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FROM VEERING TRIANGULATIONS TO DYNAMIC
PAIRS

SAUL SCHLEIMER AND HENRY SEGERMAN

ABSTRACT. From a transverse veering triangulation (not neces-
sarily finite) we produce a canonically associated dynamic pair of
branched surfaces. As a key idea in the proof, we introduce the
shearing decomposition of a veering triangulation.

1. INTRODUCTION

Mosher, inspired by work of (and with) Christy [14, page 5|, and
Gabai |14, page 4], introduced the idea of a dynamic pair of branched
surfaces. These give a combinatorial method for describing and working
with pseudo-Anosov flows in three-manifolds. Very briefly, suppose that
® is such a flow. Then ® admits a transverse pair of foliations F'®
and Fg, called weak stable and weak unstable, respectively. Carefully
splitting both to obtain laminations, and then carefully collapsing, gives
a dynamic pair of branched surfaces B® and Bg. These again intersect
transversely, and have other combinatorial properties that allow us to
reconstruct ® (up to orbit equivalence).

Agol, while investigating the combinatorial complexity of mapping
tori, introduced the idea of a veering triangulation [1, Main construction].
For any pseudo-Anosov monodromy ¢ he provides a canonical periodic
splitting sequence of stable train tracks (Tf). This gives a branched
surface B? in the mapping torus M(¢). Equally well, the splitting
sequence of unstable tracks (T(;) gives rise to the branched surface By.

More generally, even when not layered [12, Section 4|, a veering
triangulation V admits upper and lower branched surfaces BY and By,
obtained by gluing together standard pieces within each tetrahedron
(Section 2.7). Our main result is that these may be isotoped into split
position and there form a dynamic pair.

Theorem 10.1. Suppose that V is a transverse veering triangulation.
In split position, the upper and lower branched surfaces BY and By
form a dynamic pair; this position is canonical. If V is finite then
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2 SAUL SCHLEIMER AND HENRY SEGERMAN

split position is produced algorithmically in polynomial time; also the
dynamic train track BY n By has at most a quadratic number of edges.

Before giving an outline of the proof of Theorem 10.1, we highlight
the main difficulty.

Remark 1.1. Suppose that BY and By, are in normal position within
each tetrahedron. This is locally determined, and any other locally
determined position can be obtained from normal position by local
moves. In normal position, the branched surfaces may coincide on large
regions, spanning many tetrahedra; see Section 2.7. Such a region may
contain a vertical Mobius band; if so then any small isotopy making BY
and By transverse produces “bad” components of M — (BY u By,). We
give more details in Section 4.13 and an example in Figure 4.14B. <&

A more global procedure is thus required. To guide this, we define
in Section 5 the shearing decomposition associated to V. This is a
decomposition of M into solid tori (and possibly solid cylinders in the
non-compact case).

Theorem 5.10. Suppose that V is a veering triangulation (not nec-
essarily transverse or finite). Then there is an associated shearing
decomposition of M canonically associated to V.

Remark 1.2. The shearing decomposition is of independent interest.
For example Theorem 5.10 is used by Tsang [20, Corollary 1.2] to show
that a transitive pseudo-Anosov flow on a closed three-manifold admits
a Birkhoff section with at most two boundary components on orbits of

the flow. )

With Theorem 5.10 in hand, we give a sequence of coordinatisations
inside of the shearing regions. In particular each shearing region is
foliated by horizontal cross-sections; see Definition 6.3. In Sections 7,
8, and 9 we give a sequence of isotopies to improve the positioning
of BY and By relative to each other and relative to the horizontal
cross-sections.

Remark 1.3. Our construction is “semi-local” in the following sense.
Suppose that V and V' are veering triangulations of manifolds M and
M’. Suppose that U and U’ are isomorphic red components (maximal
connected unions of crimped red shearing regions). Then the isomor-
phism carries the dynamic pair for V to that of V' (as intersected with
U and U"). &

Finally, in Section 10 we verify that BY and By, in their final split
position form a dynamic pair.
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FROM VEERING TRIANGULATIONS TO DYNAMIC PAIRS 3

1.4. Other work. After Mosher’s monograph [14], other appearances
of dynamic pairs in the literature include the following. Fenley |9,
Section 8| gives an expostion of various examples due to Mosher and
proves that leaves of the resulting weak stable and unstable folations
have the continuous extension property. Given a uniform one-cochain,
Coskunuzer |7, Main Theorem| follows Calegari |4, Theorem 6.2| in
producing various laminations, which are collapsed to give a dynamic
pair. Calegari [5, Sections 6.5 and 6.6] gives a useful exposition of
dynamic pairs and their relation to pseudo-Anosov flows. In particular
see his version of examples of Mosher [5, Example 6.49].

Closely related to our overall program is recent work of Agol and
Tsang |2, Theorem 5.1|. Starting from a veering triangulation (with
appropriate framing), they construct a pseudo-Anosov flow on the filled
manifold. They do not use dynamic pairs; instead they apply a different
construction of Mosher [14, Proposition 2.6.2]. They identify and remove
infinitesimal cycles, which are similar in spirit to the vertical Mdbius
bands mentioned above. Their construction relies on making certain
choices, so it is not canonical. Also, it is not clear if the resulting
pseudo-Anosov flow recovers the original veering triangulation

1.5. Future work. This is the fourth paper in a series of five [17,
18, 10| providing an exact dictionary between veering triangulations
(framed with appropriate surgery coefficients) and pseudo-Anosov flows
without perfect fits. Theorem 10.1 together with Mosher’s work [14,
Theorem 3.4.1] gives one direction of the dictionary. In service of
our future work, in Appendix A we prove that the “leaf space” of the
resulting pseudo-Anosov flow has maximal rectangles corresponding
to (via the construction given in [18, Section 5.8]) the original veering
tetrahedra.

Acknowledgements. We thank Lee Mosher for enlightening conversa-
tions regarding dynamic pairs.

2. TRIANGULATIONS, TRAIN TRACKS, AND BRANCHED SURFACES

2.1. Ideal triangulations. Suppose that M is a connected three-
manifold without boundary. Suppose that 7 is a triangulation: a
collection of model tetrahedra and a collection of face pairings. (We do
not assume here that 7 is finite.) We say that 7T is an ideal triangulation
of M if the quotient [T, minus its zero-skeleton, is homeomorphic to
M |19, Section 4.2]. In this case, the degree of each edge of T is
necessarily finite. See Figure 2.2 for an example.
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4 SAUL SCHLEIMER AND HENRY SEGERMAN
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FIGURE 2.2. An ideal triangulation of the complement of the figure-eight
knot in the three-sphere. Each edge is equipped with a colour — red (dotted)
or blue (dashed) — and an orientation. These determine the face pairings. The
flattening (into the plane) makes the triangulation taut and transverse. Note
that the taut structure and the orientation determine the veering structure
and thus the colours.

A model tetrahedron t is taut if every model edge is equipped with a
dihedral angle of zero or 7, subject to the requirement that the sum
of the three dihedral angles at any model vertex is m. It follows that
there are exactly two model edges in ¢t with angle m; these do not share
any vertex of . The remaining four model edges, with angle zero, are
called equatorial. A taut tetrahedron can be flattened into the plane
with its equatorial edges forming its boundary; see Figure 2.2. A taut
tetrahedron ¢ contains an equatorial square: a disk properly embedded
in ¢ whose boundary is the four equatorial edges. A ideal triangulation
T of M is a taut triangulation if the model tetrahedra are taut and, for
every edge e in [T, the sum of the dihedral angles of the models of e is
27 [12, Definition 1.1].

A taut model tetrahedron t is transverse if every model face is
equipped with a co-orientation (in or out of ¢), subject to the requirement
that co-orientations agree across model edges of dihedral angle = and
disagree across model edges of dihedral angle zero. See Figure 2.3A. A
taut triangulation 7 of M is a transverse taut triangulation if every
model tetrahedron is transverse taut and, for every face f in |T], the
associated face pairing preserves the co-orientations of the two model
faces |12, Definition 1.2], [13, page 370].

Recall that all model tetrahedra are oriented. A taut model tetrahe-
dron t is veering if every model edge is equipped with a colour, red or
blue, subject to the following.
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’ Fig:TransverseTet ‘F-ig:TransverseEdge

(A) Co-orientations and angles (B) Co-orientations around edges
in a transverse taut tetrahe- can be deduced from the co-
dron. orientations on the faces of the

model tetrahedra.

Fig:Transverse FIGURE 2.3
128 ¢ Viewing any model face (from the outside of the tetrahedron)
129 the non-equatorial edge is followed, in anticlockwise order, by a

130 red equatorial edge.

131 Suppose that t is a veering tetrahedron. If the two non-equatorial edges
132 of ¢ are both red (blue) then we call t a red (blue) fan tetrahedron. If
133 the two non-equatorial edges of t have different colours then we call ¢ a
134 toggle tetrahedron. See Figure 2.4A for all four of the possible veering
135 model tetrahedra. Note that the taut structure and the orientation of ¢
136 determine the colouring of its equatorial edges.

137 Suppose now that 7T is a transverse taut triangulation of M. Then T
138 is a transverse veering triangulation if there is a colouring of the edges of
130 |7 | making all of the model tetrahedra veering [1, Main construction], [12,
140 Definition 1.3|. By the previous paragraph, when such a colouring exists
141 it is unique. Also, if the colouring existsn then the orientations of
142 the model tetrahedra of 7 induce an orientation on M. The possible
143 gluings between the various kinds of veering tetrahedra are recorded in
144 Figure 2.4A.

Sec:Tra'inTracks\

145 2.5. Train tracks. For background on train tracks we refer to [15]
146 as well as [19, Chapter 8]. Suppose that V is a transverse veering
147 triangulation. Suppose that f is a face of V. Let ¢t and t’ be the
148 tetrahedra above and below f, respectively. We now define the upper
149 and lower train tracks 7/ and 74 in f. The upper track 7/ consists of
150 one switch at each edge midpoint and two branches perpendicular to
151 the edges [1, Figure 11]. The two branches meet only at the switch
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‘F'ig:UpperGlui ﬁé/—\'htomaton‘ ‘F'ig: LowerGluingAutoma
(A) Upper tracks. (B) Lower tracks.

FIGURE 2.4. In both subfigures, above and below we have toggle tetrahedra
while left and right we have, respectively, blue and red fan tetrahedra. A black
arrow indicates a possible gluing from an upper face of the initial tetrahedron
to a lower face of the terminal. Note that fan tetrahedra of different colours
never share a face. Finally, inside each tetrahedron ¢ on the left (right) we

Fig:GluingAutomaton| draw the branched surface B! (By).

152 on the non-equatorial edge of ¢ (the tetrahedron above f). The lower
153 track 77 is defined similarly, except the two branches now meet at the
154 switch on the non-equatorial edge of ¢’ (the tetrahedron below f). We
155 call the region immediately between the two branches, adjacent to the
156 shared switch, a track-cusp. See Figure 2.6. Starting in Section 77 we
157 also discuss slightly more general train tracks in slightly more general
158 surfaces.

\ \ I' /
7 N\
Fb .........\ﬂédrg,.r.,.,... ceeseced ‘ Fig:LowerTrack

(A) The two taut tetrahe- (B) The upper train (C) The lower train
dra (above and below) ad- track 77. track 7.
jacent to a face f.

ig:UpperLowerTracks‘ FIGURE 2.6

ec:BranchedSurfaces\
159 2.7. Branched surfaces. We refer to |5, Section 6.3| for general back-
160 ground on branched surfaces.
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FROM VEERING TRIANGULATIONS TO DYNAMIC PAIRS 7

Suppose that M is an oriented three-manifold equipped with a trans-
verse veering triangulation V. Suppose that ¢ is a model tetrahedron of
V. The four faces (f;) of ¢ contain their upper tracks 7¢. These form a
graph in Ot, transverse to the edges of t. This graph bounds a normal
quadrilateral and also a pair of normal triangles |6, page 4|. We arrange
matters so that the three normal disks meet only along the lower faces
of ¢, so that they are transverse to the equatorial square of ¢, and so
that the union of the normal disks is a branched surface, denoted Bt.
We call Bt the upper branched surface in t. We define By, the lower
branched surface in t similarly, using the lower tracks 7; instead of the
upper. We finally define BY = u,B* and By, = U;B; to be the upper and
lower branched surfaces for V in normal position. See Figure 2.9A.

We define the horizontal branched surface B(V) to be the union of
the faces of V. Here we isotope the faces of V, near their boundaries,
to meet the one-skeleton of V as shown in Figure 2.3B. The horizontal
branched surface B(V) is taut |13, page 374]; this explains the name
taut ideal triangulations.

The branch locus ¥ = 3(B) of a branched surface B is the subset of
non-manifold points. Each component of B -3 is a sector of B. For
BY (and By) a generic point of its branch locus is locally adjacent to
exactly three sectors. The vertices of BY (and By) are the points of
the branch locus locally meeting six sectors. Note that, since we have
removed the zero-skeleton from [V|, the horizontal branched surface
B(V) has no vertices |13, page 371].

We may move BY into dual position by applying a small upward
isotopy of BY. See Figure 2.9B. This done, every tetrahedron ¢ of V
contains exactly one vertex of BY and every face of V contains exactly
one point of the branch locus. We arrange matters so that the vertex of
BV in t is halfway between the lower edge and the equatorial square of
t. Applying a small downward isotopy to By produces its dual position.
We again arrange matters so that the vertex of By in t is halfway
between the upper edge (of t) and the equatorial square.

Remark 2.8. In dual position, both BY and By, are isotopic to the dual
two-skeleton of V. See [10, Remark 6.4]. &

We now restate [10, Corollary 6.12].

Lemma 2.10. Suppose that M is an oriented three-manifold equipped
with a transverse veering triangulation V. In the universal cover, every
subray of every branch line of BY and of By, in dual position, meets
toggle tetrahedra. 0
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8 SAUL SCHLEIMER AND HENRY SEGERMAN

o -

o

(A) Normal position. (B) Dual position.

FIGURE 2.9. Two positions of the upper branched surface in a tetrahedron.

3. DYNAMICS

Suppose that M is a connected oriented three-manifold equipped
with a riemannian metric. We follow Mosher [14, page 36| for the next
two definitions.

Definition 3.1. A dynamic vector field X on M is simply a non-
vanishing vector field. If M has boundary then we require X to be
tangent to the boundary of M. O

The dynamic vector field X gives us a local notion of upwards (the
direction of X).

Definition 3.2. Suppose that M is a three-manifold and X is a dy-
namic vector field. Suppose that B* ¢ M is a properly embedded
branched surface. We say that B* is a stable dynamic branched surface
with respect to X if it has the following properties.

e For any point p of any sector of B*, there is a tangent to the
sector, at p, which makes a positive dot product with X. Choos-
ing the largest such gives a vector field X* on B*. Integrating
X* gives the upwards semi-flow.

e X* is transverse to the branch locus of B* and points from the
side with fewer sheets to the side with more sheets.

e X* is never be orthogonal to the branch locus.

The only change needed to define an unstable dynamic branched surface
B, is that X, points from the side with more sheets to the side with
fewer. O

Remark 3.3. The terms stable and unstable come from the fact that any
pseudo-Anosov flow ® leads to a pair of two-dimensional foliations [5,
page 226]. These are the weak stable foliation F'® and the weak unstable
foliation Fg. If L is a leaf of F'® then any two flow lines ¢ and ¢’ in L
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FROM VEERING TRIANGULATIONS TO DYNAMIC PAIRS 9

are asymptotic in forward time. Finally, the stable branched surface
B?® carries F'®. O

Suppose that t is one of the four model transverse veering tetrahedra
(shown in Figure 2.4). Let X; be a non-vanishing vector field in ¢ with
the following properties.

e The vector field X, is orthogonal to each face of ¢.

e Each orbit of X; connects a lower face of ¢ with an upper face.

e The branched surfaces B* and B; (in dual position) are stable
and unstable with respect to X;.

Now suppose that V is a transverse taut veering triangulation. We
define Xy by gluing together the vector fields Xj.

Corollary 3.4. The upper and lower branched surfaces BY and By
(in dual position) are, with respect to Xy, stable and unstable dynamic
branched surfaces. 0

4. DYNAMIC PAIRS

In this section, following Mosher [14, page 52|, we give our definition
of a dynamic pair of branched surfaces. This done, we discuss the main
difficulties in proving Theorem 10.1.

4.1. Complementary components. Suppose that M is a connected
oriented three-manifold equipped with a riemannian metric. Suppose
that X is a dynamic vector field on M, as in Definition 3.1. Suppose
that B* and B, are stable and unstable dynamic surfaces with respect
to X. Suppose further that B* and B, meet transversely.

Definition 4.2. Suppose that C' is a component of M - (B* u B,).
We call C' a pinched tetrahedron if the closure of C' (in the induced
path metric on C') is a three-ball, which meets four triangles, with two
belonging to B* — B, and two belonging to B, — B*. We call these
four triangles the faces of C'. Each pair of faces meets in a simple
arc; altogether these six arcs form the one-skelet one-skeleton of a
tetrahedron. The two faces from B* — B, meet in a single arc of the
branch locus of B*. Similarly, the two faces from B, — B* meet in a
single arc of the branch locus of B,. See Figure 4.3A. O

Definition 4.4. We call a foliation of (a three-dimensional region of)
M horizontal if it is everywhere transverse to X, to B*, and to B,. <

The birth, life, and death of a pinched tetrahedron play out on the
two-dimensional leaves of such a horizontal foliation.
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‘ Fig: P%cheﬁx‘l’eﬂ F'i g:LifeAndDeath

(A) A pinched tetrahedron. (B) Birth, life,
and death.

FI1GURE 4.3. The right shows horizontal slices through the left. See also
‘ Fig:PinchedTetBoth ‘ Figures 2.2, 2.3 and 2.6 of [14].

|Def:LifeAndDeatdsy Definition 4.5. Suppose that C is a pinched tetrahedron for B* and
264 B,. Since C' is simply connected, for the purposes of this definition
265 we may assume that M is simply connected. Suppose that (Hy)er is
266 a horizontal foliation of a ball in M containing C. As s increases, we
267 move upwards, in the direction of X. Let 7= H,n B* and 7, = H,n B,
268 be the upper and lower tracks in H, respectively. Let Cy, = C' n H,.
260 There are four special times a < b < ¢ < d as follows.

270 e At time a, the pinched tetrahedron C'is born as a track-cusp of
271 7% crosses an arc of 7,, moving forwards.
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e For s € (a,b), the disk C; is a green trigon. It has two sides and
a track-cusp in 7. The remaining side is in 7.

e At time b, the track-cusp of 7 (on the same branch line) crosses
another arc of 7, still moving forward.

e For s € (b,c), the disk Cj is a quadragon. Its four sides alternate
between 7% and 7.

e At time ¢, a track-cusp of 7. crosses an arc of 7¢, moving back-
wards.

e For s € (¢,d), the disk Cy is a purple trigon. It has two sides
and a track-cusp in 7. The remaining side is in 7%.

e At time d, the pinched tetrahedron C' dies as the track-cusp of
74 (on the same branch line) crosses an arc of 74, still moving
backwards. &

Figure 4.3B shows 7% U 7, for six representative generic heights.

Definition 4.6. Suppose that C' is a component of M - (B*u B,). We
call C' a dynamic torus shell if it is homeomorphic to 7?2 x (0,1). We
require that for any e the image of 7% x (0,¢) in C' is an end of M. The
other end of C' must have closure (in the path metric) homeomorphic to
T? x (1/2,1]. The boundary of this must meet, in alternating fashion,
annuli from B* - B, and from B, — B*. The annuli from B* - B, are
the stable annuli of C' while the annuli from B, — B* are the unstable
annuli of C. See Figure 4.7.

FIGURE 4.7. A section of an annulus or torus shell. The central grey cylinder
represents an end of M.

Taking infinite degree covers of any dynamic torus shell yields (peri-
odic) dynamic annulus shells and dynamic plane shells. More generally,
such shells need not be periodic. This occurs only when neither B*
nor B, is compact. There are two types of dynamic annulus shell. In
one, the frontier is a bi-infinite alternating union of stable and unstable
annuli. In the other, the frontier is a finite alternating union of stable
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12 SAUL SCHLEIMER AND HENRY SEGERMAN

and unstable strips of the form [0,1] x R. There is only one type
of dynamic plane shell. Here the frontier is a bi-infinite alternating
union of stable and unstable strips. Thus for any dynamic shell C', the
components of the frontier (after cutting along B* n B,) are stable and
unstable annuli or strips. These annuli or strips are the faces of the
dynamic shell C'. O

Definition 4.8. Suppose that C'is a complementary region. Suppose
that F'is an unstable face of C'. The components of F'— Bil) are called
the subfaces of F'. The subfaces of a stable face are defined similarly. <&

We are now equipped to give our definition of a dynamic pair.

Definition 4.9. We say that B* and B, form a dynamic pair if they
satisfy the following.

(1) (Transversality): The branched surfaces B* and B, intersect
transversely.

(2) (Components): Every component of M — (B* u B,) is either a
pinched tetrahedron or a dynamic shell.

(3) (Transience): For every component F' of B, — B* there is an
unstable face F' c F' of some dynamic shell so that F" is a sink
for the vertical semi-flow restricted to F'. The corresponding
statement also holds for B* - B.,.

(4) (Separation): No distinct pair of subfaces of dynamic shells are
glued in M. &

Definition 4.10. Suppose that B* and B, form a dynamic pair. Then
we define the dynamic train track to be the intersection BY n By,. <

Remark 4.11. Dynamic shells (and pinched tetrahedra) may meet each
other or themselves along intervals of the dynamic train track. For an
example, see Figure 9.12. &

Our Definition 4.10 is taken directly from [14, page 54]. Note that our
Definition 4.9 is more restrictive than Mosher’s [14, page 52|. Mosher
allows dynamic shells to meet along subfaces while we do not. He also
allows solid torus pieces. We do not require (or allow) solid torus pieces
in the cusped case. In the closed case they are necessary; we deal with
this as follows.

Remark 4.12. Suppose that v is a curve in 7', a torus boundary com-
ponent of M. Suppose that C' is a torus shell containing T'. Suppose
that v meets the dynamic train track (projected from C' to T') at least
four times. Then Dehn filling M along v converts C' into a solid torus
piece C'(7y). After filling all torus boundary components we arrive at
the closed case. O
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The branched surfaces of a dynamic pair are positioned so as to
mimic the relative positions of the stable and unstable foliations of a
pseudo-Anosov flow. The transversality of the foliations implies that
the branched surfaces should be transverse, and also should not have
various kinds of “bigon regions”.

4.13. The naive push-off. As noted in Remark 1.1, in normal position
the branched surfaces BY and By coincide in (at least) all normal
quadrilaterals in all fan tetrahedra. To try and fix this, we choose
orientations on the edges of V(). We then push By slightly in the
directions of the edge orientations and pull BY slightly against them.
We call this pair of isotopies the naive push-off. In Examples 4.15 and
4.16 we see that this sometimes works and sometimes does not. The way
in which the naive push-off fails is instructive; as noted in Remark 1.1
the obstructions are non-local.
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(A) The figure-eight knot complement with the veering B e figure-eight knot sibling with the veering trian-

triangulation cPcbbbiht_12. gulation cPcbbbdxm_10.

FIGURE 4.14. Canonical triangulations of the figure-eight knot complement and its sibling. Each column shows three slices:
the upper and lower faces of, and an equatorial square through, one of the tetrahedra. In the figure-eight knot complement,
BY (green) and By (purple) have been naively pushed off each other to produce a dynamic pair. In the sibling, this does not

Fig:WinFail work.
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Example 4.15. In Figure 4.14A we draw an exploded view of the
veering triangulation on the figure-eight knot complement, as previously
introduced in Figure 2.2. The upper and lower train tracks are the
result of intersecting BY and By, with the faces and equatorial squares of
the veering tetrahedra. The naive push-off keeps the dynamic branched
surfaces dual to the horizontal branched surface B = B()) and makes
them transverse to each other. Note that no pair of train tracks in any
horizontal cross-section form a bigon.

In fact, the push-off makes BY and By into a dynamic pair. Parts (1)
and (4) of Definition 4.9 can be checked cross-section by cross-section.
For part (2), we have labelled cross-sections through the four pinched
tetrahedra A; through D;, with subscripts indicating the vertical order.
One must check that as we move vertically through the manifold, the
sections through the regions assemble to form pinched tetrahedra (see
Figure 4.3B) and dynamic torus shells. Note that in Figure 4.14A,
as we move downwards from the middle section to the bottom of the
two tetrahedra, regions C; and D; go from being quadragons to being
green trigons (and then disappear), but the trigonal stage is not shown.
Part (3) must be checked by hand. &

Example 4.16. Consider the veering triangulation on the figure-eight
knot sibling, shown in Figure 4.14B. Again we push By, in the direction
of the orientations of the edges; this time bigons appear in several of
the horizontal cross-sections. In fact there is no orientation of the edges
that leads to a dynamic pair via the naive push-off. This is because
the mid-surface for the figure-eight knot sibling is not transversely
orientable. For more details see Remark 5.30. O

Even if it works, the naive push-off requires making a choice. Thus
the resulting dynamic pair is not canonically associated to the initial
veering triangulation.

Instead of simply isotoping the branched surfaces horizontally, we
will try to “split” them closer to the stable and unstable foliations of the
hypothesised pseudo-Anosov flow. To control these splitting isotopies,
we must define various decompositions of M (in Sections 5 and 6). We
then describe a sequence of isotopies, of each of BY and By, through
the new decompositions (in Sections 7, 8, and 9).

5. SHEARING REGIONS, MID-BANDS, AND THE MID-SURFACE

Here we give a decomposition of a veering triangulation into a canon-
ical collection of shearing regions. Each of these is either a solid torus
or a solid cylinder. We use these to define the mid-bands and the
mad-surface.
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5.1. Shearing regions.

Definition 5.2. An ideal solid torus U is a solid torus D?x S, together
with a non-empty discrete subset of (0D?) x S, called the ideal points
of U. We define an ideal solid cylinder in similar fashion, replacing S*
by R. &

Definition 5.3. A taut solid torus (cylinder) U is a ideal solid torus
(cylinder) decorated with a paring locus - containing all of the ideal
points of U. The paring locus is a multi-curve v = v(U) meeting every
meridional disk exactly twice. There is at least one ideal point on every
component of 7. A taut solid torus U has a mid-band B; this is either
an annulus or a Mobius band, properly embedded in U and disjoint from
7. The mid-band of a taut solid cylinder is instead a strip, [0,1] x R.
In all cases, every boundary compression of the mid-band is required to
meet the pairing locus. O

Definition 5.4. A transverse taut solid torus (cylinder) U is a taut
solid torus (cylinder) where OU -+ has two components, called the upper
and lower boundaries 0*U and O-U. These are equipped with transverse
orientations that point out of and into U, respectively. Note that all
taut solid cylinders can be equipped with such an orientation. O

In a transverse taut solid torus the mid-band is necessarily an annulus.
In a taut solid cylinder it is necessarily a strip.

Definition 5.5. A shearing region U is a taut solid torus or cylinder,
together with a colour (red or blue) and a squaring of QU - vy, with
vertices at the ideal points. All edges contained in the paring locus ~
are the opposite colour to U and are called longitudinal. All edges not
in 7 are the same colour as U and are called helical. The helical edges
form a helix that spirals right or left (as U is red or blue); the helix
meets every meridional disk exactly once, transversely. We give the
mid-band B c U the same colour as U itself. O

See Figure 5.6F for the local model of a red shearing region.

Definition 5.7. Suppose that U/ is a collection of model shearing re-
gions. Let U(® be the union of the ideal points. Suppose furthermore
that the shearing regions are glued along all of their squares, respecting
the colours of edges and so that every edge has exactly two helical mod-
els. We call U a shearing decomposition of |[U-U©)|. The decomposition
is called transverse if all of the shearing regions in U are transverse,
and the gluings respect the transverse orientations on the squares. <&
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22 a8%

( ) Start with veering tetrahedra. (B) Cut into half-tetrahedra, select red half-

y=

tetrahedra.

(c) Shear. (D) Bend.

= N, —— ==

|
(E) Glue half-tetrahedra together. (F) Continue gluing.

FIGURE 5.6. Top and side views of the construction of a red shearing region.

Suppose that V is a veering triangulation (not necessarily transverse or
finite). Recall from Section 2 that there are blue and red fan tetrahedra
as well as toggle tetrahedra. Cutting a veering tetrahedron along its
equatorial square results in a pair of half-tetrahedra; see Figure 5.6B.
In every half-tetrahedra there is a unique (up to isotopy) half-diamond:
this is a triangle, properly embedded in the half-tetrahedron, meeting
only the edges of the colour of the m—edge, and those only exactly once at
each midpoint. We give a half-diamond the colour of the edges it meets.
See Figure 5.8. We arrange matters so that the two half-diamonds in

a fan tetrahedron meet along their bases, and so form a full diamond.

The two half-diamonds in a toggle ¢ meet in exactly one point: the
center of the equatorial square of ¢. For each half-diamond in a toggle,
we colour in black all (but a small neighbourhood of the vertices) of its
intersection with the equatorial square. We call this arc the boundary

Fig:CutVeeringTet

‘ Fig:PartHalfTets

‘ Fig:Continuing
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444 arc of the half-diamond. (In Definition 5.25, the union of the boundary
as5 arcs will give the boundary of the mid-surface.) Again, see Figure 5.8.

FIGURE 5.8. Diamonds and half-diamonds. Each half-diamond in a toggle

Fig:HalfDiamonds has a boundary arc, shown here in black.

NN

n |Fig:iafaelididchbd] Fig:LineFieldBad

() ®

FIGURE 5.9. In Figure 5.9A we see adjacent half-diamonds in a veering
triangulation. In Figure 5.9B we see an unpleasant possibility for adjacent
Fig:LineField ‘ half-diamonds in a taut triangulation.

eari ngDecompositioné Theorem 5.10. Suppose that V is a veering triangulation (not neces-
447 sarily transverse or finite). Then there is a shearing decomposition of
448 M canonically associated to V.

449 Proof. Suppose that t is a half-tetrahedron and d is its half-diamond.
450 Fix a vertical line field on d as shown in the left-most half-diamond of
451 Figure 5.9A. Let f and f’ be the triangular faces of ¢. The colour of
452 d is the majority colour of the edges of ¢t. Thus the colour of ¢t and d
453 matches the majority colour of both f and f’. Suppose that t is glued
454 to another half-tetrahedron, ¢/, across f’. Let d’ be the half-diamond of
455 t'. Thus d’ and d have the same colour.

456 Note that the m-edges of ¢t and ¢’ are distinct edges of the model face
457 f'. (This follows from the definition of a veering triangulation: see
458 Figure 2.6A.) Thus, as shown in Figure 5.9A, we can locally extend
459 the vertical line field on d, through f’, to d’. See Figure 5.6E. Let f”
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be the other triangular face of ¢’. Continuing in this fashion in both
directions, we obtain a shearing region. The union of the half-diamonds
is the mid-band. See Figure 5.11. U

(A) Three-quarters view.

(B) View from above.

FIGURE 5.11. A red shearing region, with embedded mid-band. The bound-
ary arc of the toggle half-diamond is drawn in black.

We give examples of mid-bands in Figures 5.12 and 5.13. These are
taken from the veering census [11].

Remark 5.14. If V is transverse then the half-tetrahedra in a shearing
region alternate between being the upper and lower halves of tetrahedra.
That is, the transverse structure on V induces a transverse structure on
the associated shearing decomposition. O

Remark 5.15. Suppose that V is a finite veering triangulation. We
may interpret each shearing solid torus as a fractional Dehn twist.
A transverse structure on V equips M with an “upwards” dynamical
system. Thus the shearing decomposition (canonically) factors the
system as a product of fractional Dehn twists. O

Question 5.16. Let v(U) be a core curve for the shearing region U.
Performing certain Dehn fillings along (U) produces new veering
triangulations; see [16] and also |21, Definition 4.1]. Let (V) be the
union of the curves v(U).
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FIGURE 5.12. For each example we draw the mid-annuli above and then, in
one column per tetrahedron, its upper and lower faces. Drawn on the faces
are the intersections with BY and BY after the straightening isotopy. See

ig:ExampleMidAnnuli ‘ Figures 7.6, 7.7, and 7.8.

478 Suppose that U and V' are a pair of regions. Suppose that the upper
479 boundary of U equals the lower boundary of V. That is, suppose that
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@® @

0 N 1 64

®

FIGURE 5.13. A veering triangulation for m115 from the SnapPea census [8§].
This is fLLQccecddehqrwjj_20102 in the census of transverse veering
triangulations [11|. As in Figure 5.12, we show the mid-annuli above and the
tetrahedron faces below.

0*U = 07V. Then (V) is parallel to v(U); accordingly we delete (V")

from (V).
Now (V) is a link canonically associated to M and V. What are the
geometric properties of M —~(V)? &

5.17. Crimping. Shearing regions give more global coordinates than
do individual tetrahedra. Moreover, the interiors of shearing regions are
standardised. Here we introduce the crimped shearing decomposition of
M. This ensures that the union of the shearing regions of a fixed colour
is a manifold (with various inward and outward paring loci) containing
all of the edges of that colour. One dimension down, crimping improves
the way that the red (blue) mid-bands meet. After crimping, their
union is the mid-surface Sg (Sp). Crimping is similar to the process
of folding, in a train track, all switches with both in- and out-degree
bigger than one.

The crimped shearing decomposition is obtained from the shearing
decomposition (Theorem 5.10) as follows.
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Definition 5.18. Let E(V) be the union of the equatorial squares of
all tetrahedra. Thus F(V) is a branched surface. Accordingly we call
E(V) the equatorial branched surface. O

FIGURE 5.19. Top row: an edge e € V(1) before and after crimping on the
right. No crimping is required on the left. Bottom row: Both sides are
crimped. The veering edges are drawn in red, the crimped edges are drawn in
grey, and the boundary arcs are drawn in black. The neighbourhoods N;.(e)
and Ny(e), and the crimped rectangles are shaded red.

Note that an edge e € V() lies in the branch locus of E(V) if and only
if the degree of e (in E(V)) is at least three. Suppose that there are at
least two squares to the right of e. Let N,.(e) be a collar neighbourhood
to the right side of e, taken inside of E(V). (We choose the size of
the collar neighbourhood so that it meets the boundary arcs of the
relevant half-diamonds each in a single point.) So N, (e) contains e and
a rectangle for every equatorial square to its right. See Figure 5.19
(upper left) for pictures of a possibility for N,.(e). We define N,(e)
similarly, again when there are at least two squares to the left of e.
Again see Figure 5.19 (lower left). We form the crimped equatorial
branched surface E.(V) by crimping edges, as follows.

e Fold together all rectangles in N,.(e) to obtain a single rectangle;
do the same to the right collar N,(e).

After crimping, as needed, the right and left of every edge, the veering
edges of V(1) are disjoint from the branch locus of E,(V). Also, there are

no vertices in E.(V). Thus we call the components of ES (V) crimped
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edges. Each crimped edge meets an endpoint of each of two boundary
arcs. See Figure 5.19 (right) for pictures of possibilities for E.(V).

Suppose that we had to crimp the right side of e. That is, before
crimping, N,(e) contained two or more rectangles. Then, after crimping,
there is a single crimped rectangle between e and the crimped edge
immediately to the right of e. In our figures we will always colour the
crimped edges in grey. Since we draw pictures in the cusped manifold,
we will refer to the crimped rectangle as a crimped bigon.

Crimping moves the equatorial square of a toggle tetrahedron into
E.(V). There it is subdivided, by the crimped edges, into four crimped
bigons and one toggle square.

Definition 5.20. For each corner of each toggle square we take a
very small (three-dimensional ball) neighbourhood; this is the station
associated to that corner. The station is divided into two regions. These
are

e an even small smaller neighbourhood of the corner, called the
platform, and
e the station minus the platform, called the yard. O

The two boundary arcs (of the mid-surface) in the toggle tetrahedron
lie inside of the toggle square. They end at the midpoints of the crimped
edges and divide the toggle square into four symmetric regions. See
Figure 5.21A. The veering hypothesis implies that a crimped bigon
meets, along its crimped edge, exactly two toggle squares: one at the
top and one at the bottom of a stack of fan tetrahedra. Similarly, the
equatorial square of a fan tetrahedron is subdivided into two crimped
bigons and one fan square. See Figure 5.21B.

We define the (closures taken in the path metric of) components of
M - E.(V) as crimped shearing regions. See Figure 5.22. Let U be a
model crimped shearing region. As before, we write 0*U and 0-U for
the upper and lower boundaries of U. Suppose that e and e’ bound a
crimped bigon B with e € V() and ¢’ a crimped edge. If B lies in either
0*U or 0~U then we say that e and e’ are helical for U. If BnU =€/
then we say that e and e’ are longitudinal for U. Note that 0*U n0-U
is the collection of longitudinal crimped edges for U.

As before, we assign U the colour of its helical edges. This colour is
opposite to that of each edge of V() that is parallel, across a crimped
bigon, to the longitudinal crimped edges of U.

Within U, we replace each triangle of the original triangulation with
a corresponding crimped triangle. The sides of each crimped triangle
consist of two helical edges, one on 9*U and one on 0~U, and a single
longitudinal crimped edge.
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(A) Toggle square. (B) Fan square.

FiGURE 5.21. The toggle square has four adjacent crimped bigons, the fan
square has two. Here we draw the boundary arcs (of the half diamonds
immediately above and below) on the toggle square in black. The crimped
edges are drawn in dashed grey. The corners of the toggle square are contained
in their associated stations which are here represented as grey dots.

ig:FanToggleSquares

| Fig:CrimpedShearingf

Fig:CrimpedShearingf

(B) View from above, with the mid-band.

FIGURE 5.22. A crimped red solid torus, and incident blue crimped bigons.
The crimped edges are drawn in grey and meet the boundary arc in its
endpoints.

impedShearingRegion
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The union of the crimped shearing regions is again homeomorphic to
M; together they form the crimped shearing decomposition of M.

Definition 5.23. The union of the red crimped shearing regions is the
red part of the crimped shearing decomposition. A connected component
of the red part is a red component. We define the blue part and blue
components similarly. &

Each red component is a handlebody with inward and outward paring
loci. The red part contains all of the red edges of V(). Furthermore,
its material boundary is the union of the toggle squares. Analogous
statements are true for blue components and the blue part.

5.24. The mid-surface. The mid-bands sit within the crimped shear-
ing regions in exactly the same way that they sat within the original
shearing regions. See Figure 5.22B. We may now glue the mid-bands to
each other along their boundaries obtain a surface.

Definition 5.25. The union of the red mid-bands in the red part gives
the red mid-surface Sg. We build the blue mid-surface Sp in a similar
fashion. We define the mid-surface to be S = Sp U Sp. >

Note that each component of Sy sits inside, and is a deformation
retract of, a red component of the crimped shearing decomposition.
In particular, Sp meets all red edges but no blue edges. A similar
statement holds for Sg. Each boundary arc of Sg meets precisely one
boundary arc of Sg; these intersect in a single point at the center of
the corresponding toggle square. Lemma 2.10 implies the following.

Corollary 5.26. Every diagonal path in the mid-surface eventually
meets a toggle tetrahedron. In particular, every component of Sg and
of S has at least one boundary component. O

Example 5.27. In Figure 5.13 the red mid-surface has two diagonal
paths, both traversing two half-diamonds. The blue mid-surfaces also
has two diagonal paths, one traversing six half-diamonds and the other
traversing ten. O

Every boundary component of the mid-surface runs alternatingly
along boundary arcs contained in the upper and lower boundaries of
crimped shearing regions. In Figures 5.12 and 5.13 we give several
examples; the boundary arcs are indicated by thick black lines. In
Figure 5.12A both mid-surfaces are once-holed tori; each boundary
component of each mid-surface consists of two boundary arcs. In Fig-
ure 5.12B both mid-surfaces are copies of N3;: the non-orientable



593
594
595
596
597
598

599
600
601

~no

Sec:Labelli nUéJT

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630
631
632
633

26 SAUL SCHLEIMER AND HENRY SEGERMAN

surface with one boundary component and three cross-caps. In Fig-
ure 5.12C both mid-surfaces are copies of Ny ;: the once-holed Klein
bottle. (This last was the first example of a non-fibered veering triangu-
lation; see [12, Section 4].) Finally, in Figure 5.13 the mid-surfaces are
a pair of once-holed Klein bottles, with one having greater area than
the other.

Remark 5.28. Mid-surfaces also allow one to see the walls of a veering
decomposition, as defined by Agol and Tsang |2, Definition 3.3|. For
example, in Figure 5.13 there is a wall of width three consisting of the
tetrahedra 4 and 1. O

5.29. Labelling the mid-surface. We now describe the labelling
scheme for the mid-surfaces used in the census [11]. This is useful when
drawing pictures and discussing examples. Suppose that V is a finite
transverse veering triangulation. We number the tetrahedra, the faces,
the edges, and the vertices of the tetrahedra using the conventions from
Regina [3]. Regina also provides us with orientations for the edges of
V() we will alter these to make them agree, as much as possible, with
transverse orientations of mid-annuli.

We give four examples in Figures 5.12 and 5.13. For each example,
we draw its mid-annuli and, in one column per tetrahedron, the upper
and lower faces for each tetrahedron (viewed from above). On each face
we draw the upper (green) and lower (purple) train tracks. (Where
these intersect, the intersection is coloured grey.)

In order to draw a mid-band A = A(U) we choose a transverse
orientation for it; this then induces a transverse orientation on each
half-diamond d of A. In the examples of Figures 5.12 and 5.13 the
mid-bands are all annuli and the transverse orientation points into the
page.

We label the vertices, edges, and face of the half-diamond d as follows.

e Suppose that v is a vertex of d. We label v with the number
of the edge e in V() which contains v. Note that e is helical
for U. We append this number with one of the symbols from
{-,x}. The x means that the orientation of e agrees with the
transverse orientation on d; the dot means the opposite. (The
x represents the fletching of an arrow, while the dot represents
the arrowhead.)

e Suppose that € is a diagonal edge of d. We label ¢ with the
number of the face f in V(2) which contains €; we place the label
at the midpoint of e. The vertices of € are already labelled with
the numbers of two of the three edges of f. Let e be the third
edge of f. Note that e is longitudinal for U. We draw a small
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copy of e on top of € and label the copy with the number of e
(in the other colour, and using a smaller font). Note that € and
e cobound a rectangle in f; we use this rectangle to transport
the orientation of e to e. Finally, we draw the arrow dotted or
solid as the transverse orientation on d points towards or away
from e. (That is, as drawn in Figure 5.12, the edge e is behind
or in front of A.)

e Suppose that € is the base of a half-diamond d. If d lies in a
toggle then we draw a thick black line on €, to indicate the
boundary arc on d.

e Finally, we label d itself with the number of the tetrahedron
that contains d.

Suppose that A and B are mid-annuli. Let 0~ A be the lower boundary
of A, minus the open boundary arcs. Thus 0~ A is either a single line,
a single circle, or a collection of intervals and at most two rays. We
define 0% B similarly. Suppose that A and B are glued to each other,
say with a component v of 9~ A meeting a component of 0*B. (It is
also possible for A, say, to be glued to itself.) We call the gluing ~
untwisted or twisted exactly as it does or does not faithfully transport
the chosen transverse orientation on A to the one on B.

In Figures 5.12 and 5.13 we indicate a twisted gluing by drawing a
small black circle about all vertices of the affected boundary circle or
sub-arc. In our examples in Figure 5.12 we have chosen the transverse
orientations of the mid-annuli so as to minimize the number of half-twists
required.

Remark 5.30. If all gluings are untwisted then the mid-surface is trans-
versely orientable and thus orientable. Conversely, if the mid-surface is
orientable then there is a choice of transverse orientations for the mid-
bands that ensures that all gluings are untwisted. The naive push-off
discussed in Section 4.13 should produce a dynamic pair when and only
when the mid-surface is orientable.

Thus, if one is willing to pass to a double cover, then there should
be edge orientations making the naive push-off work. However this
push-off will not be invariant under the deck transformation. O

6. BIGON COORDINATES

In this section we place a coordinate system on the crimped shearing
regions (introduced in Section 5.17). We also give a refinement of the
crimped shearing decomposition of M and introduce the horizontal
cross-sections.
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673 Let B be a coordinate bigon: a oriented disk with two marked points
674 x and y in its boundary. The points x and y are the corners of B. We
675 equip 0B with the induced orientation. The two arcs of 0B - {z,y}
676 are denoted by 0*B and 0~ B respectively. We arrange matters so that
677 O™ B is the arc running from y to x.

678 We equip B with a pair of transverse foliations: the horizontal arcs
679 all meet both corners while the vertical arcs all meet 0*B and 0~ B.
680 We orient the former from z to y and the latter from 0-B to *B. See
681 Figure 6.1A.

682 We subdivide B into a pair of sub-bigons called 67 (upper) and p
683 (lower). These are shown in Figure 6.1B.

9" 5// :/f"\\:\\\
AT T TN 68
T 05
AN SRREEEEE // \
o BT+ 1}~ - - S - - - -
~ — Fig:BiFolia Fig:BigonRegions
(A) Model bi-foliated coordinate bigon. (B) Bigon regions.

FIGURE 6.1

684 Recall that M is oriented and V is transverse veering. Suppose that U
685 is a model crimped shearing region. Thus U inherits an orientation and,
686 by Remark 5.14, a notion of “upwards”. We now choose a homeomor-
687 phism h between U and Bx S! or BxR, as U is a solid torus or cylinder.
688  We require that h preserve the various orientations. In particular, the
689 upper boundary of B must be sent to the upper boundary of U by h.
600 We call h the bigon coordinates for U.

6901  Let OV be the image of 08 x S (or 68 x R) in U. We define Oy
692 similarly. Note that the upper boundaries of U and OV agree, as do the
693 lower boundaries of U and ©y. That is, 07U = 0*OV and 0-U = 9-0Oy.
694 Also, we have -0V = 9*Op. We take ©Y ¢ M to be the union of the
695 OU, taken over all model crimped shearing regions and then projected
696 to M. We define ©y, similarly. The interiors of ©Y and O, are disjoint
697 and their union is M; this is the ©—-decomposition.

Rem:NiceBi gonCoordas# Remark 6.2. Suppose that U is a blue shearing region. We arrange the

699 metric in U (coming from bigon coordinates) to ensure the following.

700 (1) In the induced coordinates on 0*U the (pullbacks of the) blue
701 edges of V() are straight and, when viewed from above, have
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slope /3. Similarly, the blue edges in 9-U are straight and,
when viewed from above, have slope —/3.

(2) For any toggle square S in 9*U its corners are very slightly more
than one-quarter of the way along the adjacent longitudinal
crimped edges.

(3) For p € U we take B(p,U) to be the coordinate bigon in U
containing p. Then the two notions of vertical (coming from the
coordinate bigons B(p,U) and the transverse veering structure)
agree. Furthermore, the intersection of the mid-band A(U) with
any B(p,U) is the central vertical arc of the latter.

See Figure 5.22. We similarly give bigon coordinates to red model
crimped shearing regions. O

We use the following notations for the various coordinate arcs and
surfaces in bigon coordinates.

Definition 6.3. Suppose that U is a model crimped shearing region.
FixpeU.

e As above, B(p,U) is the coordinate bigon containing p.

o Let z(p,U) =px St (pxR) be the horizontal circle (line) in U
through p.

e Let y(p,U) be the leaf of the horizontal foliation of B(p,U),
through p.

e Let z(p,U) be the leaf of the vertical foliation of B(p,U),
through p.

e Let Y (p,U) be the union of the leaves z(q,U) as g ranges over
x(p,U). We call Y (p,U) the vertical band in U through p.

e Let Z(p,U) be the union of the leaves z(q,U) as g ranges over
y(p,U). We call Z(p,U) the (horizontal) cross-section in U
through p.

e Finally, we define X(p,U) = B(p,U). O

Note that the upper and lower boundaries of OV and Oy are horizontal
cross-sections.

7. STRAIGHTENING AND SHRINKING

Here we define the straightening and shrinking isotopies. These
are applied to the upper and lower branched surfaces BY and By,
respectively. These isotopies are local: in each tetrahedron they (and
the resulting shrunken position) depend only on the combinatorics of
that tetrahedron and its immediate neighbours.

We start in dual position (shown in Figure 2.9B). We straighten
the branched surfaces to move as many sectors as possible into the
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mid-surface S. We shrink the branched surfaces to move vertices of BY
down into ©y, and those of By, up into OV.

We now describe in detail the upper straightening and shrinking
isotopies of BY. The corresponding lower isotopies of By, are defined
similarly.

7.1. Straightening. First, we straighten: beginning from dual position
(shown in Figure 2.9B) in a fan tetrahedron ¢, we move the sectors
of B!, meeting the majority colour edges, to coincide with the two
half-diamonds of ¢. In a toggle tetrahedron ¢, we move the sectors of
B!, meeting the edges of the same colour as the uppermost edge, to
contain the upper half-diamond of ¢.

The resulting position of Bf, in the various crimped half-tetrahedra,
is shown in Figures 7.6, 7.7, and 7.8. Each figure has a 180° symmetry
about its central vertical axis. We give a global picture of the result in
Figure 7.10.

Remark 7.2. In our pictures of cross-sections we shade (in grey) all
toggle squares. Along a branch interval of BY within a crimped solid
torus, track-cusps are labelled with the same letter. As we move from
an upper boundary to a lower the labels, on track-cusps of BY, advance
by one letter. Track-cusps of By are indicated with small triangles. <

Remark 7.3. In Figure 7.10 the upper boundary of the blue crimped
solid torus U is glued to the lower boundary of U along the fan squares,
by a 180° rotation and a (left) shear. As a result, the blue helical veering
edges and the red longitudinal veering edges (adjacent to fan squares)
match on the top and bottom of U. The red longitudinal veering edges
adjacent to the toggle squares do not match. This is because they are
glued to the red crimped solid torus V. The upper and lower boundaries
of V are also glued, by a 180° rotation and a (right) shear, along the
red crimped bigons. O

Remark 7.4. Suppose that U is a crimped shearing region. Suppose
that H and K are 9-U and 0*U. Let 7/ and 7% be the intersections of
BY with H and K. So 77 and 7% are train tracks. We arrange matters
so that 7H meets longitudinal crimped (helical veering) edges of H with
a tangent vector which is parallel to the helical veering (longitudinal
crimped) edges of H. We do the same for 7. This ensures that tangent
vectors match up when sheared by the gluing maps (as in Remark 7.3).

Suppose that H, parametrises the cross-sections of U, with Hy = H
and Hy = K. As s increases from 0 to 1, the tangent vectors of branches
meeting longitudinal crimped edges shear. See Figure 7.10. O
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780 Remark 7.5. Observe that all vertices of BY now lie along the central
781 curve of the middle cross-sections of the crimped shearing regions. (That
782 is, inside of 0-OY = 0*Oy,.) O

F-ig:UpperHalfTet‘

Fig:LowerHalfFan ‘

Stra'ightenedDynami?e:*
784

785

736

Sec:Shrinking

787

788

789

790

791

\/

(A) Three-quarter view. (B) Top view.

FIGURE 7.6. Straightened B! in an upper half-tetrahedron (either toggle or
fan).

N A

) Three-quarter view. ) Top view.

FIGURE 7.7. Straightened B’ in a lower half-tetrahedron (fan).

Remark 7.11. As noted in Corollary 3.4 the branched surface BY, when
in dual position, is dynamic. Straightening makes parts of BY vertical.
However, the branch locus remains transverse, and not orthogonal, to
vertical. Thus the straightened BY is again dynamic. O

7.12. Shrinking. Next we shrink: in each crimped shearing region U,
we form a very small collar T'V of 9*U, obtained as a union of horizontal
cross-sections Z(p,U). Note that T'V is disjoint from the vertices of
BY. We now move BY by a proper isotopy of U which preserves x and
y coordinates (in bigon coordinates) and permutes the cross-sections



32 SAUL SCHLEIMER AND HENRY SEGERMAN

ol 4

(A) Three-quarter view. ) Top view.

FIGURE 7.8. Straightened B in a lower half-tetrahedron (toggle).

Fig:LowerHalfToggle

(A) Three-quarter view.

>

(B) Top view.

impedShearingRegion | FIGURE 7.9. Straightened BY in a crimped shearing region.

792 Z(p,U). The isotopy carries the bottom of I'V downwards to 9-OV and
793 evenly redistributes the cross-sections below I'V inside of Oy .

794 Before the isotopy, BY was transverse to the equatorial squares. After
795 the isotopy, BY is almost vertical in all of OV. The intersections of BY
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(A) Blue crimped solid torus. (B) Red.

FIGURE 7.10. The intersection of BY (and By), after straightening, with
various horizontal cross-sections of the crimped shearing decomposition of
fLLQccecddehqrwjj_20102. Compare with Figure 5.13. We indicate the
position of track-cusps with letters or small triangles; sometimes we use a

Fig:mll5_straight ‘ “whisker” pointing from a letter or triangle to the track-cusp itself.
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796 with 0*U and 0-U are unchanged by the shrinking isotopy. Note that
797 the shrinking isotopy maintains the 180° symmetry of the branched
798 surfaces Bt. In Figure 7.13 we show the intersection of the shrunken
799 BY (and By) with various horizontal cross-sections.

—~~

A) Blue crimped solid torus. (B) Red.

FIGURE 7.13. The intersection of BY (and By), after shrinking, with var-
ious horizontal cross-sections of the crimped shearing decomposition of

F'ig:m115_shr'ink‘ fLLQccecddehqrwjj_20102. Compare with Figure 7.10.
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Remark 7.14. Note that the shearing of tangent vectors, as in Re-

mark 7.4, now occurs in 6y, for BY (and in O for By). O

Remark 7.15. Shrinking permutes cross-sections; thus by Remark 7.11

the shrunken branched surface BY is again dynamic. &
8. PARTING

Here we define the parting isotopies. These are applied to the upper

and lower branched surfaces BY and By, respectively. These isotopies

are again local: in each tetrahedron they (and the resulting parted
position) depend only on the combinatorics of that tetrahedron and its
immediate neighbours.

We now concentrate on BY. We start in shrunken position (shown in
Figure 7.13). In each cross-section of ©Y, and near each crimped edge,
we will move BY towards the correct station (corner) of the relevant
toggle square. We also will isotope branches of BY in cross-sections of
©VY to be (almost) line segments (in bigon coordinates). As in shrunken
position, the parted position of BY in ©Y will almost be a product.

This done, we will move BY carefully downward in ©y. This makes
the intersection of BY with the cross-sections into a sequence of train
tracks as follows. As they move up through ©,, they first perform
a neighbourhood splitting where track-cusps move along their parting
routes. They next perform a graphical isotopy where the track-cusps
are (almost) motionless and the branches straighten to become (almost)
line segments.

The branched surface By, moves in a similar way, but swapping ©V
and ©y. The ideas of neighbourhood splitting and graphical isotopy
will be used once (in sapce) in this section and three times (in time and
in space) in Section 9. We use them to fill in the isotopy from parted
position to the final position.

8.3. Parting in ©Y. We now describe the parting isotopy in ©V.
Suppose that U is a crimped blue shearing region. Suppose that e’ is
a crimped longitudinal edge for U. Suppose that e is the associated red
veering edge and let C' be the crimped bigon which e and e’ cobound.
Suppose that S c 9*U is the upper toggle square meeting e¢’. We equip
C with the anti-clockwise orientation, as viewed from above. This
induces orientations on e and ¢’. Let ¢ = C'n BY. The parting isotopy
in OV fixes cne and moves cne’ along e/, against the orientation of
e’ (given just above), until it arrives at the platform of the station at
the corner of the toggle square S. (If, instead, U is red, then we move
cne’ along ¢, following the orientation of €/, again until it arrives at



Graphical
isotopy

Neighbourhood
splitting

_parting_in_theta_U‘

839
840
841
842

36 SAUL SCHLEIMER AND HENRY SEGERMAN

(A) Blue crimped solid torus. (B) Red.

FIGURE 8.1. The result B; of the parting isotopy in ©y, where V is
fLLQccecddehqrwjj_20102. The five diagrams show (from the bottom
moving up) By nCy for s € (0,1/4,1/2,3/4,1). The bottom cross-section
contains blue helical edges.

the platform of its station.) To see this motion, compare top lines of
Figures 7.13 and 8.2.

In 0*U we also move track-cusps outwards in fan squares until they
arrive close to the midpoint of a helical edge. In lower cross-sections of
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“““““ e U

‘ F4lg:m115_pr<l:pa red_blue“ 0 4 ‘ Izg:mlls_prgpared_red
(A) Blue crimped solid torus. (B) Red.

FIGURE 8.2. The intersection of BY (and By), after parting, with
various cross-sections of the crimped shearing decomposition of
fLLQccecddehqrwjj_20102. Again, and as in Figure 7.13, the branched

Fig:mll5_prepared ‘ surface BY is almost vertical in ©®Y while By is almost vertical in ©y.

843 OV we do the same, but now moving track-cusps until they almost meet
844 the projection (in bigon coordinates) of the midpoint of a helical edge.
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[Rem:AlmostProdugt] Remark 8.4. Thus BY is almost a product in ©Y. (In ©Y track-cusps
gs6 move very slowly forward to preserve dynamism.) &

‘Rem:UpGi vesDovﬂzﬂT Remark 8.5. Since 07OV is glued to 9-©y, parted position in the for-
848 mer determines parted position in the latter. Parted position is thus
849 determined in fan and toggle squares, as shown in Figure 8.6. For our
850 running example this is shown in the bottom and top rows of Figure 8.2.
851 Note that the track-cusps are slightly off the edges. This is so that
852 they can very slowly move (horizontally) as we move up or down through
853 cross-sections. We do this to ensure dynamism. O

7|2 1

Fi g:|Mag'h'i fyPartédTopFan ‘ Fig:MagnifyPartedTopT
(A) Fan square in 0*U. (B) Toggle square in 97U.
CELT <N\ R
"""""""""""" v\ \ WPRUR
\\; ,,,,,,,,,,,,,,,,, \ N ( \\v K \\‘. n‘, \.\ -
e o ‘F'ig:Magn'ifyPafted-B'o"ttoﬁlFal%‘ ‘F'ig:Magn'ifyPartedBott
(¢) Fan square in 97U (D) Toggle square in 0 U.

FIGURE 8.6. In prepared position the intersections of BY and By with cross-
sections are straight lines except for inside of the stations and very close to
the midpoints of helical edges. In stations, branches meeting longitudinal
crimped edges have the same tangent as the adjacent helical crimped edge.
Note that here U, the containing crimped shearing region, is blue.

‘ Fig:MagnifyParted ‘

‘ Def:Graphi cas‘54 Definition 8.7. Suppose that U is a crimped shearing region. Suppose
855 that H is a cross-section in U. Suppose that « is a smooth arc in H. We
856 say that « is graphical if its tangent vectors (including at its endpoints)
857 have non-zero x—coordinate. That is, « is transverse to the foliation U
858 by bigons.
859 Suppose that 7 is a train track in H. We say that 7 is graphical if all
geo of its branches are graphical. &

861 We will use the following lemma several times, in this section and
862 the next.

gPreservesGraphiceB‘ﬁ# Lemma 8.8. Suppose that T is a graphical train track. Suppose that

864 « 1S a train route in 7. Then the result of splitting 7 along o is again
865 graphical. 0
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Lemma 8.9. Suppose that H is any cross-section in ©V. The parted
position of BY in H is a train track for which all branches are graphical.

The same 1is true for the parted position of BY in 0-©y, except for
those branches which are in a platform in 0-Oy meeting a longitudinal
crimped edge. It follows that any train route in 0Oy avoiding these
branches is graphical.

Proof. Suppose that U is a crimped shearing region. As discussed in
Section 8.3, prepared position in ©V is defined locally. From Figure 8.12
we see that all branches of the tracks (outside of the stations) are
straight. Note that some branches appear to be parallel to the y-axis;
however, those actually have slightly positive slope. This is due to
our choice of location for the corners of the toggle squares (made in
Remark 6.2(2)). Thus all branches of the tracks are graphical.

The track inside of the stations, in both 0*U and 0-U, are laid out
according to Figure 8.6. U

8.10. Parting in ©,,. The parting isotopy in ©y, is more delicate. Here
we introduce the definitions of a neighbourhood splitting and a graphical
150t0pY.

8.10.1. Parting routes.

Definition 8.11. Suppose that U is a crimped shearing region. Sup-
pose that K is a branch line of BY (before parting) meeting U. Let kg
and ki be the intersections of K with 9-U and 0*U respectively. Let
k| be the projection of k; (under bigon coordinates) to 0-U. In a slight
abuse of notation, we use the same names for the corresponding track-
cusps (and projection) in 0-U and 0*U after parting (as in Section 8.3).
Then the parting route a(ky) is the unique route from ky to kf carried
by the parted track in 0-U. &

Since the parting isotopy in ©VY is local, there are only a small number
(in fact six) combinatorial possibilities for a(kg). These are all shown
in Figure 8.12.

e Suppose that k; lies in a toggle square in 0+*U.
o If Ky also lies in a toggle square (in 0-U) then we obtain
the examples f and j in Figure 8.12B.
e Otherwise kg does not lie in a toggle square and we obtain
the examples e and 7 in Figure 8.12A.
e Suppose that k; does not lie in a toggle square.
e Suppose that k] lies in a toggle square.
o If ky lies in a toggle square then we obtain the exam-
ples shown in Figure 8.12cC.
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(B) Red.

‘ Fig:PartingRoutesSixth

(c) The sixth case.

FIGURE 8.12. Parting routes for the track-cusps in 0~0Oy, where V is
fLLQccecddehqrwjj_20102. Here we draw a regular neighbourhood of
the train track in green.

e Otherwise kg does not lie in a toggle square and we
obtain the examples d and h in Figure 8.12A.
e Suppose that k] does not lie in a toggle square.
o If £y lies in a toggle square then we obtain the exam-
ples a and ¢ in Figure 8.12A.
e Otherwise ky does not lie in a toggle square and we
obtain the examples b and ¢ in Figure 8.12A.

8.12.2. Neighbourhood splitting. Suppose that U is a crimped shearing
region. Let H be the family of cross-sections of O, with Hy = 00Oy
and H; = 0*Op. Recall that BY in parted position is already specified
in Hy and H,. Instead of parametrising the parting isotopy explicitly,
we specify parted position in Hyn BY by giving a family of train tracks.

As s ranges over [0,1/2] the intersections of BY (in parted position)
with the cross-sections H, show a movie of a splitting. In detail: if
k is a track-cusp in Hy we split k forward in a small neighbourhood
of its parting route a(k). The result in one example is shown in the
lower three rows of Figure 8.1. When two track-cusps k and ¢ meet,
travelling in opposite directions, they split past each other. (If U is
blue and there is (not) a toggle square above, this is a left (right) split.
If U is red the directions swap.) Each track-cusp moves so that
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e its z—coordinate moves at constant speed and
e its journey takes all of [0,1/2].

As a consequence of the construction given in Definition 8.11, track-
cusps in H,, lie either on the centre line of the cross-section, or in
platforms. See the middle row of Figure 8.1.

In addition, for branches which meet longitudinal crimped edges, we
shear the tangent vector where they meet. We do this twice as fast as
in Remark 7.14. This ensures that, in Hj,, the tangent vector has the
same slope as the helical edges in 0*U.

This describes the neighbourhood splitting.

Remark 8.13. Let 71/2 be the resulting train track in Hy . The shearing
described above and Lemmas 8.8 and 8.9 ensure that all branches of
71/2 are graphical.

Let 7! be the train track in H; = 0*Oy = 0-OV. By Remark 8.4, the
train track 7! is a very small folding of the train track in 0+*©UV. By
Lemma 8.9, the train track 7! is also graphical. O

8.13.3. The graphical isotopy. For s € [1/2,1], we perform a graphical
isotopy from 71/2 to 71, as follows. By Remark 8.13, both train tracks
are graphical and they are combinatorially isomorphic. Also their track-
cusps are in (almost) the same places in bigon coordinates. For each
point of each branch of 71/2, we change its y-coordinate at constant
speed, from its initial position in 71/2 to its final position in 7!. We also
very slightly move track-cusps forward to maintain dynamicism. This
describes the graphical isotopy.
See the upper three rows of Figure 8.1.

Lemma 8.14. The result of the parting isotopy in OV glued to the
branched surface in ©y,, produced by the neighbourhood splitting and
graphical isotopy, is dynamic and is isotopic to BY after shrinking.

Proof. The intersection of this branched surface with each cross-section
is a train track. Moreover, by construction the track-cusps always move
forwards as we move up through cross-sections. Therefore the branched
surface is dynamic.

In Section 8.3 we explicitly describe an isotopy between the shrunken
branched surface and the parted branched surface in ©V. Thus in ©y,
the shrunken branched surface and the constructed branched surface
meet 00y, and 07O, with the same combinatorics. It follows that
the constructed branched surface is isotopic to the shrunken branched

surface. U
We call the result prepared position for BY. We define the lower
preparatory isotopy of the lower branched surface By, analogously.
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8.15. Splitting routes. From now it will be convenient to work in
the universal cover, rather than in M itself. Since our constructions
are natural, they are automatically equivariant. In a slight abuse of
notation we use the notation BY instead of the more correct BY. The
splitting isotopies given in the next section are similar to the parting
isotopies described above, but with two important changes. First, the
motion of the parting isotopies through space is replaced by the motion
of the splitting isotopies through time. Second, the parting routes are
replaced by the splitting routes, which we now describe.

Definition 8.16. Suppose that BY is in parted position. Suppose that
¢ = ¢p is a point of a branch line C'. Starting at ¢y, we follow C' upwards
until it meets, for the first time, a toggle square S = S(¢). (This exists
by Lemma 2.10.) Let U be the crimped shearing region meeting and
immediately below S. Let Hy = 0*U. We define ¢; = C'n Hy. Let (1)
be the train route with length zero carried by BY n H; which starts
and ends at ¢;. Since [(c;) has length zero, it consists of a tangent
vector which points at the crimped edge of S which is longitudinal for
U. Note that ¢;, and thus 3(¢;), is contained in the intersection of S
and a platform centred at some corner of S. For an example, see the
picture of the station (meeting BY in green) in Figure 8.6B.

We parametrise the subinterval [cg,c1] of C by [0,1]. Fix s and ¢ in
[0,1] with s <t. Let [cs,¢;] € [co, 1] be the corresponding subinterval.
Suppose that [cs,¢] is contained inside a crimped shearing region U.
There are now two cases as ¢, lies in the interior of, or lies in the lower
boundary of, U.

First suppose that ¢4 is in the interior of U. Let Hy (H;) be the
cross-section of U through ¢, (¢;). Suppose that the train route f(c¢;),
carried by BY n Hy, is given. We are given that 5(¢;) runs from ¢ to a
point inside of a station at the boundary of H;. We then form the train
route (cs), carried by BY n Hy, as follows. The start of 5(c;) is ¢, € C.
The end of 3(cs) is the projection (in bigon coordinates) of the end of
B(ct). Note that the end of B(cs) is again a point in a station.

Suppose instead that c, lies in the lower boundary of U. We form
B'(cs) by following the procedure given in the previous paragraph. If
B'(cs) does not meet any toggle squares then we set 5(cs) = 5'(cs)
and note that the end point of 5(cs) lies inside of the same station
as ((c;). If B'(cs) does meet a toggle square, then we truncate: we
delete from ’(c,) all intersections with toggle squares and keep only
the segment meeting c;, to obtain $5(c¢s). In this case $(cs) ends on a
helical crimped edge, inside the yard of some (possibly different) station.
See Figure 8.6D.
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We define (c) = B(cp). This is the splitting route for c. O

From their construction, we have that §(c) is a train route in all
cross-sections containing c. In each it runs from c to a point in a station.
See Figure 8.17. When c is in a toggle square, 5(c) is completely
contained in the platform, inside the station, and also within the toggle
square.

Lemma 8.18. Suppose that H is any cross-section. Suppose that ¢ and
d are track cusps of BY n H. Then 3(c) and 5(d) do not cross: that is,
after a small motion of B(c) the two routes are disjoint.

Proof. We use the notation of Definition 8.16. Let [co, c1] and [dp, d; ]
be the resulting branch intervals in the branch lines C' and D containing
c and d respectively. Let ¢, and d; be the last points in these branch
intervals for which there is a horizontal cross-section H’ containing both.
We deduce that H' is the upper boundary of some crimped shearing
region U.

Claim 8.19. f(c;) and 5(d;) are disjoint, thus they do not cross.

Proof. 1f s =1 then 5(c¢;) is contained in a station. In this case, if 3(d;)
meets J(cs) then (due to the truncation step of the construction) we
find that 8(cs) = 8(d;). Thus ¢ = dy and we are done.

A similar proof deals with the case that ¢ = 1. We may now suppose
that s <1 and ¢t < 1. Let T" be the union of the toggle squares of H'.
Define H” = H'-T". Note that each component of H" also appears as a
subsurface of the lower boundary of some crimped shearing region. Since
¢s and d; are the last points of [¢y,¢;1] and [dy,d;] in a common cross-
section, we find that ¢, and d; are necessarily in different components
of H". By construction f(c,) and §(d;) are also contained in these
components, so are disjoint. 0

We now reparameterise [co, ¢s] and [dy, d;] by the unit interval and
rechoose our notation so that, for all r € [0, 1], the track-cusps ¢, and
d, lie in the same cross-section H,. By the claim, when r = 1 the routes
B(c,) and 5(d,.) are disjoint in H,. Let 77 = BY n H,. The tracks 7"
fold as r decreases. Folding preserves the property of not crossing, and
we are done. (l

9. THE SPLITTING ISOTOPY

Suppose that the upper and lower branched surfaces BY and By, are
in prepared position. From this point on, our isotopies are fixed on
the union of the toggle squares. That is, each isotopy is supported
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FIGURE 8.17. Splitting routes ((a) through B(i) for the track-cusps
in cross-sections of Oy, where U is the blue crimped solid torus of
fLLQccecddehqrwjj_20102. Compare with Figure 8.1A. For each split-
ting route, the subcurve which is the corresponding parting route is drawn

with a dotted line.

Fig:SplittingRoutes ‘
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in the interiors of the red and blue parts of the crimped shearing
decomposition.

We now describe the upper and lower splitting isotopies of BY and
By respectively. These move BY downwards and By upwards. The
isotopies get their name from how the moving branched surfaces meet
a fixed cross-section H; the intersection is a splitting sequence of train
tracks in H.

We use BY to denote the image of BY at time ¢ € [0,1]. It now
suffices, for each cross-section H, to

e describe the intersection BY n H and

e check that the descriptions depend continuously on the choice
of H.

9.1. The upper splitting isotopy in ©V.

9.1.1. Neighbourhood splitting. For t € [0,1/2], we do the following.
Suppose that H is a horizontal cross-section in ©Y and suppose that
ce BYnH is a track-cusp. We split ¢ forward in a small neighbourhood
of its splitting route B(c) until we reach the station containing the end
of B(c). For an example of the overall motion of the track-cusps see the
lower three rows of Figure 9.2.

Applying Lemma 8.18, when two track-cusps ¢ and d meet travelling
in opposite directions, they split past each other, splitting to the left or
right as determined by the combinatorics of their splitting routes. Each
track-cusp moves at the constant speed required for its journey to take
all of [0,1/2]. This and Lemma 8.18 ensure that track-cusps travelling
in the same direction never meet.

The construction in Definition 8.16 ensures that when a track-cusp c
enters a station it moves all the way to the platform (in the projection
of S(c)) if there is no track-cusp already there. The track-cusp ¢ then
points at €', a longitudinal edge for the ambient crimped shearing region.
See the picture of the station in Figure 9.2.

When a track-cusp c enters a station, and there is a track-cusp d
already at the platform, then ¢ only enters the yard. Furthermore, ¢
remains outside of the projection of S(d), pointing at the projection of
its helical crimped edge. The construction in Definition 8.16 ensures that
when multiple track-cusps arrive to the same station (and the platform
is occupied) they line up in the yard, in order of their appearance.
Again, see the picture of the station in Figure 9.2.

This describes the neighbourhood splitting.

9.1.2. The graphical isotopy. For t € [1/2,1], we do the following. Sup-
pose that b is a branch of B}’/Q n H. Note that the endpoints of b lie
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inside of stations. Also note that by Lemmas 8.8 and 8.9, the branch
b is graphical. We isotope so that, at ¢t = 1, all branches of the train
track are straight lines in bigon coordinates, other than in the stations.
For each point of each branch, we change only its y-coordinate in bigon
coordinates, moving at constant speed from its initial to its final posi-
tion. This describes the graphical isotopy. See the upper three rows of
Figure 9.2.

Remark 9.3. As in Remark 8.5, the intersection of the image of the
upper splitting isotopy with cross-sections in ©V determines the inter-
section of the image of the upper splitting isotopy with 0-0,,. O

9.5. The upper splitting isotopy in ©,. Fix U, a blue crimped
shearing region. We use H, to denote the cross-section of O at height
s € [0,1]. (This matches the values for s given in the captions for
Figures 9.2, 9.4, and 9.8.) It remains to describe the intersections
BY n H,. The intersections BY n H, are given by the preparatory
isotopy. Also, BY n H; and (by Remark 9.3) BY n H, are already
determined by the splitting and isotopy given in Section 9.1. This gives
three sides of the “boundary of the isotopy”. We now describe the fourth;
that is, we describe BY n Hy for s € [0,1].

9.5.1. Suffiz routes. We wish to define the suffix routes for track-cusps
of fgy F]]ib.

Definition 9.6. Suppose that k is a track-cusp of BY n Hy. Following
our construction backwards, k is the endpoint of a splitting route S(k’)
starting at &’ and carried by BY n Hy. Suppose that ¢’ is the track-cusp
of BY n Hy on the same branch interval of BY nU as k. Let ¢ be
the endpoint of the splitting route 5(¢') starting at ¢/ and carried by
BY n H;.

Let 5'(¢") c BY n Hy be the result of folding 5(¢") downward through
BY nU. By construction, 3(k’) is obtained from £'(¢’) by removing
any intersection with toggle squares in 0-U and taking the initial
segment. Define v/(k") = 5'(¢") — 5(k'). Note that this is a train route
in BY n Hy. By construction and by Lemma 8.18 none of the splitting
routes in BY n Hy cross 7/(k"). We take the image of 7/(k’) under the
neighbourhood splitting and graphical isotopy defined in Section 9.1.
The result is the suffix route (k) which starts at k, is carried by
BY n Hy, and which ends at (the projection in bigon coordinates of)
l. &

Claim 9.7. The suffix route v(c) is carried by the graphical subtrack of
BY n Hy and so is graphical.
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FIGURE 9.2. The splitting isotopy for the cross-section 9-©Y = 9*©y, at
the middle of U, (s = 1). Here U is the blue crimped solid torus for
fLLQccecddehqrwjj_20102. Note that, as shown in the close-up views of
a station, track-cusps never touch. The close-up views also show the projec-
tion under bigon coordinates of the toggle square S(e) (as in Definition 8.16)
above the station.

Proof. Recall that Hy = 0-U. Again by Lemmas 8.8 and 8.9, the
train track BY n Hy is graphical except for those branches which are
in a platform in 90y, meeting a longitudinal crimped edge. The
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FIGURE 9.4. The splitting isotopy for the cross-section at the bot-
tom of Oy (s = 0), where U is the blue crimped solid torus for
fLLQccecddehqrwjj_20102.

e_bottom_of_Omega_V ‘

1125 splitting route S(¢’) does not meet such a branch (Definition 8.16).
1126 Therefore neither does its fold f/(¢'), and so neither does the route
1127 4'(k). The neighbourhood splitting and graphical isotopy do not alter
1128 this (Lemma 8.8). O
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As in Section 8.12.2, we now perform a neighbourhood splitting (in
space), replacing the parting routes o by the remaining routes v. As s
progresses through [0,1/2] we split a track-cusp ¢ forward along ~(c¢).

We now perform (in space) a graphical isotopy, analogous to the
one described in Section 8.13.3. As s progresses through [1/2,1], we
graphically straighten the branches. As usual, the track-cusps move
very slowly forwards to ensure dynamism. See Figure 9.8.

Now that the four sides of the isotopy are given, we fill in the interior.
That is, we must describe the train-tracks BY n H, for s,t € (0,1). As
usual, we begin by finding the routes needed for the neighbourhood
splitting.

9.8.2. Prefix routes.

Definition 9.9. Suppose that s lies in [0,1]. Let k& be a track-cusp
in BY n Hy. Let ¢ be the track-cusp in BY n H; which is on the same
branch interval (of BY) as k. Let ¢’ be the endpoint of the route 5(¢).
Let k' be the track-cusp in BY n H, which is on the same branch interval
(of BY) as ('

We define the prefix route (k) to be the prefix of (k) which ends
at the point of 5(k) with the same x—coordinate as k’. &

For each fixed s, we perform the neighbourhood splitting (for ¢ €
[0,1/2]) and graphical isotopy (for ¢ € [1/2,1]). During the neighbour-
hood splitting, each track-cusp moves from its position in BY n Hy to
its position in BY n H,.

This completes the definition of the upper splitting isotopy. The
lower splitting isotopy of By is defined analogously, with the roles of
OV and Oy reversed. Note that both the upper and lower splitting
isotopies are continuous by construction.

We apply the splitting isotopies to BY and By beginning from pre-
pared position. We call the result split position. For examples, see
Figures 9.11 and 9.12.

9.10. Split position. We make the following observations.

Lemma 9.13. In split position, the branched surfaces BY and By are
dynamic.

Proof. In split position the branched surface BY is transverse to the
cross-sections of all crimped shearing regions. Furthermore, we have
arranged that track-cusps always move forwards as we move up through
cross-sections. The same argument applies to the lower splitting isotopy,
acting on By . 0
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FIGURE 9.8. The result B}} of the splitting isotopy in O where U is the blue
crimped solid torus for fLLQccecddehqrwjj_20102. The five diagrams
show (from the bottom moving up) BY n H, for s € (0,1/4,1/2,3/4,1). The
bottom cross-section contains blue helical edges. In the uppermost magnifying
glass we have also drawn the (projection in bigon coordinates) of the upper
toggle square.

tti ng_sequence_blue‘

Lem:TrackCuspNoﬁmﬁ Lemma 9.14. Suppose that G and H are cross-sections in OV with G
1168 above H. Then with BY in split position, the projection of 7¢ to H in
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(A) Blue crimped solid torus. (B) Red.

FIGURE 9.11. The intersection of BY (and By), in split position,
with various cross-sections of the crimped shearing decomposition of
fLLQccecddehqrwjj_20102. Compare with Figure 8.2.

bigon coordinates is carried by, and is up to a small isotopy equal to,
7H. The same holds for By in Oy.

Proof. Let 7¢ be the intersection of G and BY. Define 7/! similarly.
Suppose that C' is the branch line through track-cusps ¢ of 7& and d
of 7f. Following the construction given in Section 9.1, we obtain train
routes 3(c) c 7§ and B(d) c 7ff. Since there are no toggle squares
strictly between G and H, the forward endpoint of 3(c) projects to the
forward endpoint of S(d). Thus after the neighbourhood and graphical
isotopies, 7¢ projects to 7/ (after moving the track-cusps of 7 slightly
forward). O

Lemma 9.15. Suppose that BY and By are in split position. Suppose
that U is a blue shearing region. Suppose that H is either 0*U, the
upper boundary of U, or 0-U, the lower boundary. Let 7H = Hn BY
and Ty = H N By,.
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0OV = a+@v
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Fig :-m@@’f_ ihadl=c rb‘sisgsmﬁgﬁm%_éﬂ_ueﬁoss—sect‘i ons_red

(A) Blue solid torus. ~ (B) Red solid torus.

FIGURE 9.12. Split position for the figure-eight knot sibling with veering
triangulation cPcbbbdxm_10. The four pinched tetrahedra are labelled A
through D. To obtain the pictures for the figure-eight knot complement with
veering triangulation cPcbbbiht_12, alter these figures by requiring that
the orientation on every helical edge points upwards. (To relabel the pinched
tetrahedra, start with those given at the top of Figure 9.12A and propagate

PositionFig8sibling| Outwards)
‘Itm:Stra-ighl’e# (1) Outside of the stations, the branches of T and Ty are straight
1184 lines (in bigon coordinates).
(2) Outside of toggle squares, the branches of TH have strictly positive
1186 slope and the branches of Ty have strictly negative slope.
:ToggleSquareSlopﬂsﬁ (3) Inside of each toggle square, outside of the stations, there is
1188 exactly one branch of TH and exactly one branch of Tr. These
1189 have strictly negative and strictly positive slope respectively.
Itm:TrackCuspg (4) Each track-cusp is in a station.
:NextToToggleSquarie] (5) Suppose that e is a helical edge in H. Suppose that, of the two
1192 equatorial squares adjacent to e, at least one lies in a toggle

1103 tetrahedron. Then the stations of TH immediately adjacent to e
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are connected by a branch of TH. Similarly, the stations of Ty
are connected by a branch of Ty.

(6) Every component of H—71H contains exactly one track-cusp, and
exactly one ideal vertex of U. The same holds for H — 1g.

When U is a red shearing region, a similar statement holds, swapping
the signs of slopes. 0

We generalise Lemma 9.15(6) to other cross-sections as follows.

Proposition 9.16. Suppose that U is a crimped shearing region. Let
H be a cross-section of U. Then every component of H — 7 contains

exactly one track-cusp and exactly one ideal vertex of U. The same
holds for H — Ty.

Proof. The result holds for H' = 0-U by Lemma 9.15(6). Moving
upwards from H' to H we perform splittings and graphical isotopies.
Neither of these changes the combinatorics of a region of H —7H. [

Lemma 9.17. Suppose that BY and By are in split position. Suppose
that U 1s a blue shearing region. Suppose that H is the lower boundary
of O(U). Let 7™ = Hn BY and 7y = H N By,.

(1) Outside of the stations, the branches of TH and Ty are straight
lines (in bigon coordinates).

(2) The branches of TH have strictly positive slope.

(8) Above each toggle square, outside of its stations, there is exactly
one branch of Tg. This branch has slope more positive than any
branch of TH. The remaining branches of Ty (not above toggle
squares) have strictly negative slope.

(4) Each track-cusp is in station.

A similar statement holds for H the upper boundary of ©(U). Finally,
all of the above again holds, swapping slopes appropriately, when U is a
red shearing region.

Proof. Let G = 0*U. By Lemma 9.15, statements (1) and (4) hold for
7¢. Also, (2) holds except that the slopes of branches have the wrong
sign inside of toggle squares. By Lemma 9.14, these properties are
carried to 7H and the shearing within ©(U) corrects the signs of the
slopes of branches coming from toggle squares in G. To obtain (3), we
start from the lower boundary K = 0-U, and again use Lemma 9.14 to
carry properties of 7 up to 7. Finally, note that the only branches of
7H with slope more positive than the exceptional branches of 77 do not
lie above a toggle square. (They lie above exactly one helical edge.) O

Lemma 9.18. Suppose that BY and By, are in split position. Suppose
that U is a blue shearing region. Suppose that H is any cross-section of
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U. Let T7H=HnBY and 7y = Hn By,. Let ¢ be a cusp of U. Let E be
the component of H — (7H U ty) meeting c. Then the branches of ™1
appearing in the boundary of E have positive slope; the branches of Ty
appearing in the boundary of E have negative slope. There is a similar
statement for a red shearing region.

Proof. First let H = 0-U. By Lemma 9.15(2) and (3), the only branches
of the incorrect slope are in toggle squares. Appealing to Lemma 9.15(5),
such branches are separated from the cusp ¢ by other branches. Exam-
ining the neighbourhood and graphical isotopies, the conclusion holds
in general. U

Lemma 9.19. Fach subray of each branch line of BY and of By, in
split position, meets crimped shearing regions of both colours.

Proof. This follows from Lemma 2.10 and the fact that our isotopies do
not change combinatorics in toggle squares. U

10. THE DYNAMIC PAIR

Theorem 10.1. Suppose that V is a transverse veering triangulation.
In split position, the upper and lower branched surfaces BY and By
form a dynamic pair; this position is canonical. Furthermore, if V is
finite then split position is produced algorithmauically in polynomaial time
and the dynamic train track BY n By, has at most a quadratic number
of edges.

The branched surfaces BY and By are individually dynamic by
Lemma 9.13. We now verify the hypotheses of Definition 4.9. Again, it
will be convenient to work equivariantly in the universal cover.

10.2. Transversality. Let U be a crimped shearing region. Recall that
BY and By, are now in split position.

Lemma 10.3. Suppose that H is a cross-section of U. Then the
train-tracks T™H and Ty are transverse.

Proof. For H = 0-U, this follows from Lemma 9.15(2), (3), and (4).
Now suppose that H, for s € [0,1] is a cross-section in Op. Let
75 = BYn H, and let 7, = By n H,. The train-tracks 7° perform the
neighbourhood and then graphical isotopies as described in Section 9.5.
Note that 70 and 7y are transverse by the previous paragraph. By
Lemma 9.14, the train-tracks 7, are all essentially the same in bigon co-
ordinates. During the neighbourhood splitting (that is, for s € [0,1/2]),
the track-cusps of 7% split forward in a small neighbourhood of (the
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projection of) 70. Thus the train-tracks 7¢ and 7, are transverse for
s€[0,1/2].

By Lemma 9.17, the train-tracks 7! and 7, are transverse. We now
consider s € [1/2,1]. The graphical isotopy interpolates between 71/2
and 7!. Let b* and ¢, be branches of 7¢ and 7, respectively.

Claim. The branches b% and ¢, are transverse.

Proof. Let ¢y be the projection of ¢, down to 0~U. Suppose that cq lies
completely within a toggle square. If the projection of b'/2 misses this
toggle square then we are done. Otherwise let a® be the linear segment
of b* which meets the toggle square. Since the isotopy is graphical, the
slope of a® is between that of a'/? and a'. Applying Lemma 9.15(3) and
Lemma 9.17(3) we find that the slope of ¢, is bigger than that of a®.
We deduce that ¢, is transverse to a® and thus to b%.

Suppose instead that ¢ is disjoint from the toggle squares. In this
case the proof is similar, but easier. Now the slope of ¢, is always
negative by Lemma 9.17(3). Also, the slope of a® is always positive by
Lemma 9.15(2), by Lemma 9.17(2), and by appealing to the graphical
isotopy. 0

Let K be the lower boundary of ©(U). By the claim (for s = 1), the
tracks 75 and 7 intersect transversely. Thus by Lemma 9.14, the same
holds for 7 and 7 for every cross-section H in O(U).

Swapping the roles of upper and lower and repeating the argument
proves that 77 and 74 are transverse for every cross-section H in
ev. O
Lemma 10.4. Each branch interval of BY in U is transverse to By,
and conversely.

Proof. 1t suffices to show that for each cross-section H, the track-cusps
of 7H and of 7y are disjoint. By Lemma 9.14, in Oy u O(U) the track-
cusps of 74 lie within small neighbourhoods of the endpoints of sidings
of 7. The same holds for track-cusps of 7# in ©(U) u©U. The track-
cusps of 7H remain away from the sidings of 7 in the upper splitting
isotopy in ©. Similarly, the track-cusps of 7 remain away from the
sidings of 7 in the lower splitting isotopy in OU. O

We record the following.

Remark 10.5. As H moves upwards, if a track-cusp of 7# moves through
TH, it does so going forwards. Similarly, whenever a track-cusp of 7y
moves through 7, it does so going backwards. O

The above lemmas, together with the remark, prove that BY and By,
are transverse.
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10.6. Separation. Recall from Remark 2.8 that both BY and By are
isotopic (ignoring the branching structure) to the dual two-skeleton
of V. Suppose that C' and D are components of M — (BY u By), each
containing a cusp of M. Thus, by Proposition 9.16, each of C' and D
contains exactly one cusp of M. Suppose that F' is a two-cell of the
natural cell structure on BY u By,. Suppose that F' meets C' on one side
and D on the other. Then we can find a proper arc dual to F', and thus
disjoint from one of BY or By. This is a contradiction.

10.7. Components. We must show that every component C' of M —
(BY U By) is either a dynamic shell or a pinched tetrahedron.

10.7.1. Dynamic shell. Suppose first that C' contains one (thus by
Proposition 9.16, exactly one) cusp ¢ of M. Let v be a model of ¢ where
v is an ideal vertex of a red crimped shearing region U. Let F = E(v,U)
be the component of U — (BY u By) incident to v. Our goal now is to
prove the following.

e F is a three-ball,

e the frontier of £ in U consists of two vertical “half-bigons” (one
from each of BY and By),

e the boundary of E in 0*U consists of two triangular faces, both
meeting a single helical edge of 9*U, and

e the boundary of E in 0~U consists of two triangular faces, both
meeting a single helical edge of 0-U.

Fix a cross-section H of U. Looking into H from the vertex v, we
see a siding of 7y meeting the boundary of H to our left and a siding
of 7 meeting the boundary of H to our right. Appealing Lemma 9.18,
the frontier of H n E consists of branches of 7# and 7 intersecting
precisely once. Stacking the cross-sections together, shows that F is a
three-ball with the desired properties.

A similar argument applies for a blue shearing region U. Here the
half-bigon of BY is to the left, and the half-bigon of By, is to the right.

Taking the union of the three-balls F(v,U), as v ranges of the models
of ¢, gives C'. The half-bigons glue to give the stable and unstable faces
of C'. Note that any one half-bigon meets only finitely many others
because the edges of V have finite degrees. Therefore, the E(v,U) glue
together to form a dynamic shell.

10.7.2. Pinched tetrahedron. Suppose instead that the component C'
does not contain any cusp ¢ of M. We must show that C' is a pinched
tetrahedron. To show this, we will need the following definition and
lemma.
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xtendedCrossSectimai Definition 10.8. Suppose that H c U is a cross-section. We define

1348 the bigon extension H as follows. The boundary of H consists of some
1340 number of longitudinal crimped edges. Each such edge e cobounds a
1350 crimped bigon B with a coloured edge e’. For each edge e we glue a

1351 new copy of B onto H to obtain H. &

1352 Note that the bigon extension H may contain many copies of the
1353 same crimped bigon. For example, Figure 8.2A shows several extended
1354 cross-sections, each extended with multiple copies of the two crimped
1355 bigons incident to the single red longitudinal edge. (Note however
1356 that in that figure we have not drawn the intersection of the branched
1357 surfaces with these crimped bigons.)

ahedraCrossSecti onasé Lemma 10.9. Suppose that H is a cross-section of a crimped shearing

1359 region U, meeting C. Then each component of the intersection C'n H 1is
1360 either a trigon or a quadragon, as defined in Definition 4.5. Moreover,
1361 as H moves up through U, components change according to the sequence
1362 given in Definition 4.5.

1363 Proof. Suppose that U is a red crimped shearing region. Let (H; |t €
1364 [0,1]) be the cross-sections of U. Thus Hy = 0-U.

1365 Claim. Suppose that R is such a component of C'n Hy. Then R is either
1366 a trigon or a quadragon.

1367 Proof. First suppose that R is entirely contained within H = Hy. From
1368 the first four items of Lemma 9.15, the boundary of R consists of three or
1369 four branch lines from 7# and 7. If there are four then they alternate
1370 between 7H and 75 and R is a quadragon. If there are three then two
1371 lie in the same train track and meet at a track-cusp. Thus R is a trigon.
1372 Now suppose that R is not entirely contained within H. By Lemma 9.15(5),
1373 the component R meets a crimped bigon B and contains the midpoint
1374 of the crimped edge. The frontier of R in B consists of exactly one arc
1375 from each of 78 and 75, meeting at a point. The claim now follows in
1376 a manner similar to the previous paragraph. U

1377 More generally, suppose that the claim holds with H; replacing H,.
1378 Let 7t = H;n BY (green) and 7, = Hy n By (purple). Remark 10.5 tells
1379 us that as ¢ increases, there are only two combinatorial changes:

1380 (1) Track-cusps of 7t move forwards through branches of 7.

1381 (2) Track-cusps of 7, move backwards through branches of 7.

1382 The first move simultaneously creates a new green trigon and converts a
1383 green trigon into a quadragon. The second move simultaneously deletes
1384 a purple trigon, and converts a quadragon into a purple trigon. These
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are both moves between stages in the life of a pinched tetrahedron, as
given in Definition 4.5, as required. This proves Lemma 10.9. U

Suppose that C' is a complementary component of M — (BY u By)
which does not contain a cusp of M. We now show that the cross-
sections that meet C' undergo the above moves, and thus C' is a pinched
tetrahedron.

Let H be a cross-section through a crimped shearing region U, and
let R be a region of H — (BY u By). Using Proposition 9.16 twice, gives
track-cusps s® and s, of 7 and 7 respectively, so that R is a subset
of the component of H-rH containing s®, and is also a subset of the
connponent(ﬁ';?—-TH'Contahnng Sk-

First suppose that R is a green trigon. Thus R contains s®. We must
show that this track-cusp eventually crosses a purple arc, turning R into
a quadragon. By Lemma 9.19, moving up, (the branch line containing)
s* eventually enters the bottom of a crimped shearing region V' through
a toggle square. If the region R persists into 0-V', and is still a green
trigon, then moving up through Oy, the track-cusp s® splits forwards
and hits the purple arc given by Lemma 9.15(5). This turns R into a
quadragon.

Moving down instead of up, a similar argument shows that every
green trigon is born at some point. Similar arguments also show that as
we move up purple trigons eventually die, and that as we move down,
purple trigons eventually turn into quadragons.

Lastly we must show that no quadragon can remain a quadragon
forever. Suppose that Q is a quadragon in a cross-section H. The
green sides of Q determine a track-cusp s®. As we move down, (the
branch line containing) s% is eventually inside a toggle square within
a cross-section K = 0-U. Using Lemma 9.15(5), we observe that the
component of K -BY containing s? has no quadragons. Therefore Q
is no longer a quadragon. A similar argument shows that quadragons
must eventually become trigons as we move upwards.

This completes the proof that components of M — (BY u By) are
either dynamic shells or pinched tetrahedra.

10.10. Transience. Suppose that F' is a component of By,—BY. Choose
a point x € F. Let U be a crimped shearing region containing z, and let
H be the cross-section of U containing x. Proposition 9.16 implies that
there is one ideal vertex v of U in the component of H — 77 containing
x. Let ¢ be the cusp of M containing v. By Section 10.7, there is a
unique dynamic shell C' containing c.
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Separating C'n H from x within H -7 is a finite collection of regions
R; of H—- (7" uTty). As we flow upwards, even when we move from one
shearing region to the next, each of these regions evolves according to
Definition 4.5. In particular they all eventually collapse. Moreover, by
Remark 10.5, no new regions are created between (the image of) x and
C. So the image of x eventually flows into an unstable face of C'. The
same argument applies to components of BY — By,, flowing downwards.

10.11. Canonicity and complexity. In our construction, we make no
arbitrary choices. Thus split position is canonical. In particular, if one
changes the orientation of the manifold or reverses the direction of the
flow then only names will change and not the underlying combinatorics
of the dynamic pair.

Now suppose that V is a finite transverse veering triangulation. Let
|V| denote the number of veering tetrahedra. In building the shearing
decomposition (Theorem 5.10), we produce 2|V| half-tetrahedra and per-
form 2|V| gluings. This requires linear time. In producing the crimped
shearing decomposition (Section 5.17), the work is now proportional to
the sum of the edge degrees, which is 6|V|. This again requires linear
time.

To specify the split positions of BY and By, it suffices to determine
the position of every track-cusp ¢ in each horizontal cross-section H
appearing in the ©—decomposition of every crimped shearing region
U. The branch intervals of BY lie close to the sidings except, possibly,
in the lower half of ©y. Taking H = 0-U, and supposing that the
siding for ¢ lies in a toggle square, we find that c splits forward in the
(space) neighbourhood splitting described in Section 9.5. The path of
¢ is exactly the train route f(c) described in Section 9.1. The naive
algorithm given there takes time at most quadratic in the degree of the
relevant longitudinal edge of U. Since the longitudinal edges partition
the sum of the edge degrees, the total complexity of computing the
train routes B(c) is at most quadratic.

We now bound the number of edges in the dynamic train track
BY n By. Suppose that (U;)™, is a collection of blue crimped shearing
regions with the following properties.

(1) U = U, has at least one toggle square in 9-U.

(2) V =U,, has at least one toggle square in 0*V.

(3) Fori=1,2,...,m-1, the upper boundary of U; equals the lower
boundary of U;,;.

(4) There are no toggle squares in this shared cross-section.

(5) The length of U, and thus of all of the U;, is n.
We allow m to be one (and thus U = V). We also allow n to be one.
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Let H be the lower boundary of ©(U). The track 75 has 2n branches
(outside of a small neighbourhood of the sidings). Each of these branches
is a line segment in H. By Lemma 9.17(3), each branch of 74 above a
toggle square has projection to -U contained within that toggle square.
The remaining branches of 74 have projections that avoid the toggle
squares. Thus no branch of 74 wraps all the way around H.

Let K be the upper boundary of ©(V). By a similar argument,
7K has 2n branches (outside of a small neighbourhood of the sidings).
Again, each is a line segment in K. Furthermore, all of these are
either below toggle squares or have slope greater than 1/n. The track
7H is obtained from 7% by shearing. After moving from K to the
lower boundary of ©(V"), branches below toggle squares now have large
positive slope while all other branches become slightly shallower, and
so all branches now have slope greater than 1/(n +1). Pushing down
through (U;), we arrive at H. By induction, the branches of 7# have
slope greater than 1/(n +m). Thus any branch of 7/ wraps at most
(m+n)/n times around H. Thus each branch of 7# meets each branch
of 7y at most [(m +n)/n]+1 times. There are (2n)? such pairs, for a
total of at most 4n(m + 2n) intersections. This counts all edges of the
dynamic train track above O and below ©V. Edges of the dynamic
train track either continue or merge in pairs as we descend from H to
0~U. Thus there are at most an additional 4n(m + 2n) edges in Oy .
Likewise there are at most an additional 4n(m +2n) edges in OV,

There are now two cases. If m > n then the size of the dynamic train
track in U;U; is O(nm); this is proportional to the number of tetrahedra
in y;U;. If m <n then the size is instead O(n?); this is bounded above
by the square of the number of tetrahedra in u;U;. Summing, we deduce
that the size of the dynamic train track is at most quadratic in |V)|.

This completes the proof of Theorem 10.1. U

Question 10.12. There is a sequence (Vy)52, of veering triangulations
with the following properties.

e V), has k tetrahedra.

® V.1 is obtained from Vj, by horizontal veering Dehn surgery
(along a M&bius band) [16].

e The size of the dynamic train track of V; grows quadratically
with £.

Thus we may ask if there is some other canonical construction of a
dynamic pair which yields a smaller dynamical flow graph. O
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APPENDIX A. FROM EQUATORIAL SQUARES TO MAXIMAL
RECTANGLES

For our future work, we require an analysis of maximal rectangles in
the leaf space for the “flow” associated to a given veering triangulation.
We proceed as follows.

Suppose that M is a three-manifold. Suppose that V is a veering trian-
gulation of M. Let U be the associated crimped shearing decomposition
of M, as defined in Section 5.17.

Definition A.1. Suppose that ¢ is a veering tetrahedron of V. Let
E = E(t) be its equatorial square. Let ey, €1, €2, and ez be the veering
edges of E. Recall that E.(V) is the crimped branched surface. Let n;
be a small regular neighbourhood of e; taken in E.(V). Let s; =n; — E.

Let U and V be the crimped shearing regions above and below s;
respectively. Let H; be the component of 0-U n 0"V containing s;.
We define X = X(t) = Eu (y;H;) to be the cross associated to the
tetrahedron . &

As usual, we define 7¥ = X n BY, and similarly define 7x. These are
train tracks properly embedded in X. Let 7(X) c X be the graph dual
to the union 7¥ U Tx. In a small abuse, we place vertices of 7(X), if
dual to a cusp region, at the associated cusp. We colour an edge e’ of
7(X) green or purple as its dual edge e lies in 7y or 7¥ respectively. A
rectangle in X is an embedded disk in X whose sides in 7(X) alternate
in colour exactly four times.

Lemma A.3. There is a unique rectangle R = R(t) in X = X (t) which
contains the vertices of t.

Proof. Fix an edge e of the equatorial square E' = E(t). Let ¢ and d
be the cusps at the two ends of e. Let Y be the component of X —e
not containing F. Suppose that the siding immediately adjacent to
¢, in Y, lies in 7¥. Thus the siding immediately adjacent to d, in
Y, lies in 7v. By Proposition 9.16 there is a (unique) component F
of Y — 7y containing c¢. Similarly there is a component G of Y — 7V
containing d. By Lemma 9.15(1) and (2), the regions F' and G intersect
in a quadragon. We deduce that there is a path in the dual graph (to
7Y UTy) from ¢ to d that changes colour, from purple to green, exactly
once. See Figure A.2.

Suppose that the siding immediately adjacent to ¢, in Y, instead lies
in 7y. Then a similar argument finds a path in the dual graph from ¢
to d that changes colour, from green to purple, exactly once.
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F1GURE A.2. The first row shows the cross for the equatorial square for
tetrahedron 1 in fLLQccecddehqrwjj_20102. The third row shows the
cross for the equatorial square for tetrahedron 0. In both cases the maximal
rectangle is shaded in grey. The second row shows the T-shape for the unique
face shared by tetrahedra 1 and 0. The face rectangle is shaded in dark grey.
The vertices and edges of the dual graph are shown only on the boundary of
the rectangles. The cusps are shown with black dots while other regions are
indicated with yellow dots. Corners of the rectangles are drawn with larger
yellow dots.

Doing the above for all four edges of E gives the boundary of the
desired rectangle R = R(t). Since OR contains one cusp in each of its
four (monochromatic) sides, R is maximal and thus unique. U

Note that R(t) receives a cellulation from its intersection with 7%
and 7x. We use R (t) to denote the edges of R(t) belonging to 7X.
Similarly, R1)(t) denotes the edges of R(t) belonging to 7x. We now
turn to constructing rectangles for the faces of V.

Definition A.4. Suppose that f is a veering face of V. Let eq, e;, and
es be its veering edges. Two of these, say e; and ey are the same colour.
Let ¢; be the vertex of f opposite e;. Let W’ be the shearing region (in
the shearing decomposition), containing f. Let W be the corresponding
crimped shearing region. The edges e; and ey are helical in OU; also
there is a longitudinal crimped edge e, in QU that cobounds a crimped
bigon B with eq. Let ng be a small regular neighbourhood of ey taken
in E.(V). Let sg =no - B.
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Let U and V be the crimped shearing regions above and below
sg respectively. Let Hy be the component of 0-U n 0tV containing
so. We take H to be the central cross-section of ©(W). We define
T =T(f)=Hu Hy to be the T-shape associated to f. &

The proof of the following is similar to that of Lemma A.3, replacing
Lemma 9.15 by Lemma 9.17.

Lemma A.5. There is a unique rectangle R = R(f) in T =T(f) which
contains the vertices of f. O

Again, R(f) receives a cellulation from the tracks 77" and 7.

Proposition A.6. Suppose that f is an upper face of the tetrahedra t
in V. Let T=T(f) and X = X(t). The natural flow from R(f)cT to
R(t) c X takes

distinct cusps to distinct cusps;

vertices to vertices;

edges of RV(f) to edges of RM(t);

edges of Ray(f) to vertices, or to edges of R(1y(t); and

faces of R(f) to either edges of RV(f), or to faces of R(t).

There is a similar statement when f is a lower face of t. O
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