded in the half-tetrahedron, meeting435

only the edges of the colour of the π–edge, and those only exactly once at436

each midpoint. We give a half-diamond the colour of the edges it meets.437

See Figure 5.8. We arrange matters so that the two half-diamonds in438

a fan tetrahedron meet along their bases, and so form a full diamond.439

The two half-diamonds in a toggle t meet in exactly one point: the440

center of the equatorial square of t. For each half-diamond in a toggle,441

we colour in black all (but a small neighbourhood of the vertices) of its442

intersection with the equatorial square. We call this arc the boundary443
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arc of the half-diamond. (In Definition 5.25, the union of the boundary444

arcs will give the boundary of the mid-surface.) Again, see Figure 5.8.445

Figure 5.8. Diamonds and half-diamonds. Each half-diamond in a toggle
has a boundary arc, shown here in black.Fig:HalfDiamonds

Fig:LineFieldGood
(a)

Fig:LineFieldBad
(b)

Figure 5.9. In Figure 5.9a we see adjacent half-diamonds in a veering
triangulation. In Figure 5.9b we see an unpleasant possibility for adjacent
half-diamonds in a taut triangulation.Fig:LineField

Thm:ShearingDecomposition Theorem 5.10. Suppose that V is a veering triangulation (not neces-446

sarily transverse or finite). Then there is a shearing decomposition of447

M canonically associated to V.448

Proof. Suppose that t is a half-tetrahedron and d is its half-diamond.449

Fix a vertical line field on d as shown in the left-most half-diamond of450

Figure 5.9a. Let f and f ′ be the triangular faces of t. The colour of451

d is the majority colour of the edges of t. Thus the colour of t and d452

matches the majority colour of both f and f ′. Suppose that t is glued453

to another half-tetrahedron, t′, across f ′. Let d′ be the half-diamond of454

t′. Thus d′ and d have the same colour.455

Note that the π-edges of t and t′ are distinct edges of the model face456

f ′. (This follows from the definition of a veering triangulation: see457

Figure 2.6a.) Thus, as shown in Figure 5.9a, we can locally extend458

the vertical line field on d, through f ′, to d′. See Figure 5.6e. Let f ′′459
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be the other triangular face of t′. Continuing in this fashion in both460

directions, we obtain a shearing region. The union of the half-diamonds461

is the mid-band. See Figure 5.11. □462

(a) Three-quarters view.

(b) View from above.

Figure 5.11. A red shearing region, with embedded mid-band. The bound-
ary arc of the toggle half-diamond is drawn in black.

.Fig:SolidTorus

We give examples of mid-bands in Figures 5.12 and 5.13. These are463

taken from the veering census [11].464

Rem:Alternate Remark 5.14. If V is transverse then the half-tetrahedra in a shearing465

region alternate between being the upper and lower halves of tetrahedra.466

That is, the transverse structure on V induces a transverse structure on467

the associated shearing decomposition. ◇468

Rem:Fractional Remark 5.15. Suppose that V is a finite veering triangulation. We469

may interpret each shearing solid torus as a fractional Dehn twist.470

A transverse structure on V equips M with an “upwards” dynamical471

system. Thus the shearing decomposition (canonically) factors the472

system as a product of fractional Dehn twists. ◇473

Que:CoreCurves Question 5.16. Let γ(U) be a core curve for the shearing region U .474

Performing certain Dehn fillings along γ(U) produces new veering475

triangulations; see [16] and also [21, Definition 4.1]. Let γ(V) be the476

union of the curves γ(U).477
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Figure 5.12. For each example we draw the mid-annuli above and then, in
one column per tetrahedron, its upper and lower faces. Drawn on the faces
are the intersections with BV and BV after the straightening isotopy. See
Figures 7.6, 7.7, and 7.8.Fig:ExampleMidAnnuli

Suppose that U and V are a pair of regions. Suppose that the upper478

boundary of U equals the lower boundary of V . That is, suppose that479
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Figure 5.13. A veering triangulation for m115 from the SnapPea census [8].
This is fLLQccecddehqrwjj_20102 in the census of transverse veering
triangulations [11]. As in Figure 5.12, we show the mid-annuli above and the
tetrahedron faces below.Fig:fLLQccecddehqrwjj

∂+U = ∂−V . Then γ(V ) is parallel to γ(U); accordingly we delete γ(V )480

from γ(V).481

Now γ(V) is a link canonically associated to M and V . What are the482

geometric properties of M − γ(V)? ◇483

Sec:Crimping
5.17. Crimping. Shearing regions give more global coordinates than484

do individual tetrahedra. Moreover, the interiors of shearing regions are485

standardised. Here we introduce the crimped shearing decomposition of486

M . This ensures that the union of the shearing regions of a fixed colour487

is a manifold (with various inward and outward paring loci) containing488

all of the edges of that colour. One dimension down, crimping improves489

the way that the red (blue) mid-bands meet. After crimping, their490

union is the mid-surface SR (SB). Crimping is similar to the process491

of folding, in a train track, all switches with both in- and out-degree492

bigger than one.493

The crimped shearing decomposition is obtained from the shearing494

decomposition (Theorem 5.10) as follows.495
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Definition 5.18. Let E(V) be the union of the equatorial squares of496

all tetrahedra. Thus E(V) is a branched surface. Accordingly we call497

E(V) the equatorial branched surface. ◇498

Figure 5.19. Top row: an edge e ∈ V(1) before and after crimping on the
right. No crimping is required on the left. Bottom row: Both sides are
crimped. The veering edges are drawn in red, the crimped edges are drawn in
grey, and the boundary arcs are drawn in black. The neighbourhoods Nr(e)
and Nℓ(e), and the crimped rectangles are shaded red.Fig:Crimping

Note that an edge e ∈ V(1) lies in the branch locus of E(V) if and only499

if the degree of e (in E(V)) is at least three. Suppose that there are at500

least two squares to the right of e. Let Nr(e) be a collar neighbourhood501

to the right side of e, taken inside of E(V). (We choose the size of502

the collar neighbourhood so that it meets the boundary arcs of the503

relevant half-diamonds each in a single point.) So Nr(e) contains e and504

a rectangle for every equatorial square to its right. See Figure 5.19505

(upper left) for pictures of a possibility for Nr(e). We define Nℓ(e)506

similarly, again when there are at least two squares to the left of e.507

Again see Figure 5.19 (lower left). We form the crimped equatorial508

branched surface Ec(V) by crimping edges, as follows.509

● Fold together all rectangles in Nr(e) to obtain a single rectangle;510

do the same to the right collar Nℓ(e).511

After crimping, as needed, the right and left of every edge, the veering512

edges of V(1) are disjoint from the branch locus of Ec(V). Also, there are513

no vertices in Ec(V). Thus we call the components of E(1)c (V) crimped514
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edges. Each crimped edge meets an endpoint of each of two boundary515

arcs. See Figure 5.19 (right) for pictures of possibilities for Ec(V).516

Suppose that we had to crimp the right side of e. That is, before517

crimping, Nr(e) contained two or more rectangles. Then, after crimping,518

there is a single crimped rectangle between e and the crimped edge519

immediately to the right of e. In our figures we will always colour the520

crimped edges in grey. Since we draw pictures in the cusped manifold,521

we will refer to the crimped rectangle as a crimped bigon.522

Crimping moves the equatorial square of a toggle tetrahedron into523

Ec(V). There it is subdivided, by the crimped edges, into four crimped524

bigons and one toggle square.525

Def:Station Definition 5.20. For each corner of each toggle square we take a526

very small (three-dimensional ball) neighbourhood; this is the station527

associated to that corner. The station is divided into two regions. These528

are529

● an even small smaller neighbourhood of the corner, called the530

platform, and531

● the station minus the platform, called the yard. ◇532

The two boundary arcs (of the mid-surface) in the toggle tetrahedron533

lie inside of the toggle square. They end at the midpoints of the crimped534

edges and divide the toggle square into four symmetric regions. See535

Figure 5.21a. The veering hypothesis implies that a crimped bigon536

meets, along its crimped edge, exactly two toggle squares: one at the537

top and one at the bottom of a stack of fan tetrahedra. Similarly, the538

equatorial square of a fan tetrahedron is subdivided into two crimped539

bigons and one fan square. See Figure 5.21b.540

We define the (closures taken in the path metric of) components of541

M −Ec(V) as crimped shearing regions. See Figure 5.22. Let U be a542

model crimped shearing region. As before, we write ∂+U and ∂−U for543

the upper and lower boundaries of U . Suppose that e and e′ bound a544

crimped bigon B with e ∈ V(1) and e′ a crimped edge. If B lies in either545

∂+U or ∂−U then we say that e and e′ are helical for U . If B ∩U = e′546

then we say that e and e′ are longitudinal for U . Note that ∂+U ∩ ∂−U547

is the collection of longitudinal crimped edges for U .548

As before, we assign U the colour of its helical edges. This colour is549

opposite to that of each edge of V(1) that is parallel, across a crimped550

bigon, to the longitudinal crimped edges of U .551

Within U , we replace each triangle of the original triangulation with552

a corresponding crimped triangle. The sides of each crimped triangle553

consist of two helical edges, one on ∂+U and one on ∂−U , and a single554

longitudinal crimped edge.555
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Fig:ToggleSquare
(a) Toggle square.

Fig:FanSquare
(b) Fan square.

Figure 5.21. The toggle square has four adjacent crimped bigons, the fan
square has two. Here we draw the boundary arcs (of the half diamonds
immediately above and below) on the toggle square in black. The crimped
edges are drawn in dashed grey. The corners of the toggle square are contained
in their associated stations which are here represented as grey dots.Fig:FanToggleSquares

Fig:CrimpedShearingRegionSide
(a) View from the side.

Fig:CrimpedShearingRegionAboveMidAnnulus
(b) View from above, with the mid-band.

Figure 5.22. A crimped red solid torus, and incident blue crimped bigons.
The crimped edges are drawn in grey and meet the boundary arc in its
endpoints.Fig:CrimpedShearingRegion
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The union of the crimped shearing regions is again homeomorphic to556

M ; together they form the crimped shearing decomposition of M .557

Def:Monochromatic Definition 5.23. The union of the red crimped shearing regions is the558

red part of the crimped shearing decomposition. A connected component559

of the red part is a red component. We define the blue part and blue560

components similarly. ◇561

Each red component is a handlebody with inward and outward paring562

loci. The red part contains all of the red edges of V(1). Furthermore,563

its material boundary is the union of the toggle squares. Analogous564

statements are true for blue components and the blue part.565

5.24. The mid-surface. The mid-bands sit within the crimped shear-566

ing regions in exactly the same way that they sat within the original567

shearing regions. See Figure 5.22b. We may now glue the mid-bands to568

each other along their boundaries obtain a surface.569

Def:MidSurface Definition 5.25. The union of the red mid-bands in the red part gives570

the red mid-surface SR. We build the blue mid-surface SB in a similar571

fashion. We define the mid-surface to be S = SR ∪ SB. ◇572

Note that each component of SR sits inside, and is a deformation573

retract of, a red component of the crimped shearing decomposition.574

In particular, SR meets all red edges but no blue edges. A similar575

statement holds for SB. Each boundary arc of SR meets precisely one576

boundary arc of SB; these intersect in a single point at the center of577

the corresponding toggle square. Lemma 2.10 implies the following.578

Cor:MidSurfaceComponentBoundaries Corollary 5.26. Every diagonal path in the mid-surface eventually579

meets a toggle tetrahedron. In particular, every component of SR and580

of SB has at least one boundary component. □581

Example 5.27. In Figure 5.13 the red mid-surface has two diagonal582

paths, both traversing two half-diamonds. The blue mid-surfaces also583

has two diagonal paths, one traversing six half-diamonds and the other584

traversing ten. ◇585

Every boundary component of the mid-surface runs alternatingly586

along boundary arcs contained in the upper and lower boundaries of587

crimped shearing regions. In Figures 5.12 and 5.13 we give several588

examples; the boundary arcs are indicated by thick black lines. In589

Figure 5.12a both mid-surfaces are once-holed tori; each boundary590

component of each mid-surface consists of two boundary arcs. In Fig-591

ure 5.12b both mid-surfaces are copies of N3,1: the non-orientable592
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surface with one boundary component and three cross-caps. In Fig-593

ure 5.12c both mid-surfaces are copies of N2,1: the once-holed Klein594

bottle. (This last was the first example of a non-fibered veering triangu-595

lation; see [12, Section 4].) Finally, in Figure 5.13 the mid-surfaces are596

a pair of once-holed Klein bottles, with one having greater area than597

the other.598

Remark 5.28. Mid-surfaces also allow one to see the walls of a veering599

decomposition, as defined by Agol and Tsang [2, Definition 3.3]. For600

example, in Figure 5.13 there is a wall of width three consisting of the601

tetrahedra 4 and 1. ◇602
Sec:Labelling

5.29. Labelling the mid-surface. We now describe the labelling603

scheme for the mid-surfaces used in the census [11]. This is useful when604

drawing pictures and discussing examples. Suppose that V is a finite605

transverse veering triangulation. We number the tetrahedra, the faces,606

the edges, and the vertices of the tetrahedra using the conventions from607

Regina [3]. Regina also provides us with orientations for the edges of608

V
(1); we will alter these to make them agree, as much as possible, with609

transverse orientations of mid-annuli.610

We give four examples in Figures 5.12 and 5.13. For each example,611

we draw its mid-annuli and, in one column per tetrahedron, the upper612

and lower faces for each tetrahedron (viewed from above). On each face613

we draw the upper (green) and lower (purple) train tracks. (Where614

these intersect, the intersection is coloured grey.)615

In order to draw a mid-band A = A(U) we choose a transverse616

orientation for it; this then induces a transverse orientation on each617

half-diamond d of A. In the examples of Figures 5.12 and 5.13 the618

mid-bands are all annuli and the transverse orientation points into the619

page.620

We label the vertices, edges, and face of the half-diamond d as follows.621

● Suppose that v is a vertex of d. We label v with the number622

of the edge e in V(1) which contains v. Note that e is helical623

for U . We append this number with one of the symbols from624

{⋅,x}. The x means that the orientation of e agrees with the625

transverse orientation on d; the dot means the opposite. (The626

x represents the fletching of an arrow, while the dot represents627

the arrowhead.)628

● Suppose that ϵ is a diagonal edge of d. We label ϵ with the629

number of the face f in V(2) which contains ϵ; we place the label630

at the midpoint of ϵ. The vertices of ϵ are already labelled with631

the numbers of two of the three edges of f . Let e be the third632

edge of f . Note that e is longitudinal for U . We draw a small633
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copy of e on top of ϵ and label the copy with the number of e634

(in the other colour, and using a smaller font). Note that ϵ and635

e cobound a rectangle in f ; we use this rectangle to transport636

the orientation of e to ϵ. Finally, we draw the arrow dotted or637

solid as the transverse orientation on d points towards or away638

from e. (That is, as drawn in Figure 5.12, the edge e is behind639

or in front of A.)640

● Suppose that ϵ is the base of a half-diamond d. If d lies in a641

toggle then we draw a thick black line on ϵ, to indicate the642

boundary arc on d.643

● Finally, we label d itself with the number of the tetrahedron644

that contains d.645

Suppose that A and B are mid-annuli. Let ∂−A be the lower boundary646

of A, minus the open boundary arcs. Thus ∂−A is either a single line,647

a single circle, or a collection of intervals and at most two rays. We648

define ∂+B similarly. Suppose that A and B are glued to each other,649

say with a component γ of ∂−A meeting a component of ∂+B. (It is650

also possible for A, say, to be glued to itself.) We call the gluing γ651

untwisted or twisted exactly as it does or does not faithfully transport652

the chosen transverse orientation on A to the one on B.653

In Figures 5.12 and 5.13 we indicate a twisted gluing by drawing a654

small black circle about all vertices of the affected boundary circle or655

sub-arc. In our examples in Figure 5.12 we have chosen the transverse656

orientations of the mid-annuli so as to minimize the number of half-twists657

required.658

Rem:Fail Remark 5.30. If all gluings are untwisted then the mid-surface is trans-659

versely orientable and thus orientable. Conversely, if the mid-surface is660

orientable then there is a choice of transverse orientations for the mid-661

bands that ensures that all gluings are untwisted. The naive push-off662

discussed in Section 4.13 should produce a dynamic pair when and only663

when the mid-surface is orientable.664

Thus, if one is willing to pass to a double cover, then there should665

be edge orientations making the naive push-off work. However this666

push-off will not be invariant under the deck transformation. ◇667

6. Bigon coordinates668
Sec:BigonCoords

In this section we place a coordinate system on the crimped shearing669

regions (introduced in Section 5.17). We also give a refinement of the670

crimped shearing decomposition of M and introduce the horizontal671

cross-sections.672
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Let B be a coordinate bigon: a oriented disk with two marked points673

x and y in its boundary. The points x and y are the corners of B. We674

equip ∂B with the induced orientation. The two arcs of ∂B − {x, y}675

are denoted by ∂+B and ∂−B respectively. We arrange matters so that676

∂+B is the arc running from y to x.677

We equip B with a pair of transverse foliations: the horizontal arcs678

all meet both corners while the vertical arcs all meet ∂+B and ∂−B.679

We orient the former from x to y and the latter from ∂−B to ∂+B. See680

Figure 6.1a.681

We subdivide B into a pair of sub-bigons called θB (upper) and θB682

(lower). These are shown in Figure 6.1b.683

x y

∂+B

∂−B Fig:BiFoliatedBigon
(a) Model bi-foliated coordinate bigon.

θB

θB

Fig:BigonRegions
(b) Bigon regions.

Figure 6.1Fig:Bigon

Recall that M is oriented and V is transverse veering. Suppose that U684

is a model crimped shearing region. Thus U inherits an orientation and,685

by Remark 5.14, a notion of “upwards”. We now choose a homeomor-686

phism h between U and B×S1 or B×R, as U is a solid torus or cylinder.687

We require that h preserve the various orientations. In particular, the688

upper boundary of B must be sent to the upper boundary of U by h.689

We call h the bigon coordinates for U .690

Let ΘU be the image of θB × S1 (or θB × R) in U . We define ΘU691

similarly. Note that the upper boundaries of U and ΘU agree, as do the692

lower boundaries of U and ΘU . That is, ∂+U = ∂+ΘU and ∂−U = ∂−ΘU .693

Also, we have ∂−ΘU
= ∂+ΘU . We take ΘV ⊂M to be the union of the694

ΘU , taken over all model crimped shearing regions and then projected695

to M . We define ΘV similarly. The interiors of ΘV and ΘV are disjoint696

and their union is M ; this is the Θ–decomposition.697

Rem:NiceBigonCoords Remark 6.2. Suppose that U is a blue shearing region. We arrange the698

metric in U (coming from bigon coordinates) to ensure the following.699

(1) In the induced coordinates on ∂+U the (pullbacks of the) blue700

edges of V(1) are straight and, when viewed from above, have701
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slope
√

3. Similarly, the blue edges in ∂−U are straight and,702

when viewed from above, have slope −
√

3.703

Itm:Corners (2) For any toggle square S in ∂±U its corners are very slightly more704

than one-quarter of the way along the adjacent longitudinal705

crimped edges.706

(3) For p ∈ U we take B(p,U) to be the coordinate bigon in U707

containing p. Then the two notions of vertical (coming from the708

coordinate bigons B(p,U) and the transverse veering structure)709

agree. Furthermore, the intersection of the mid-band A(U) with710

any B(p,U) is the central vertical arc of the latter.711

See Figure 5.22. We similarly give bigon coordinates to red model712

crimped shearing regions. ◇713

We use the following notations for the various coordinate arcs and714

surfaces in bigon coordinates.715

Def:CrossSection Definition 6.3. Suppose that U is a model crimped shearing region.716

Fix p ∈ U .717

● As above, B(p,U) is the coordinate bigon containing p.718

● Let x(p,U) = p × S1 (p ×R) be the horizontal circle (line) in U719

through p.720

● Let y(p,U) be the leaf of the horizontal foliation of B(p,U),721

through p.722

● Let z(p,U) be the leaf of the vertical foliation of B(p,U),723

through p.724

● Let Y (p,U) be the union of the leaves z(q,U) as q ranges over725

x(p,U). We call Y (p,U) the vertical band in U through p.726

● Let Z(p,U) be the union of the leaves x(q,U) as q ranges over727

y(p,U). We call Z(p,U) the (horizontal) cross-section in U728

through p.729

● Finally, we define X(p,U) = B(p,U). ◇730

Note that the upper and lower boundaries of ΘU and ΘU are horizontal731

cross-sections.732

7. Straightening and shrinking733
Sec:StraighteningShrinking

Here we define the straightening and shrinking isotopies. These734

are applied to the upper and lower branched surfaces BV and BV ,735

respectively. These isotopies are local: in each tetrahedron they (and736

the resulting shrunken position) depend only on the combinatorics of737

that tetrahedron and its immediate neighbours.738

We start in dual position (shown in Figure 2.9b). We straighten739

the branched surfaces to move as many sectors as possible into the740
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mid-surface S. We shrink the branched surfaces to move vertices of BV741

down into ΘV and those of BV up into ΘV .742

We now describe in detail the upper straightening and shrinking743

isotopies of BV . The corresponding lower isotopies of BV are defined744

similarly.745

Sec:Straightening
7.1. Straightening. First, we straighten: beginning from dual position746

(shown in Figure 2.9b) in a fan tetrahedron t, we move the sectors747

of Bt, meeting the majority colour edges, to coincide with the two748

half-diamonds of t. In a toggle tetrahedron t, we move the sectors of749

Bt, meeting the edges of the same colour as the uppermost edge, to750

contain the upper half-diamond of t.751

The resulting position of Bt, in the various crimped half-tetrahedra,752

is shown in Figures 7.6, 7.7, and 7.8. Each figure has a 180○ symmetry753

about its central vertical axis. We give a global picture of the result in754

Figure 7.10.755

Rem:PictureConventions Remark 7.2. In our pictures of cross-sections we shade (in grey) all756

toggle squares. Along a branch interval of BV within a crimped solid757

torus, track-cusps are labelled with the same letter. As we move from758

an upper boundary to a lower the labels, on track-cusps of BV , advance759

by one letter. Track-cusps of BV are indicated with small triangles. ◇760

Rem:PictureGluing Remark 7.3. In Figure 7.10 the upper boundary of the blue crimped761

solid torus U is glued to the lower boundary of U along the fan squares,762

by a 180○ rotation and a (left) shear. As a result, the blue helical veering763

edges and the red longitudinal veering edges (adjacent to fan squares)764

match on the top and bottom of U . The red longitudinal veering edges765

adjacent to the toggle squares do not match. This is because they are766

glued to the red crimped solid torus V . The upper and lower boundaries767

of V are also glued, by a 180○ rotation and a (right) shear, along the768

red crimped bigons. ◇769

Rem:TangentsShear Remark 7.4. Suppose that U is a crimped shearing region. Suppose770

that H and K are ∂−U and ∂+U . Let τH and τK be the intersections of771

BV with H and K. So τH and τK are train tracks. We arrange matters772

so that τH meets longitudinal crimped (helical veering) edges of H with773

a tangent vector which is parallel to the helical veering (longitudinal774

crimped) edges of H. We do the same for τK . This ensures that tangent775

vectors match up when sheared by the gluing maps (as in Remark 7.3).776

Suppose that Hs parametrises the cross-sections of U , with H0 =H777

and H1 =K. As s increases from 0 to 1, the tangent vectors of branches778

meeting longitudinal crimped edges shear. See Figure 7.10. ◇779
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Remark 7.5. Observe that all vertices of BV now lie along the central780

curve of the middle cross-sections of the crimped shearing regions. (That781

is, inside of ∂−ΘV = ∂+ΘV .) ◇782

(a) Three-quarter view. (b) Top view.

Figure 7.6. Straightened Bt in an upper half-tetrahedron (either toggle or
fan).Fig:UpperHalfTet

(a) Three-quarter view. (b) Top view.

Figure 7.7. Straightened Bt in a lower half-tetrahedron (fan).Fig:LowerHalfFan

Rem:StraightenedDynamic Remark 7.11. As noted in Corollary 3.4 the branched surface BV , when783

in dual position, is dynamic. Straightening makes parts of BV vertical.784

However, the branch locus remains transverse, and not orthogonal, to785

vertical. Thus the straightened BV is again dynamic. ◇786
Sec:Shrinking

7.12. Shrinking. Next we shrink : in each crimped shearing region U ,787

we form a very small collar ΓU of ∂+U , obtained as a union of horizontal788

cross-sections Z(p,U). Note that ΓU is disjoint from the vertices of789

BV . We now move BV by a proper isotopy of U which preserves x and790

y coordinates (in bigon coordinates) and permutes the cross-sections791
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(a) Three-quarter view. (b) Top view.

Figure 7.8. Straightened Bt in a lower half-tetrahedron (toggle).Fig:LowerHalfToggle

(a) Three-quarter view.

(b) Top view.

Figure 7.9. Straightened BV in a crimped shearing region.Fig:StraightenedCrimpedShearingRegion

Z(p,U). The isotopy carries the bottom of ΓU downwards to ∂−ΘU and792

evenly redistributes the cross-sections below ΓU inside of ΘU .793

Before the isotopy, BV was transverse to the equatorial squares. After794

the isotopy, BV is almost vertical in all of ΘU . The intersections of BV795
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Figure 7.10. The intersection of BV (and BV), after straightening, with
various horizontal cross-sections of the crimped shearing decomposition of
fLLQccecddehqrwjj_20102. Compare with Figure 5.13. We indicate the
position of track-cusps with letters or small triangles; sometimes we use a
“whisker” pointing from a letter or triangle to the track-cusp itself.Fig:m115_straight
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with ∂+U and ∂−U are unchanged by the shrinking isotopy. Note that796

the shrinking isotopy maintains the 180○ symmetry of the branched797

surfaces Bt. In Figure 7.13 we show the intersection of the shrunken798

BV (and BV) with various horizontal cross-sections.799
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Figure 7.13. The intersection of BV (and BV), after shrinking, with var-
ious horizontal cross-sections of the crimped shearing decomposition of
fLLQccecddehqrwjj_20102. Compare with Figure 7.10.Fig:m115_shrink
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Rem:ShrunkenTangentsShear Remark 7.14. Note that the shearing of tangent vectors, as in Re-800

mark 7.4, now occurs in ΘV for BV (and in ΘV for BV). ◇801

Rem:ShrunkenDynamic Remark 7.15. Shrinking permutes cross-sections; thus by Remark 7.11802

the shrunken branched surface BV is again dynamic. ◇803

8. Parting804
Sec:Parting

Here we define the parting isotopies. These are applied to the upper805

and lower branched surfaces BV and BV , respectively. These isotopies806

are again local: in each tetrahedron they (and the resulting parted807

position) depend only on the combinatorics of that tetrahedron and its808

immediate neighbours.809

We now concentrate on BV . We start in shrunken position (shown in810

Figure 7.13). In each cross-section of ΘV , and near each crimped edge,811

we will move BV towards the correct station (corner) of the relevant812

toggle square. We also will isotope branches of BV in cross-sections of813

ΘV to be (almost) line segments (in bigon coordinates). As in shrunken814

position, the parted position of BV in ΘV will almost be a product.815

This done, we will move BV carefully downward in ΘV . This makes816

the intersection of BV with the cross-sections into a sequence of train817

tracks as follows. As they move up through ΘV they first perform818

a neighbourhood splitting where track-cusps move along their parting819

routes. They next perform a graphical isotopy where the track-cusps820

are (almost) motionless and the branches straighten to become (almost)821

line segments.822

The branched surface BV moves in a similar way, but swapping ΘV823

and ΘV . The ideas of neighbourhood splitting and graphical isotopy824

will be used once (in sapce) in this section and three times (in time and825

in space) in Section 9. We use them to fill in the isotopy from parted826

position to the final position.827

Sec:PartingUp
8.3. Parting in ΘV . We now describe the parting isotopy in ΘV .828

Suppose that U is a crimped blue shearing region. Suppose that e′ is829

a crimped longitudinal edge for U . Suppose that e is the associated red830

veering edge and let C be the crimped bigon which e and e′ cobound.831

Suppose that S ⊂ ∂+U is the upper toggle square meeting e′. We equip832

C with the anti-clockwise orientation, as viewed from above. This833

induces orientations on e and e′. Let c = C ∩BV . The parting isotopy834

in ΘU fixes c ∩ e and moves c ∩ e′ along e′, against the orientation of835

e′ (given just above), until it arrives at the platform of the station at836

the corner of the toggle square S. (If, instead, U is red, then we move837

c ∩ e′ along e′, following the orientation of e′, again until it arrives at838
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Figure 8.1. The result B1 of the parting isotopy in ΘV where V is
fLLQccecddehqrwjj_20102. The five diagrams show (from the bottom
moving up) B1 ∩ Cs for s ∈ (0,1/4,1/2,3/4,1). The bottom cross-section
contains blue helical edges.Fig:m115_parting_in_theta_U

the platform of its station.) To see this motion, compare top lines of839

Figures 7.13 and 8.2.840

In ∂+U we also move track-cusps outwards in fan squares until they841

arrive close to the midpoint of a helical edge. In lower cross-sections of842
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Fig:m115_prepared_blue
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Figure 8.2. The intersection of BV (and BV), after parting, with
various cross-sections of the crimped shearing decomposition of
fLLQccecddehqrwjj_20102. Again, and as in Figure 7.13, the branched
surface BV is almost vertical in ΘV while BV is almost vertical in ΘV .Fig:m115_prepared

ΘU we do the same, but now moving track-cusps until they almost meet843

the projection (in bigon coordinates) of the midpoint of a helical edge.844
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Rem:AlmostProduct Remark 8.4. Thus BV is almost a product in ΘV . (In ΘV track-cusps845

move very slowly forward to preserve dynamism.) ◇846

Rem:UpGivesDown Remark 8.5. Since ∂+ΘV is glued to ∂−ΘV parted position in the for-847

mer determines parted position in the latter. Parted position is thus848

determined in fan and toggle squares, as shown in Figure 8.6. For our849

running example this is shown in the bottom and top rows of Figure 8.2.850

Note that the track-cusps are slightly off the edges. This is so that851

they can very slowly move (horizontally) as we move up or down through852

cross-sections. We do this to ensure dynamism. ◇853

Fig:MagnifyPartedTopFan
(a) Fan square in ∂+U .

Fig:MagnifyPartedTopToggle
(b) Toggle square in ∂+U .

Fig:MagnifyPartedBottomFan
(c) Fan square in ∂−U .

Fig:MagnifyPartedBottomToggle
(d) Toggle square in ∂−U .

Figure 8.6. In prepared position the intersections of BV and BV with cross-
sections are straight lines except for inside of the stations and very close to
the midpoints of helical edges. In stations, branches meeting longitudinal
crimped edges have the same tangent as the adjacent helical crimped edge.
Note that here U , the containing crimped shearing region, is blue.Fig:MagnifyParted

Def:Graphical Definition 8.7. Suppose that U is a crimped shearing region. Suppose854

that H is a cross-section in U . Suppose that α is a smooth arc in H. We855

say that α is graphical if its tangent vectors (including at its endpoints)856

have non-zero x–coordinate. That is, α is transverse to the foliation U857

by bigons.858

Suppose that τ is a train track in H. We say that τ is graphical if all859

of its branches are graphical. ◇860

We will use the following lemma several times, in this section and861

the next.862

Lem:SplittingPreservesGraphical Lemma 8.8. Suppose that τ is a graphical train track. Suppose that863

α is a train route in τ . Then the result of splitting τ along α is again864

graphical. □865
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Lem:UpPartedGraphical Lemma 8.9. Suppose that H is any cross-section in ΘV . The parted866

position of BV in H is a train track for which all branches are graphical.867

The same is true for the parted position of BV in ∂−ΘV except for868

those branches which are in a platform in ∂−ΘV meeting a longitudinal869

crimped edge. It follows that any train route in ∂−ΘV avoiding these870

branches is graphical.871

Proof. Suppose that U is a crimped shearing region. As discussed in872

Section 8.3, prepared position in ΘU is defined locally. From Figure 8.12873

we see that all branches of the tracks (outside of the stations) are874

straight. Note that some branches appear to be parallel to the y-axis;875

however, those actually have slightly positive slope. This is due to876

our choice of location for the corners of the toggle squares (made in877

Remark 6.2(2)). Thus all branches of the tracks are graphical.878

The track inside of the stations, in both ∂+U and ∂−U , are laid out879

according to Figure 8.6. □880
Sec:PartingDown

8.10. Parting in ΘV . The parting isotopy in ΘV is more delicate. Here881

we introduce the definitions of a neighbourhood splitting and a graphical882

isotopy.883
Sec:PartingRoutes

8.10.1. Parting routes.884

Def:PartingRoutes Definition 8.11. Suppose that U is a crimped shearing region. Sup-885

pose that K is a branch line of BV (before parting) meeting U . Let k0886

and k1 be the intersections of K with ∂−U and ∂+U respectively. Let887

k′1 be the projection of k1 (under bigon coordinates) to ∂−U . In a slight888

abuse of notation, we use the same names for the corresponding track-889

cusps (and projection) in ∂−U and ∂+U after parting (as in Section 8.3).890

Then the parting route α(k0) is the unique route from k0 to k′1 carried891

by the parted track in ∂−U . ◇892

Since the parting isotopy in ΘV is local, there are only a small number893

(in fact six) combinatorial possibilities for α(k0). These are all shown894

in Figure 8.12.895

● Suppose that k1 lies in a toggle square in ∂+U .896

● If k0 also lies in a toggle square (in ∂−U) then we obtain897

the examples f and j in Figure 8.12b.898

● Otherwise k0 does not lie in a toggle square and we obtain899

the examples e and i in Figure 8.12a.900

● Suppose that k1 does not lie in a toggle square.901

● Suppose that k′1 lies in a toggle square.902

● If k0 lies in a toggle square then we obtain the exam-903

ples shown in Figure 8.12c.904
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Figure 8.12. Parting routes for the track-cusps in ∂−ΘV , where V is
fLLQccecddehqrwjj_20102. Here we draw a regular neighbourhood of
the train track in green.Fig:PartingRoutes

● Otherwise k0 does not lie in a toggle square and we905

obtain the examples d and h in Figure 8.12a.906

● Suppose that k′1 does not lie in a toggle square.907

● If k0 lies in a toggle square then we obtain the exam-908

ples a and g in Figure 8.12a.909

● Otherwise k0 does not lie in a toggle square and we910

obtain the examples b and c in Figure 8.12a.911

Sec:NeighbourhoodSplittingInParting
8.12.2. Neighbourhood splitting. Suppose that U is a crimped shearing912

region. Let Hs be the family of cross-sections of ΘU , with H0 = ∂−ΘU913

and H1 = ∂+ΘU . Recall that BV in parted position is already specified914

in H0 and H1. Instead of parametrising the parting isotopy explicitly,915

we specify parted position in Hs ∩BV by giving a family of train tracks.916

As s ranges over [0,1/2] the intersections of BV (in parted position)917

with the cross-sections Hs show a movie of a splitting. In detail: if918

k is a track-cusp in H0 we split k forward in a small neighbourhood919

of its parting route α(k). The result in one example is shown in the920

lower three rows of Figure 8.1. When two track-cusps k and ℓ meet,921

travelling in opposite directions, they split past each other. (If U is922

blue and there is (not) a toggle square above, this is a left (right) split.923

If U is red the directions swap.) Each track-cusp moves so that924
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● its x–coordinate moves at constant speed and925

● its journey takes all of [0,1/2].926

As a consequence of the construction given in Definition 8.11, track-927

cusps in H1/2 lie either on the centre line of the cross-section, or in928

platforms. See the middle row of Figure 8.1.929

In addition, for branches which meet longitudinal crimped edges, we930

shear the tangent vector where they meet. We do this twice as fast as931

in Remark 7.14. This ensures that, in H1/2, the tangent vector has the932

same slope as the helical edges in ∂+U .933

This describes the neighbourhood splitting.934

Rem:MidwayPartedGraphical Remark 8.13. Let τ 1/2 be the resulting train track in H1/2. The shearing935

described above and Lemmas 8.8 and 8.9 ensure that all branches of936

τ 1/2 are graphical.937

Let τ 1 be the train track in H1 = ∂+ΘU = ∂−ΘU . By Remark 8.4, the938

train track τ 1 is a very small folding of the train track in ∂+ΘU . By939

Lemma 8.9, the train track τ 1 is also graphical. ◇940
Sec:GraphicalIsotopyInParting

8.13.3. The graphical isotopy. For s ∈ [1/2,1], we perform a graphical941

isotopy from τ 1/2 to τ 1, as follows. By Remark 8.13, both train tracks942

are graphical and they are combinatorially isomorphic. Also their track-943

cusps are in (almost) the same places in bigon coordinates. For each944

point of each branch of τ 1/2, we change its y-coordinate at constant945

speed, from its initial position in τ 1/2 to its final position in τ 1. We also946

very slightly move track-cusps forward to maintain dynamicism. This947

describes the graphical isotopy.948

See the upper three rows of Figure 8.1.949

Lem:PreparedIsotopicAndDynamic Lemma 8.14. The result of the parting isotopy in ΘV glued to the950

branched surface in ΘV , produced by the neighbourhood splitting and951

graphical isotopy, is dynamic and is isotopic to BV after shrinking.952

Proof. The intersection of this branched surface with each cross-section953

is a train track. Moreover, by construction the track-cusps always move954

forwards as we move up through cross-sections. Therefore the branched955

surface is dynamic.956

In Section 8.3 we explicitly describe an isotopy between the shrunken957

branched surface and the parted branched surface in ΘV . Thus in ΘV958

the shrunken branched surface and the constructed branched surface959

meet ∂−ΘV and ∂+ΘV with the same combinatorics. It follows that960

the constructed branched surface is isotopic to the shrunken branched961

surface. □962

We call the result prepared position for BV . We define the lower963

preparatory isotopy of the lower branched surface BV analogously.964
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8.15. Splitting routes. From now it will be convenient to work in965

the universal cover, rather than in M itself. Since our constructions966

are natural, they are automatically equivariant. In a slight abuse of967

notation we use the notation BV instead of the more correct B̃V . The968

splitting isotopies given in the next section are similar to the parting969

isotopies described above, but with two important changes. First, the970

motion of the parting isotopies through space is replaced by the motion971

of the splitting isotopies through time. Second, the parting routes are972

replaced by the splitting routes, which we now describe.973

Def:SplittingRoute Definition 8.16. Suppose that BV is in parted position. Suppose that974

c = c0 is a point of a branch line C. Starting at c0, we follow C upwards975

until it meets, for the first time, a toggle square S = S(c). (This exists976

by Lemma 2.10.) Let U be the crimped shearing region meeting and977

immediately below S. Let H1 = ∂+U . We define c1 = C ∩H1. Let β(c1)978

be the train route with length zero carried by BV ∩H1 which starts979

and ends at c1. Since β(c1) has length zero, it consists of a tangent980

vector which points at the crimped edge of S which is longitudinal for981

U . Note that c1, and thus β(c1), is contained in the intersection of S982

and a platform centred at some corner of S. For an example, see the983

picture of the station (meeting BV in green) in Figure 8.6b.984

We parametrise the subinterval [c0, c1] of C by [0,1]. Fix s and t in985

[0,1] with s < t. Let [cs, ct] ⊂ [c0, c1] be the corresponding subinterval.986

Suppose that [cs, ct] is contained inside a crimped shearing region U .987

There are now two cases as cs lies in the interior of, or lies in the lower988

boundary of, U .989

First suppose that cs is in the interior of U . Let Hs (Ht) be the990

cross-section of U through cs (ct). Suppose that the train route β(ct),991

carried by BV ∩Ht, is given. We are given that β(ct) runs from ct to a992

point inside of a station at the boundary of Ht. We then form the train993

route β(cs), carried by BV ∩Hs, as follows. The start of β(cs) is cs ∈ C.994

The end of β(cs) is the projection (in bigon coordinates) of the end of995

β(ct). Note that the end of β(cs) is again a point in a station.996

Suppose instead that cs lies in the lower boundary of U . We form997

β′(cs) by following the procedure given in the previous paragraph. If998

β′(cs) does not meet any toggle squares then we set β(cs) = β′(cs)999

and note that the end point of β(cs) lies inside of the same station1000

as β(ct). If β′(cs) does meet a toggle square, then we truncate: we1001

delete from β′(cs) all intersections with toggle squares and keep only1002

the segment meeting cs, to obtain β(cs). In this case β(cs) ends on a1003

helical crimped edge, inside the yard of some (possibly different) station.1004

See Figure 8.6d.1005



FROM VEERING TRIANGULATIONS TO DYNAMIC PAIRS 43

We define β(c) = β(c0). This is the splitting route for c. ◇1006

From their construction, we have that β(c) is a train route in all1007

cross-sections containing c. In each it runs from c to a point in a station.1008

See Figure 8.17. When c is in a toggle square, β(c) is completely1009

contained in the platform, inside the station, and also within the toggle1010

square.1011

Lem:SplittingRoutesNoCross Lemma 8.18. Suppose that H is any cross-section. Suppose that c and1012

d are track cusps of BV ∩H. Then β(c) and β(d) do not cross: that is,1013

after a small motion of β(c) the two routes are disjoint.1014

Proof. We use the notation of Definition 8.16. Let [c0, c1] and [d0, d1]1015

be the resulting branch intervals in the branch lines C and D containing1016

c and d respectively. Let cs and dt be the last points in these branch1017

intervals for which there is a horizontal cross-section H ′ containing both.1018

We deduce that H ′ is the upper boundary of some crimped shearing1019

region U .1020

Claim 8.19. β(cs) and β(dt) are disjoint, thus they do not cross.1021

Proof. If s = 1 then β(cs) is contained in a station. In this case, if β(dt)1022

meets β(cs) then (due to the truncation step of the construction) we1023

find that β(cs) = β(dt). Thus c0 = d0 and we are done.1024

A similar proof deals with the case that t = 1. We may now suppose1025

that s < 1 and t < 1. Let T ′ be the union of the toggle squares of H ′.1026

Define H ′′ =H ′−T ′. Note that each component of H ′′ also appears as a1027

subsurface of the lower boundary of some crimped shearing region. Since1028

cs and dt are the last points of [c0, c1] and [d0, d1] in a common cross-1029

section, we find that cs and dt are necessarily in different components1030

of H ′′. By construction β(cs) and β(dt) are also contained in these1031

components, so are disjoint. □1032

We now reparameterise [c0, cs] and [d0, dt] by the unit interval and1033

rechoose our notation so that, for all r ∈ [0,1], the track-cusps cr and1034

dr lie in the same cross-section Hr. By the claim, when r = 1 the routes1035

β(cr) and β(dr) are disjoint in Hr. Let τ r = BV ∩Hr. The tracks τ r1036

fold as r decreases. Folding preserves the property of not crossing, and1037

we are done. □1038

9. The splitting isotopy1039
Sec:Splitting

Suppose that the upper and lower branched surfaces BV and BV are1040

in prepared position. From this point on, our isotopies are fixed on1041

the union of the toggle squares. That is, each isotopy is supported1042
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Figure 8.17. Splitting routes β(a) through β(i) for the track-cusps
in cross-sections of ΘU , where U is the blue crimped solid torus of
fLLQccecddehqrwjj_20102. Compare with Figure 8.1a. For each split-
ting route, the subcurve which is the corresponding parting route is drawn
with a dotted line.Fig:SplittingRoutes
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in the interiors of the red and blue parts of the crimped shearing1043

decomposition.1044

We now describe the upper and lower splitting isotopies of BV and1045

BV respectively. These move BV downwards and BV upwards. The1046

isotopies get their name from how the moving branched surfaces meet1047

a fixed cross-section H; the intersection is a splitting sequence of train1048

tracks in H.1049

We use BVt to denote the image of BV at time t ∈ [0,1]. It now1050

suffices, for each cross-section H, to1051

● describe the intersection BVt ∩H and1052

● check that the descriptions depend continuously on the choice1053

of H.1054
Sec:SplittingIsotopyMiddleUpper

9.1. The upper splitting isotopy in ΘV .1055
Sec:NeighbourhoodSplittingInSplitting

9.1.1. Neighbourhood splitting. For t ∈ [0,1/2], we do the following.1056

Suppose that H is a horizontal cross-section in ΘV and suppose that1057

c ∈ BV ∩H is a track-cusp. We split c forward in a small neighbourhood1058

of its splitting route β(c) until we reach the station containing the end1059

of β(c). For an example of the overall motion of the track-cusps see the1060

lower three rows of Figure 9.2.1061

Applying Lemma 8.18, when two track-cusps c and d meet travelling1062

in opposite directions, they split past each other, splitting to the left or1063

right as determined by the combinatorics of their splitting routes. Each1064

track-cusp moves at the constant speed required for its journey to take1065

all of [0,1/2]. This and Lemma 8.18 ensure that track-cusps travelling1066

in the same direction never meet.1067

The construction in Definition 8.16 ensures that when a track-cusp c1068

enters a station it moves all the way to the platform (in the projection1069

of S(c)) if there is no track-cusp already there. The track-cusp c then1070

points at e′, a longitudinal edge for the ambient crimped shearing region.1071

See the picture of the station in Figure 9.2.1072

When a track-cusp c enters a station, and there is a track-cusp d1073

already at the platform, then c only enters the yard. Furthermore, c1074

remains outside of the projection of S(d), pointing at the projection of1075

its helical crimped edge. The construction in Definition 8.16 ensures that1076

when multiple track-cusps arrive to the same station (and the platform1077

is occupied) they line up in the yard, in order of their appearance.1078

Again, see the picture of the station in Figure 9.2.1079

This describes the neighbourhood splitting.1080
Sec:GraphicalIsotopyInSplitting

9.1.2. The graphical isotopy. For t ∈ [1/2,1], we do the following. Sup-1081

pose that b is a branch of BV
1/2 ∩H. Note that the endpoints of b lie1082
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inside of stations. Also note that by Lemmas 8.8 and 8.9, the branch1083

b is graphical. We isotope so that, at t = 1, all branches of the train1084

track are straight lines in bigon coordinates, other than in the stations.1085

For each point of each branch, we change only its y-coordinate in bigon1086

coordinates, moving at constant speed from its initial to its final posi-1087

tion. This describes the graphical isotopy. See the upper three rows of1088

Figure 9.2.1089

Rem:UpGivesDownAgain Remark 9.3. As in Remark 8.5, the intersection of the image of the1090

upper splitting isotopy with cross-sections in ΘV determines the inter-1091

section of the image of the upper splitting isotopy with ∂−ΘV . ◇1092

Sec:SplittingIsotopyLower
9.5. The upper splitting isotopy in ΘV . Fix U , a blue crimped1093

shearing region. We use Hs to denote the cross-section of ΘU at height1094

s ∈ [0,1]. (This matches the values for s given in the captions for1095

Figures 9.2, 9.4, and 9.8.) It remains to describe the intersections1096

BVt ∩ Hs. The intersections BV0 ∩ Hs are given by the preparatory1097

isotopy. Also, BVt ∩ H1 and (by Remark 9.3) BVt ∩ H0 are already1098

determined by the splitting and isotopy given in Section 9.1. This gives1099

three sides of the “boundary of the isotopy”. We now describe the fourth;1100

that is, we describe BV1 ∩Hs for s ∈ [0,1].1101

9.5.1. Suffix routes. We wish to define the suffix routes for track-cusps1102

of BV1 ∩H0.1103

Def:SuffixRoutes Definition 9.6. Suppose that k is a track-cusp of BV1 ∩H0. Following1104

our construction backwards, k is the endpoint of a splitting route β(k′)1105

starting at k′ and carried by BV0 ∩H0. Suppose that ℓ′ is the track-cusp1106

of BV0 ∩ H1 on the same branch interval of BV0 ∩ U as k′. Let ℓ be1107

the endpoint of the splitting route β(ℓ′) starting at ℓ′ and carried by1108

BV0 ∩H1.1109

Let β′(ℓ′) ⊂ BV0 ∩H0 be the result of folding β(ℓ′) downward through1110

BV0 ∩ U . By construction, β(k′) is obtained from β′(ℓ′) by removing1111

any intersection with toggle squares in ∂−U and taking the initial1112

segment. Define γ′(k′) = β′(ℓ′) − β(k′). Note that this is a train route1113

in BV0 ∩H0. By construction and by Lemma 8.18 none of the splitting1114

routes in BV0 ∩H0 cross γ′(k′). We take the image of γ′(k′) under the1115

neighbourhood splitting and graphical isotopy defined in Section 9.1.1116

The result is the suffix route γ(k) which starts at k, is carried by1117

BV1 ∩H0, and which ends at (the projection in bigon coordinates of)1118

ℓ. ◇1119

Claim 9.7. The suffix route γ(c) is carried by the graphical subtrack of1120

BV1 ∩H0 and so is graphical.1121
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Figure 9.2. The splitting isotopy for the cross-section ∂−ΘV = ∂+ΘV at
the middle of U , (s = 1). Here U is the blue crimped solid torus for
fLLQccecddehqrwjj_20102. Note that, as shown in the close-up views of
a station, track-cusps never touch. The close-up views also show the projec-
tion under bigon coordinates of the toggle square S(e) (as in Definition 8.16)
above the station.Fig:m115_green_splitting_sequence_top_of_Omega_V

Proof. Recall that H0 = ∂−U . Again by Lemmas 8.8 and 8.9, the1122

train track BV1 ∩H0 is graphical except for those branches which are1123

in a platform in ∂−ΘV meeting a longitudinal crimped edge. The1124
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Figure 9.4. The splitting isotopy for the cross-section at the bot-
tom of ΘU (s = 0), where U is the blue crimped solid torus for
fLLQccecddehqrwjj_20102.Fig:m115_green_splitting_sequence_bottom_of_Omega_V

splitting route β(ℓ′) does not meet such a branch (Definition 8.16).1125

Therefore neither does its fold β′(ℓ′), and so neither does the route1126

γ′(k). The neighbourhood splitting and graphical isotopy do not alter1127

this (Lemma 8.8). □1128
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As in Section 8.12.2, we now perform a neighbourhood splitting (in1129

space), replacing the parting routes α by the remaining routes γ. As s1130

progresses through [0,1/2] we split a track-cusp c forward along γ(c).1131

We now perform (in space) a graphical isotopy, analogous to the1132

one described in Section 8.13.3. As s progresses through [1/2,1], we1133

graphically straighten the branches. As usual, the track-cusps move1134

very slowly forwards to ensure dynamism. See Figure 9.8.1135

Now that the four sides of the isotopy are given, we fill in the interior.1136

That is, we must describe the train-tracks BVt ∩Hs for s, t ∈ (0,1). As1137

usual, we begin by finding the routes needed for the neighbourhood1138

splitting.1139

9.8.2. Prefix routes.1140

Def:PrefixRoutes Definition 9.9. Suppose that s lies in [0,1]. Let k be a track-cusp1141

in BV0 ∩Hs. Let ℓ be the track-cusp in BV0 ∩H1 which is on the same1142

branch interval (of BV0 ) as k. Let ℓ′ be the endpoint of the route β(ℓ).1143

Let k′ be the track-cusp in BV1 ∩Hs which is on the same branch interval1144

(of BV1 ) as ℓ′.1145

We define the prefix route δ(k) to be the prefix of β(k) which ends1146

at the point of β(k) with the same x–coordinate as k′. ◇1147

For each fixed s, we perform the neighbourhood splitting (for t ∈1148

[0,1/2]) and graphical isotopy (for t ∈ [1/2,1]). During the neighbour-1149

hood splitting, each track-cusp moves from its position in BV0 ∩Hs to1150

its position in BV1 ∩Hs.1151

This completes the definition of the upper splitting isotopy. The1152

lower splitting isotopy of BV is defined analogously, with the roles of1153

ΘU and ΘU reversed. Note that both the upper and lower splitting1154

isotopies are continuous by construction.1155

We apply the splitting isotopies to BV and BV beginning from pre-1156

pared position. We call the result split position. For examples, see1157

Figures 9.11 and 9.12.1158

9.10. Split position. We make the following observations.1159

Lem:SplittingDynamic Lemma 9.13. In split position, the branched surfaces BV and BV are1160

dynamic.1161

Proof. In split position the branched surface BV is transverse to the1162

cross-sections of all crimped shearing regions. Furthermore, we have1163

arranged that track-cusps always move forwards as we move up through1164

cross-sections. The same argument applies to the lower splitting isotopy,1165

acting on BV . □1166
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Figure 9.8. The result BV1 of the splitting isotopy in ΘU where U is the blue
crimped solid torus for fLLQccecddehqrwjj_20102. The five diagrams
show (from the bottom moving up) BV1 ∩Hs for s ∈ (0,1/4,1/2,3/4,1). The
bottom cross-section contains blue helical edges. In the uppermost magnifying
glass we have also drawn the (projection in bigon coordinates) of the upper
toggle square.Fig:m115_space_splitting_sequence_blue

Lem:TrackCuspNoGo Lemma 9.14. Suppose that G and H are cross-sections in ΘU with G1167

above H. Then with BV in split position, the projection of τG to H in1168
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Figure 9.11. The intersection of BV (and BV), in split position,
with various cross-sections of the crimped shearing decomposition of
fLLQccecddehqrwjj_20102. Compare with Figure 8.2.Fig:m115_split

bigon coordinates is carried by, and is up to a small isotopy equal to,1169

τH . The same holds for BV in ΘU .1170

Proof. Let τGt be the intersection of G and BVt . Define τHt similarly.1171

Suppose that C is the branch line through track-cusps c of τG0 and d1172

of τH0 . Following the construction given in Section 9.1, we obtain train1173

routes β(c) ⊂ τG0 and β(d) ⊂ τH0 . Since there are no toggle squares1174

strictly between G and H, the forward endpoint of β(c) projects to the1175

forward endpoint of β(d). Thus after the neighbourhood and graphical1176

isotopies, τG1 projects to τH1 (after moving the track-cusps of τH1 slightly1177

forward). □1178

Lem:BoundaryCrossSectionSplit Lemma 9.15. Suppose that BV and BV are in split position. Suppose1179

that U is a blue shearing region. Suppose that H is either ∂+U , the1180

upper boundary of U , or ∂−U , the lower boundary. Let τH = H ∩BV1181

and τH =H ∩BV .1182
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Figure 9.12. Split position for the figure-eight knot sibling with veering
triangulation cPcbbbdxm_10. The four pinched tetrahedra are labelled a
through d. To obtain the pictures for the figure-eight knot complement with
veering triangulation cPcbbbiht_12, alter these figures by requiring that
the orientation on every helical edge points upwards. (To relabel the pinched
tetrahedra, start with those given at the top of Figure 9.12a and propagate
outwards.)Fig:FinalPositionFig8Sibling

Itm:Straight (1) Outside of the stations, the branches of τH and τH are straight1183

lines (in bigon coordinates).1184

Itm:Slopes (2) Outside of toggle squares, the branches of τH have strictly positive1185

slope and the branches of τH have strictly negative slope.1186

Itm:ToggleSquareSlopes (3) Inside of each toggle square, outside of the stations, there is1187

exactly one branch of τH and exactly one branch of τH . These1188

have strictly negative and strictly positive slope respectively.1189

Itm:TrackCusp (4) Each track-cusp is in a station.1190

Itm:NextToToggleSquare (5) Suppose that e is a helical edge in H. Suppose that, of the two1191

equatorial squares adjacent to e, at least one lies in a toggle1192

tetrahedron. Then the stations of τH immediately adjacent to e1193
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are connected by a branch of τH . Similarly, the stations of τH1194

are connected by a branch of τH .1195

Itm:OneCusp (6) Every component of H −τH contains exactly one track-cusp, and1196

exactly one ideal vertex of U . The same holds for H − τH .1197

When U is a red shearing region, a similar statement holds, swapping1198

the signs of slopes. □1199

We generalise Lemma 9.15(6) to other cross-sections as follows.1200

Prop:OneCusp Proposition 9.16. Suppose that U is a crimped shearing region. Let1201

H be a cross-section of U . Then every component of H − τH contains1202

exactly one track-cusp and exactly one ideal vertex of U . The same1203

holds for H − τH .1204

Proof. The result holds for H ′ = ∂−U by Lemma 9.15(6). Moving1205

upwards from H ′ to H we perform splittings and graphical isotopies.1206

Neither of these changes the combinatorics of a region of H − τH . □1207

Lem:ThirdCrossSectionSplit Lemma 9.17. Suppose that BV and BV are in split position. Suppose1208

that U is a blue shearing region. Suppose that H is the lower boundary1209

of Θ(U). Let τH =H ∩BV and τH =H ∩BV .1210

Itm:ThirdStraight (1) Outside of the stations, the branches of τH and τH are straight1211

lines (in bigon coordinates).1212

Itm:ThirdGreenSlopes (2) The branches of τH have strictly positive slope.1213

Itm:ThirdPurpleSlopes (3) Above each toggle square, outside of its stations, there is exactly1214

one branch of τH . This branch has slope more positive than any1215

branch of τH . The remaining branches of τH (not above toggle1216

squares) have strictly negative slope.1217

Itm:ThirdTrackCusp (4) Each track-cusp is in station.1218

A similar statement holds for H the upper boundary of Θ(U). Finally,1219

all of the above again holds, swapping slopes appropriately, when U is a1220

red shearing region.1221

Proof. Let G = ∂+U . By Lemma 9.15, statements (1) and (4) hold for1222

τG. Also, (2) holds except that the slopes of branches have the wrong1223

sign inside of toggle squares. By Lemma 9.14, these properties are1224

carried to τH , and the shearing within Θ(U) corrects the signs of the1225

slopes of branches coming from toggle squares in G. To obtain (3), we1226

start from the lower boundary K = ∂−U , and again use Lemma 9.14 to1227

carry properties of τK up to τH . Finally, note that the only branches of1228

τH with slope more positive than the exceptional branches of τH do not1229

lie above a toggle square. (They lie above exactly one helical edge.) □1230

Lem:SlopeNearCusp Lemma 9.18. Suppose that BV and BV are in split position. Suppose1231

that U is a blue shearing region. Suppose that H is any cross-section of1232
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U . Let τH =H ∩BV and τH =H ∩BV . Let c be a cusp of U . Let E be1233

the component of H − (τH ∪ τH) meeting c. Then the branches of τH1234

appearing in the boundary of E have positive slope; the branches of τH1235

appearing in the boundary of E have negative slope. There is a similar1236

statement for a red shearing region.1237

Proof. First let H = ∂−U . By Lemma 9.15(2) and (3), the only branches1238

of the incorrect slope are in toggle squares. Appealing to Lemma 9.15(5),1239

such branches are separated from the cusp c by other branches. Exam-1240

ining the neighbourhood and graphical isotopies, the conclusion holds1241

in general. □1242

Lem:SplitMeetsToggles Lemma 9.19. Each subray of each branch line of BV and of BV , in1243

split position, meets crimped shearing regions of both colours.1244

Proof. This follows from Lemma 2.10 and the fact that our isotopies do1245

not change combinatorics in toggle squares. □1246

10. The dynamic pair1247
Sec:DynamicPair
Thm:DynamicPair Theorem 10.1. Suppose that V is a transverse veering triangulation.1248

In split position, the upper and lower branched surfaces BV and BV1249

form a dynamic pair; this position is canonical. Furthermore, if V is1250

finite then split position is produced algorithmically in polynomial time1251

and the dynamic train track BV ∩BV has at most a quadratic number1252

of edges.1253

The branched surfaces BV and BV are individually dynamic by1254

Lemma 9.13. We now verify the hypotheses of Definition 4.9. Again, it1255

will be convenient to work equivariantly in the universal cover.1256

10.2. Transversality. Let U be a crimped shearing region. Recall that1257

BV and BV are now in split position.1258

Lemma 10.3. Suppose that H is a cross-section of U . Then the1259

train-tracks τH and τH are transverse.1260

Proof. For H = ∂−U , this follows from Lemma 9.15(2), (3), and (4).1261

Now suppose that Hs for s ∈ [0,1] is a cross-section in ΘU . Let1262

τ s = BV ∩Hs and let τs = BV ∩Hs. The train-tracks τ s perform the1263

neighbourhood and then graphical isotopies as described in Section 9.5.1264

Note that τ 0 and τ0 are transverse by the previous paragraph. By1265

Lemma 9.14, the train-tracks τs are all essentially the same in bigon co-1266

ordinates. During the neighbourhood splitting (that is, for s ∈ [0, 1/2]),1267

the track-cusps of τ s split forward in a small neighbourhood of (the1268
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projection of) τ 0. Thus the train-tracks τ s and τs are transverse for1269

s ∈ [0,1/2].1270

By Lemma 9.17, the train-tracks τ 1 and τ1 are transverse. We now1271

consider s ∈ [1/2,1]. The graphical isotopy interpolates between τ 1/21272

and τ 1. Let bs and cs be branches of τ s and τs respectively.1273

Claim. The branches bs and cs are transverse.1274

Proof. Let c0 be the projection of cs down to ∂−U . Suppose that c0 lies1275

completely within a toggle square. If the projection of b1/2 misses this1276

toggle square then we are done. Otherwise let as be the linear segment1277

of bs which meets the toggle square. Since the isotopy is graphical, the1278

slope of as is between that of a1/2 and a1. Applying Lemma 9.15(3) and1279

Lemma 9.17(3) we find that the slope of cs is bigger than that of as.1280

We deduce that cs is transverse to as and thus to bs.1281

Suppose instead that c0 is disjoint from the toggle squares. In this1282

case the proof is similar, but easier. Now the slope of cs is always1283

negative by Lemma 9.17(3). Also, the slope of as is always positive by1284

Lemma 9.15(2), by Lemma 9.17(2), and by appealing to the graphical1285

isotopy. □1286

Let K be the lower boundary of Θ(U). By the claim (for s = 1), the1287

tracks τK and τK intersect transversely. Thus by Lemma 9.14, the same1288

holds for τH and τH for every cross-section H in Θ(U).1289

Swapping the roles of upper and lower and repeating the argument1290

proves that τH and τH are transverse for every cross-section H in1291

ΘU . □1292

Lemma 10.4. Each branch interval of BV in U is transverse to BV ,1293

and conversely.1294

Proof. It suffices to show that for each cross-section H, the track-cusps1295

of τH and of τH are disjoint. By Lemma 9.14, in ΘU ∪Θ(U) the track-1296

cusps of τH lie within small neighbourhoods of the endpoints of sidings1297

of τH . The same holds for track-cusps of τH in Θ(U) ∪ΘU . The track-1298

cusps of τH remain away from the sidings of τH in the upper splitting1299

isotopy in ΘU . Similarly, the track-cusps of τH remain away from the1300

sidings of τH in the lower splitting isotopy in ΘU . □1301

We record the following.1302

Rem:TrackCuspsGo Remark 10.5. As H moves upwards, if a track-cusp of τH moves through1303

τH , it does so going forwards. Similarly, whenever a track-cusp of τH1304

moves through τH , it does so going backwards. ◇1305

The above lemmas, together with the remark, prove that BV and BV1306

are transverse.1307
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10.6. Separation. Recall from Remark 2.8 that both BV and BV are1308

isotopic (ignoring the branching structure) to the dual two-skeleton1309

of V. Suppose that C and D are components of M − (BV ∪BV), each1310

containing a cusp of M . Thus, by Proposition 9.16, each of C and D1311

contains exactly one cusp of M . Suppose that F is a two-cell of the1312

natural cell structure on BV ∪BV . Suppose that F meets C on one side1313

and D on the other. Then we can find a proper arc dual to F , and thus1314

disjoint from one of BV or BV . This is a contradiction.1315

Sec:Components
10.7. Components. We must show that every component C of M −1316

(BV ∪BV) is either a dynamic shell or a pinched tetrahedron.1317

10.7.1. Dynamic shell. Suppose first that C contains one (thus by1318

Proposition 9.16, exactly one) cusp c of M . Let v be a model of c where1319

v is an ideal vertex of a red crimped shearing region U . Let E = E(v,U)1320

be the component of U − (BV ∪BV) incident to v. Our goal now is to1321

prove the following.1322

● E is a three-ball,1323

● the frontier of E in U consists of two vertical “half-bigons” (one1324

from each of BV and BV),1325

● the boundary of E in ∂+U consists of two triangular faces, both1326

meeting a single helical edge of ∂+U , and1327

● the boundary of E in ∂−U consists of two triangular faces, both1328

meeting a single helical edge of ∂−U .1329

Fix a cross-section H of U . Looking into H from the vertex v, we1330

see a siding of τH meeting the boundary of H to our left and a siding1331

of τH meeting the boundary of H to our right. Appealing Lemma 9.18,1332

the frontier of H ∩ E consists of branches of τH and τH intersecting1333

precisely once. Stacking the cross-sections together, shows that E is a1334

three-ball with the desired properties.1335

A similar argument applies for a blue shearing region U . Here the1336

half-bigon of BV is to the left, and the half-bigon of BV is to the right.1337

Taking the union of the three-balls E(v,U), as v ranges of the models1338

of c, gives C. The half-bigons glue to give the stable and unstable faces1339

of C. Note that any one half-bigon meets only finitely many others1340

because the edges of V have finite degrees. Therefore, the E(v,U) glue1341

together to form a dynamic shell.1342

10.7.2. Pinched tetrahedron. Suppose instead that the component C1343

does not contain any cusp c of M . We must show that C is a pinched1344

tetrahedron. To show this, we will need the following definition and1345

lemma.1346
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Def:ExtendedCrossSection Definition 10.8. Suppose that H ⊂ U is a cross-section. We define1347

the bigon extension H

L

as follows. The boundary of H consists of some1348

number of longitudinal crimped edges. Each such edge e cobounds a1349

crimped bigon B with a coloured edge e′. For each edge e we glue a1350

new copy of B onto H to obtain H

L

. ◇1351

Note that the bigon extension H

L

may contain many copies of the1352

same crimped bigon. For example, Figure 8.2a shows several extended1353

cross-sections, each extended with multiple copies of the two crimped1354

bigons incident to the single red longitudinal edge. (Note however1355

that in that figure we have not drawn the intersection of the branched1356

surfaces with these crimped bigons.)1357

Lem:PinchedTetrahedraCrossSections Lemma 10.9. Suppose that H is a cross-section of a crimped shearing1358

region U , meeting C. Then each component of the intersection C ∩H

L

is1359

either a trigon or a quadragon, as defined in Definition 4.5. Moreover,1360

as H moves up through U , components change according to the sequence1361

given in Definition 4.5.1362

Proof. Suppose that U is a red crimped shearing region. Let (Ht ∣ t ∈1363

[0,1]) be the cross-sections of U . Thus H0 = ∂−U .1364

Claim. Suppose that r is such a component of C ∩H

L

0. Then r is either1365

a trigon or a quadragon.1366

Proof. First suppose that r is entirely contained within H =H0. From1367

the first four items of Lemma 9.15, the boundary of r consists of three or1368

four branch lines from τH and τH . If there are four then they alternate1369

between τH and τH and r is a quadragon. If there are three then two1370

lie in the same train track and meet at a track-cusp. Thus r is a trigon.1371

Now suppose that r is not entirely contained within H. By Lemma 9.15(5),1372

the component r meets a crimped bigon B and contains the midpoint1373

of the crimped edge. The frontier of r in B consists of exactly one arc1374

from each of τB and τB, meeting at a point. The claim now follows in1375

a manner similar to the previous paragraph. □1376

More generally, suppose that the claim holds with Ht replacing H0.1377

Let τ t =Ht ∩BV (green) and τt =Ht ∩BV (purple). Remark 10.5 tells1378

us that as t increases, there are only two combinatorial changes:1379

(1) Track-cusps of τ t move forwards through branches of τt.1380

(2) Track-cusps of τt move backwards through branches of τ t.1381

The first move simultaneously creates a new green trigon and converts a1382

green trigon into a quadragon. The second move simultaneously deletes1383

a purple trigon, and converts a quadragon into a purple trigon. These1384
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are both moves between stages in the life of a pinched tetrahedron, as1385

given in Definition 4.5, as required. This proves Lemma 10.9. □1386

Suppose that C is a complementary component of M − (BV ∪BV)1387

which does not contain a cusp of M . We now show that the cross-1388

sections that meet C undergo the above moves, and thus C is a pinched1389

tetrahedron.1390

Let H be a cross-section through a crimped shearing region U , and1391

let r be a region of H
L

− (BV ∪BV). Using Proposition 9.16 twice, gives1392

track-cusps sr and sr of τH and τH respectively, so that r is a subset1393

of the component of H

L

− τH containing sr, and is also a subset of the1394

component of H

L

− τH containing sr.1395

First suppose that r is a green trigon. Thus r contains sr. We must1396

show that this track-cusp eventually crosses a purple arc, turning r into1397

a quadragon. By Lemma 9.19, moving up, (the branch line containing)1398

sr eventually enters the bottom of a crimped shearing region V through1399

a toggle square. If the region r persists into ∂−V , and is still a green1400

trigon, then moving up through ΘV , the track-cusp sr splits forwards1401

and hits the purple arc given by Lemma 9.15(5). This turns r into a1402

quadragon.1403

Moving down instead of up, a similar argument shows that every1404

green trigon is born at some point. Similar arguments also show that as1405

we move up purple trigons eventually die, and that as we move down,1406

purple trigons eventually turn into quadragons.1407

Lastly we must show that no quadragon can remain a quadragon1408

forever. Suppose that q is a quadragon in a cross-section H. The1409

green sides of q determine a track-cusp sq. As we move down, (the1410

branch line containing) sq is eventually inside a toggle square within1411

a cross-section K = ∂−U . Using Lemma 9.15(5), we observe that the1412

component of K

L

−BV containing sq has no quadragons. Therefore q1413

is no longer a quadragon. A similar argument shows that quadragons1414

must eventually become trigons as we move upwards.1415

This completes the proof that components of M − (BV ∪ BV) are1416

either dynamic shells or pinched tetrahedra.1417

10.10. Transience. Suppose that F is a component of BV−BV . Choose1418

a point x ∈ F . Let U be a crimped shearing region containing x, and let1419

H be the cross-section of U containing x. Proposition 9.16 implies that1420

there is one ideal vertex v of U in the component of H − τH containing1421

x. Let c be the cusp of M containing v. By Section 10.7, there is a1422

unique dynamic shell C containing c.1423
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Separating C ∩H from x within H −τH is a finite collection of regions1424

ri of H − (τH ∪ τH). As we flow upwards, even when we move from one1425

shearing region to the next, each of these regions evolves according to1426

Definition 4.5. In particular they all eventually collapse. Moreover, by1427

Remark 10.5, no new regions are created between (the image of) x and1428

C. So the image of x eventually flows into an unstable face of C. The1429

same argument applies to components of BV −BV , flowing downwards.1430

10.11. Canonicity and complexity. In our construction, we make no1431

arbitrary choices. Thus split position is canonical. In particular, if one1432

changes the orientation of the manifold or reverses the direction of the1433

flow then only names will change and not the underlying combinatorics1434

of the dynamic pair.1435

Now suppose that V is a finite transverse veering triangulation. Let1436

∣V ∣ denote the number of veering tetrahedra. In building the shearing1437

decomposition (Theorem 5.10), we produce 2∣V ∣ half-tetrahedra and per-1438

form 2∣V ∣ gluings. This requires linear time. In producing the crimped1439

shearing decomposition (Section 5.17), the work is now proportional to1440

the sum of the edge degrees, which is 6∣V ∣. This again requires linear1441

time.1442

To specify the split positions of BV and BV , it suffices to determine1443

the position of every track-cusp c in each horizontal cross-section H1444

appearing in the Θ–decomposition of every crimped shearing region1445

U . The branch intervals of BU lie close to the sidings except, possibly,1446

in the lower half of ΘU . Taking H = ∂−U , and supposing that the1447

siding for c lies in a toggle square, we find that c splits forward in the1448

(space) neighbourhood splitting described in Section 9.5. The path of1449

c is exactly the train route β(c) described in Section 9.1. The naive1450

algorithm given there takes time at most quadratic in the degree of the1451

relevant longitudinal edge of U . Since the longitudinal edges partition1452

the sum of the edge degrees, the total complexity of computing the1453

train routes β(c) is at most quadratic.1454

We now bound the number of edges in the dynamic train track1455

BV ∩BV . Suppose that (Ui)
m
i=1 is a collection of blue crimped shearing1456

regions with the following properties.1457

(1) U = U1 has at least one toggle square in ∂−U .1458

(2) V = Um has at least one toggle square in ∂+V .1459

(3) For i = 1, 2, . . . ,m−1, the upper boundary of Ui equals the lower1460

boundary of Ui+1.1461

(4) There are no toggle squares in this shared cross-section.1462

(5) The length of U , and thus of all of the Ui, is n.1463

We allow m to be one (and thus U = V ). We also allow n to be one.1464
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Let H be the lower boundary of Θ(U). The track τH has 2n branches1465

(outside of a small neighbourhood of the sidings). Each of these branches1466

is a line segment in H. By Lemma 9.17(3), each branch of τH above a1467

toggle square has projection to ∂−U contained within that toggle square.1468

The remaining branches of τH have projections that avoid the toggle1469

squares. Thus no branch of τH wraps all the way around H.1470

Let K be the upper boundary of Θ(V ). By a similar argument,1471

τK has 2n branches (outside of a small neighbourhood of the sidings).1472

Again, each is a line segment in K. Furthermore, all of these are1473

either below toggle squares or have slope greater than 1/n. The track1474

τH is obtained from τK by shearing. After moving from K to the1475

lower boundary of Θ(V ), branches below toggle squares now have large1476

positive slope while all other branches become slightly shallower, and1477

so all branches now have slope greater than 1/(n + 1). Pushing down1478

through (Ui), we arrive at H. By induction, the branches of τH have1479

slope greater than 1/(n +m). Thus any branch of τH wraps at most1480

(m+n)/n times around H. Thus each branch of τH meets each branch1481

of τH at most [(m + n)/n] + 1 times. There are (2n)2 such pairs, for a1482

total of at most 4n(m + 2n) intersections. This counts all edges of the1483

dynamic train track above ΘU and below ΘV . Edges of the dynamic1484

train track either continue or merge in pairs as we descend from H to1485

∂−U . Thus there are at most an additional 4n(m + 2n) edges in ΘU .1486

Likewise there are at most an additional 4n(m + 2n) edges in ΘV .1487

There are now two cases. If m ≥ n then the size of the dynamic train1488

track in ∪iUi is O(nm); this is proportional to the number of tetrahedra1489

in ∪iUi. If m ≤ n then the size is instead O(n2
); this is bounded above1490

by the square of the number of tetrahedra in ∪iUi. Summing, we deduce1491

that the size of the dynamic train track is at most quadratic in ∣V ∣.1492

This completes the proof of Theorem 10.1. □1493

Question 10.12. There is a sequence (Vk)∞k=2 of veering triangulations1494

with the following properties.1495

● Vk has k tetrahedra.1496

● Vk+1 is obtained from Vk by horizontal veering Dehn surgery1497

(along a Möbius band) [16].1498

● The size of the dynamic train track of Vk grows quadratically1499

with k.1500

Thus we may ask if there is some other canonical construction of a1501

dynamic pair which yields a smaller dynamical flow graph. ◇1502
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Appendix A. From equatorial squares to maximal1503

rectangles1504
App:Rectangles

For our future work, we require an analysis of maximal rectangles in1505

the leaf space for the “flow” associated to a given veering triangulation.1506

We proceed as follows.1507

Suppose that M is a three-manifold. Suppose that V is a veering trian-1508

gulation of M . Let U be the associated crimped shearing decomposition1509

of M , as defined in Section 5.17.1510

Def:Cross Definition A.1. Suppose that t is a veering tetrahedron of V. Let1511

E = E(t) be its equatorial square. Let e0, e1, e2, and e3 be the veering1512

edges of E. Recall that Ec(V) is the crimped branched surface. Let ni1513

be a small regular neighbourhood of ei taken in Ec(V). Let si = ni −E.1514

Let U and V be the crimped shearing regions above and below si1515

respectively. Let Hi be the component of ∂−U ∩ ∂+V containing si.1516

We define X = X(t) = E ∪ (∪iHi) to be the cross associated to the1517

tetrahedron t. ◇1518

As usual, we define τX =X ∩BV , and similarly define τX . These are1519

train tracks properly embedded in X. Let τ(X) ⊂X be the graph dual1520

to the union τX ∪ τX . In a small abuse, we place vertices of τ(X), if1521

dual to a cusp region, at the associated cusp. We colour an edge e′ of1522

τ(X) green or purple as its dual edge e lies in τX or τX respectively. A1523

rectangle in X is an embedded disk in X whose sides in τ(X) alternate1524

in colour exactly four times.1525

Lem:TetRectangle Lemma A.3. There is a unique rectangle R = R(t) in X =X(t) which1526

contains the vertices of t.1527

Proof. Fix an edge e of the equatorial square E = E(t). Let c and d1528

be the cusps at the two ends of e. Let Y be the component of X − e1529

not containing E. Suppose that the siding immediately adjacent to1530

c, in Y , lies in τY . Thus the siding immediately adjacent to d, in1531

Y , lies in τY . By Proposition 9.16 there is a (unique) component F1532

of Y − τY containing c. Similarly there is a component G of Y − τY1533

containing d. By Lemma 9.15(1) and (2), the regions F and G intersect1534

in a quadragon. We deduce that there is a path in the dual graph (to1535

τY ∪ τY ) from c to d that changes colour, from purple to green, exactly1536

once. See Figure A.2.1537

Suppose that the siding immediately adjacent to c, in Y , instead lies1538

in τY . Then a similar argument finds a path in the dual graph from c1539

to d that changes colour, from green to purple, exactly once.1540
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Figure A.2. The first row shows the cross for the equatorial square for
tetrahedron 1 in fLLQccecddehqrwjj_20102. The third row shows the
cross for the equatorial square for tetrahedron 0. In both cases the maximal
rectangle is shaded in grey. The second row shows the T-shape for the unique
face shared by tetrahedra 1 and 0. The face rectangle is shaded in dark grey.
The vertices and edges of the dual graph are shown only on the boundary of
the rectangles. The cusps are shown with black dots while other regions are
indicated with yellow dots. Corners of the rectangles are drawn with larger
yellow dots.Fig:Crosses

Doing the above for all four edges of E gives the boundary of the1541

desired rectangle R = R(t). Since ∂R contains one cusp in each of its1542

four (monochromatic) sides, R is maximal and thus unique. □1543

Note that R(t) receives a cellulation from its intersection with τX1544

and τX . We use R(1)(t) to denote the edges of R(t) belonging to τX .1545

Similarly, R(1)(t) denotes the edges of R(t) belonging to τX . We now1546

turn to constructing rectangles for the faces of V .1547

Def:TShape Definition A.4. Suppose that f is a veering face of V . Let e0, e1, and1548

e2 be its veering edges. Two of these, say e1 and e2 are the same colour.1549

Let ci be the vertex of f opposite ei. Let W ′ be the shearing region (in1550

the shearing decomposition), containing f . Let W be the corresponding1551

crimped shearing region. The edges e1 and e2 are helical in ∂U ; also1552

there is a longitudinal crimped edge e′0 in ∂U that cobounds a crimped1553

bigon B with e0. Let n0 be a small regular neighbourhood of e0 taken1554

in Ec(V). Let s0 = n0 −B.1555
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Let U and V be the crimped shearing regions above and below1556

s0 respectively. Let H0 be the component of ∂−U ∩ ∂+V containing1557

s0. We take H to be the central cross-section of Θ(W ). We define1558

T = T (f) =H ∪H0 to be the T-shape associated to f . ◇1559

The proof of the following is similar to that of Lemma A.3, replacing1560

Lemma 9.15 by Lemma 9.17.1561

Lem:FaceRectangle Lemma A.5. There is a unique rectangle R = R(f) in T = T (f) which1562

contains the vertices of f . □1563

Again, R(f) receives a cellulation from the tracks τT and τT .1564

Prop:Flow Proposition A.6. Suppose that f is an upper face of the tetrahedra t1565

in V. Let T = T (f) and X =X(t). The natural flow from R(f) ⊂ T to1566

R(t) ⊂X takes1567

● distinct cusps to distinct cusps;1568

● vertices to vertices;1569

● edges of R(1)(f) to edges of R(1)(t);1570

● edges of R(1)(f) to vertices, or to edges of R(1)(t); and1571

● faces of R(f) to either edges of R(1)(f), or to faces of R(t).1572

There is a similar statement when f is a lower face of t. □1573
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