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Abstract. There are exactly four mutually non-isotopic unknotting tunnels

for the pretzel knot P (−2, 3, 7). We also classify two tunnel unknotting sys-

tems.

1. Preliminaries

The main results of this paper, proved in Sections 2 and 3, are as follows.

Theorem 1.1. There are exactly four mutually non-isotopic unknotting tunnels,
τi (i = 1, . . . , 4) as shown in Figure 1.1, for the pretzel knot P (−2, 3, 7).

Figure 1.1

Theorem 1.2. Let (σ, τ) be a two-tunnel unknotting system for the pretzel knot
P (−2, 3, 7). Then σ can be isotoped to a trivial arc in the complement of P (−2, 3, 7)∪
τ , and τ is isotopic to one of the τi of Theorem 1.1.

We begin with some preliminaries. For the definitions of handlebody, compres-
sion body, and ideal polyhedral decomposition (IPD) we refer to [2]. The notation
N(∗) shall refer to a regular neighborhood of ∗, and ](∗) refers to the number of
components of ∗. We use the convention that the genus of a disconnected surface
is the sum of genii of its connected components.

Let M be a compact 3-manifold. A Heegaard splitting of M is a 3-tuple (H0,H1;F )
such that H0,H1 is a pair of compression bodies with the property that M = H0∪H1

and H0 ∩H1 = ∂+H0 = ∂+H1 = F , for some closed connected surface F embed-
ded in M . The surface F is called the splitting surface of the Heegaard splitting.
Two Heegaard splittings of M are considered equivalent if their splitting surfaces
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are isotopic. A Heegaard splitting is stabilized if it can be obtained from another
splitting by taking the connected sum of pairs (M,F ) and (S3, T 2), where T 2 is
the standard unknotted torus in S3.

A spine, τ , of a compression body H is a properly embedded 1-complex such that
H = N(∂−H ∪ τ). Let K be a knot, (H0,H1;F ) be a genus 2 Heegaard splitting of
its complement, and assume that ∂−H0 = ∂N(K), that is, H0 is the compression
body and H1 the handlebody of the splitting. Let τ be a spine for H0. It is clear
that τ can be chosen to be an arc. Then τ is called an unknotting tunnel for K,
and K is called a tunnel-1 knot.

A knot K in the 3-sphere S3 is said to admit a (1,1)-decomposition if (S3,K) is
decomposed into a union (V1, t1) ∪ (V2, t2) where ti is a trivial arc in a solid torus
Vi(i = 1, 2). A knot which admits a (1,1)-decomposition is called a (1,1)-knot. It
is easy to see that a core of each solid torus in a (1,1)-decomposition contributes
an unknotting tunnel , which is called a (1,1)-tunnel. In [6], by using the dihedral
symmetry of the Brieskorn homology sphere Σ(2, 3, 7), it was shown that p(−2, 3, 7)
admits two non-homeomorphic (1,1)-decompositions which are doubly covered by
the vertical and horizontal Heegaard decompositions of Σ(2, 3, 7) respectively. Here,
the vertical and horizontal Heegaard decompositions are two well-known types of ir-
redicible Heegaard decompositions of Seifert fibered spaces, see [5]. For this reason,
we called the two (1,1)-decompositions of p(−2, 3, 7) vertical and horizontal respec-
tively. From the vertical (resp. horizontal) (1,1)-decomposition of p(−2, 3, 7), we
obtain the pair of (1,1)-tunnels τ1, τ2 (resp. τ3, τ4) described in Figure 1.1.

Let θ = K ∪ τ , where K is a knot and τ an unknotting tunnel for K. Note
that K can be divided into two arcs α1 and α2 by ∂τ . Then K1 = α1 ∪ τ and
K2 = α2 ∪ τ are called the constituent knots of θ with respect to K.

Let T be an IPD (ideal polyhedral decomposition) of M . We denote the k-
skeleton of T by Tk. As the 1-skeleton will be of importance to us, we denote the
separate elements of the 1-skeleton as T j

1 for appropriate j.
If G is a 2-sided surface which intersects T3 in discs and T2 in normal arcs, then

G is called a normalized surface. A normalized surface G for which ](G∩T j
1 ) > 2 for

at least one j is called a Gabai surface. We say that a set G1, . . . , Gn of connected,
normalized surfaces is a base for (M,T ) if any connected, normalized surface in
(M,T ) is represented (up to isotopy preserving the number of intersections with
each T j

1 ) by one of the Gi. If M has a base with respect to T , then T is said to be
good, otherwise it is bad.

ideal triangulation IPD
Figure 1.2A Figure 1.2B

Henceforth we let K = P (−2, 3, 7), and E(K) = S3 −N(K). From [1] or [9] we
take a minimal ideal triangulation of E(K), which can be seen in Figure 1.2A. We
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glue these together to obtain the IPD, denoted T , of Figure 1.2B. We have denoted
the three elements of the 1-skeleton by T 0

1 , T 1
1 , and T 2

1 , and have marked them in
the diagram with zero, one, or two marks respectively.

Following the notation of [2], we denote any normalized surface G by a triple of
even integers (a0, a1, a2) where aj = ](G ∩ T j

1 ). It is elementary to check that
{(2, 2, 2), (2, 2, 4), (2, 4, 2), (2, 4, 4), (4, 2, 2), (4, 2, 4), (4, 2, 6), (4, 2, 8), (4, 4, 2),
(4, 6, 2), (4, 8, 2)} is a base for

(
E(K), T

)
, so that T is good; this will allow us

to use [2]. It is also elementary to calculate the genus of the elements of the base,
they are: 1, 2, 2, 3, 4, 3, 3, 4, 3, 3, and 4 respectively. (For example, surface
(2, 2, 4) shown in Figure 2.1A has 5 faces (discs in T3), 15 edges (normal arcs), and
8 vertices, hence χ(2, 2, 4) = −2.)

Remark 1. We note that only three of the surfaces in the base above have genus 2
or less. They are: (2, 2, 2), (2, 2, 4), and (2, 4, 2). Of those, only the latter two are
Gabai surfaces.

2. Proof of Theorem 1.1

We shall prove Theorem 1.1 by proving the following 2 lemmas.

Lemma 2.1. There are at most four distinct genus 2 Heegaard splittings for E(K).

Proof: Applying the Main Theorem of [2] to
(
E(K), T

)
(see Figure 1.2), we see that

any genus 2 Heegaard splitting is induced either by an element of the 1-skeleton of
T or by a genus 2 Gabai surface.

There are 3 elements of the 1-skeleton, hence at most three inequivalent genus 2
Heegaard splittings are induced by the 1-skeleton.

(2, 2, 4) before isotopy (2, 2, 4) after isotopy
Figure 2.1A Figure 2.1B

By Remark 1, there are two Gabai surfaces of genus 2. (The Gabai surface
(4, 4, 4) = (2, 2, 2) ∪ (2, 2, 2), is eliminated in [2].) Hence there are at most two
inequivalent genus 2 Heegaard splittings induced by Gabai surfaces.

Figure 2.1A shows Gabai surface (2, 2, 4), hereafter denoted G. Figure 2.1B
shows the same surface after an isotopy; the tube that appears to leave the poly-
hedron represents a tube exiting the back face. We claim that G does not induce a
Heegaard splitting. To see this, note that G clearly splits E(K) into two pieces, call
them M

T (2,2,4)
0 and M

T (2,2,4)
1 . Let α be a core of the tube shown in Figure 2.1B, and

let M
T (2,2,4)
0 = N(∂E(K)∪ α). Then M

T (2,2,4)
1 is the closure of E(K)−M

T (2,2,4)
0 .
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M
T (2,2,4)
1 M

T (2,2,4)
1 −N(edges)

Figure 2.2A Figure 2.2B

It is clear that M
T (2,2,4)
0 is a compression body. We show that M

T (2,2,4)
1 is not a

handlebody.
Beginning with Figure 2.1A, we eliminate M

T (2,2,4)
0 , stretching the bottom disc

behind the ball, and splitting the twice marked edge into two edges, marked twice
and thrice in Figure 2.2A. This is a polyhedral decomposition of M

T (2,2,4)
1 . Follow-

ing Section 3.3 of [8], we remove a neighborhood of each of the four edges, leaving
behind a mark to tell us how to glue them back in, obtaining the decomposition
in Figure 2.2B. We note that the identifications create a genus 6 handlebody, and
the marks describe how to attach four 2-handles to the surface of the handlebody.
This gives us 6 generators (σ1, . . . , σ6) and 4 relations

(1) σ1σ
−1
2 σ5σ

−1
3 σ4σ

−1
2 ,

(2) σ2
3σ−1

2 ,
(3) σ1σ4σ

−1
6 , and

(4) σ−1
1 σ−1

5 σ6.
Relations 2, 3, and 4 allow us to replace σ2, σ5, and σ6 with σ2

3 , σ1σ4σ
−1
1 , and

σ5σ1, respectively. Then π1(M
T (2,2,4)
1 ) =< σ1, σ3, σ4 : σ1σ

−2
3 σ1σ4σ

−1
1 σ−1

3 σ4σ
−2
3 >,

which is not free. Hence M
T (2,2,4)
1 is not a handlebody, and G does not induce a

Heegaard splitting. This finishes the proof of Lemma 2.1.

Remark 2. There are at least two minimal triangulations of E(K). The second
can be used to form another good IPD, call it T ′, see Figure 2.4. We note that
T ′0

1 = T 0
1 , T ′2

1 = T 2
1 , and T ′1

1 corresponds to a spine of the compression body of
Gabai surface (2,4,2) of T . (Similarly, T 1

1 corresponds to a spine of the compression
body of Gabai surface (2,4,2) of T ′.) Then Lemma 2.1 can be proven by applying
[2] to

(
E(K), T ′). The IPD T ′, like T , has a genus 2 Gabai surface that does not

induce a Heegaard splitting. However, the first homology group of either M
T (2,2,4)
1

or M
T ′(2,4,4)
1 (the analog for M

T (2,2,4)
1 in T ′) is Z2, so that the second genus 2

Gabai surface for either IPD induces a “homological Heegaard splitting.”

Lemma 2.2. The unknotting tunnels τi, (i = 1, . . . , 4) for P (−2, 3, 7), shown in
Figure 1.1, are mutually non-isotopic.

Proof: By the main theorem of [4], if two equivalent unknotting tunnels σ1 and
σ2 for K can be embedded in an incompressible Seifert surface for K, then the
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constituent knots of K ∪ σ1 and K ∪ σ2 with respect to K are identical. Hence we
consider the theta curves θi = K ∪ τi, (i = 1, . . . , 4).

Figure 2.3: S with τ3

Figure 2.3 shows the unique incompressible (see [3]) Seifert surface S of K. Note
τi, (i 6= 4) can be isotoped to lie in S; this has been shown for τ3 by the dotted
arc, and we leave the easier cases of τ1 and τ2 to the reader. We have not found
an isotopy of τ4 into S, but note that if it cannot be embedded in S, then it is
clearly non-isotopic to the τi that can be. Hence we may assume that τ4 can also
be embedded in S, and thus that we may apply the main theorem of [4].

Each of the θi has the unknot as one of its constituent knots; the other constituent
knots are the trefoil, 71, 51, and 819 respectively. Thus, as constituent knots are
distinct, τi, (i = 1, . . . , 4) must be mutually non-isotopic. This completes the proof
of Lemma 2.2 and of Theorem 1.1.

3. Proof of Theorem 1.2

We note that a stabilized genus 3 Heegaard splitting of E(K) corresponds to a
splitting in which one of the arcs can be isotoped into ∂E(K), hence we need only
show that any genus 3 Heegaard splitting is stabilized.

Applying [2] to
(
E(K), T

)
, we find that any genus 3 Heegaard splitting must be

induced by one of the following:
(1) a 2-edge subset of the 1-skeleton of T , that is T 0

1 ∪T 1
1 , T 0

1 ∪T 2
1 , or T 1

1 ∪T 2
1 ,

(2) a genus 3 Gabai surface of T with no more than 2 parallel copies of any base
surface, that is (2, 4, 4), (4, 2, 4), (4, 2, 6), (4, 4, 2), and (4, 6, 2), (4, 4, 6) =
(2, 2, 2) ∪ (2, 2, 4), or (4, 6, 4) = (2, 2, 2) ∪ (2, 4, 2),

(3) any genus 3 Heegaard splitting of E(K)−N(T i
1), for i = 0, 1 or 2.

(4) any genus 3 Heegaard splitting of M
T (2,4,2)
1 ,

(5) any genus 3 Heegaard splitting of M
T (2,2,4)
1 .

In the first case, it is easy to check that each induce stabilized Heegaard splittings.
In the second case we can use arguments similar to those at the end of Lemma 2.1

to eliminate all Gabai surfaces except for (4, 6, 4) as not inducing Heegaard splittings
(though each is, again, homologically equivalent to a Heegaard splitting). Gabai
surface (4, 6, 4) = (2, 2, 2) ∪ (2, 4, 2) does induce a Heegaard splitting which is an
amalgamation of a standard Heegaard splitting of

(
∂E(K)

)
× I with the Heegaard

splitting of E(K) induced by Gabai surface (2, 4, 2). It is elementary to check that
this splitting is stabilized.
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Figure 2.4: Alternate IPD T ′

In cases 3 and 4 we merely note that as the subspace of E(K) we are considering
is a genus 2 handlebody, and any genus 3 Heegaard splitting of a genus 2 handlebody
is stabilized by [7], we are done.

In the fifth case we can apply [2] to the IPD T ′′ of M
T (2,2,4)
1 obtained from Figure

2.2A by shrinking the boundary circles to vertices. Then any genus 3 Heegaard
splitting of M

T (2,2,4)
1 is induced by (a) an element of the 1-skeleton of T ′′ or by (b)

a Gabai surface for T ′′ of genus 3.
In sub-case (a), it is easy to check that an unknotting tunnel for M

T (2,2,4)
1 must

be T ′′0
1 = T 0

1 , T ′′1
1 = T 1

1 , T ′′2
1 ∼ T 0

1 , or T ′′3
1 ∼ T 0

1 , where “∼” means “isotopic
in E(K) to,” remembering that M

T (2,2,4)
1 ⊂ E(K). Again checking fundamental

group, we find that T ′′1
1 does not induce a Heegaard splitting. Using the same

argument as at the end of Lemma 2.1, but instead actually doing the gluing of
faces and 2-handles, we find that T ′′0

1 forms a Heegaard splitting. Then we note
that a spine of this Heegaard splitting can be taken to be two disjoint arcs: a core
of Gabai surface (2, 2, 4) of T and T 0

1 . Considering the same arcs in reverse order
we obtain case 3 above, which we already know to be stabilized.

In the second sub-case, a base for T ′′ consists of only three surfaces {(2, 2, 2, 2),
(2, 4, 2, 2), (4, 2, 4, 4)}, with genus 2, 3, and 4 respectively, so that only (2, 4, 2, 2)
could induce a genus 3 Heegaard splitting. We can either use calculation of funda-
mental group or notice that (2, 4, 2, 2) of T ′′ is isotopic in E(K) to (2, 4, 4) of T ,
which we eliminated in case 2. This completes the proof of Theorem 1.2.

We note that it may be possible to continue these arguments to classify all
unknotting tunnel systems; as [2] eliminates any Gabai surfaces with a parallel trio
of base surfaces, the number of calculations is theoretically finite (in this case we
only need to go to genus 14). However, the arguments become quite tedious in the
larger genus cases, so we shall content ourselves with the genus 2 and 3 cases, and
leave the rest to conjecture.

Conjecture 3.1. Any n-unknotting tunnel system for P (−2, 3, 7) is isotopic to one
in which n − 1 tunnels can be isotoped into ∂E(K), and the remaining tunnel is
one of the τi of Figure 1.1.
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