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1 Introduction

If S is a closed surface with genus at least two, and S◦ is the surface S punctured
once, then filling in the puncture will often induce a map from a geometric
space associated to S◦ to a corresponding space associated to S. The situation
we consider in this paper is that of the curve complex, and the filling map
C(S◦) → C(S). The fibers of this map are connected, and as we will see, they
are familiar objects.

Recall that π1(S) embeds into Mod(S◦), the mapping class group of S◦,
according to the Birman Exact Sequence (see

�
2). In particular, the fibers

of C(S◦) → C(S) are invariant by π1(S). Any point of C(S) determines a
multicurve, which itself can be used to be used to define an action of π1(S) on
a tree (see

�
4). Our first theorem relates this tree to the map C(S◦) → C(S).

Theorem 1.1. The fiber over v of the map C(S◦) → C(S) is π1(S)–equivariantly
homeomorphic to the tree determined by v.

When S is not closed, there is no natural map C(S◦) → C(S). However, we
define an augmented curve complex (see

�
2.1) and prove an analogous theorem

in that setting (assuming ξ(S) ≥ 4; see
�
2). This theorem follows from an alter-

native description of C(S◦) which mixes algebra and combinatorial topology—
see Theorem 5.4. This sheds some light on the space C(S◦), and in particular
provides a useful tool for studying the subgroup π1(S) < Mod(S◦). As an ap-
plication of the ideas, we prove the following theorem which answers Question
6 of [6].

Theorem 1.2. If ξ(S) ≥ 4, and G < π1(S) is finitely generated and purely
pseudo-Anosov as a subgroup of Mod(S◦), then G is convex cocompact.

Convex cocompactness for subgroups of the mapping class group was in-
vented by Farb and Mosher in [4] and is intimately related to the geometry
of the associated surface group extension. It was further studied by the first
two authors in [6] and by Hamenstädt in [5]. As convex cocompact groups are
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finitely generated and purely pseudo-Anosov, it is of interest to decide whether
or not this is also a sufficient condition. Farb and Mosher first asked this in [4],
as well as for some special “test” cases (see below). In particular, as a special
case, Theorem 1.2 provides the answer for one of their test questions, Question
6.1 of [4].

Corollary 1.3. Whittlesey’s groups are locally convex cocompact.

Recall that Whittlesey’s groups are normal, purely pseudo-Anosov subgroups
of the mapping class groups of a genus 2 surface and of the sphere with n ≥ 5
punctures. The genus 2 case is equivalent to that of the sphere with 6 punctures
as the associated Teichmüller spaces are isometric in a mapping class groups
equivariant way—the mapping class groups are virtually isomorphic.

Proof of Corollary 1.3 assuming Theorem 1.2. It suffices to prove the theorem
for Whittlesey’s groups in the n–punctured sphere mapping class groups Mod(S0,n).
The n–punctures define n–maps Mod(S0,n) → Mod(S0,n−1) by filling in the
puncture. The intersection of the kernels of all of these maps is Whittlesey’s
group, and hence lies in π1(S0,n−1) < Mod(S0,n). Any finitely generated sub-
group of Whittlesey’s group is thus also a finitely generated purely pseudo-
Anosov subgroup of π1(S0,n−1). Since n ≥ 5, Theorem 1.2 implies that the
group is convex cocompact.

Here we give a sketch of the contents of the paper.

Acknowledgements The authors are grateful to Yair Minsky and Ursula
Hamenstädt for helpful and interesting conversations.

2 Notation and background

Let S = Sg,m denote a surface with genus g and m marked points (or punctures).
When m = 0, we will also write Sg,0 = Sg. We use the complexity ξ(S) = 3g+m
and will assume throughout that ξ(S) ≥ 4. We will let S◦ denote S with an
additional puncture, and S•, the surface S with an additional marked point
which we refer to as •. We will frequently regard • as a base point for S.

For clarity, we note that need to be more

careful with this

throughoutξ(S◦) = ξ(S•) = ξ(S) + 1

The distinction between S◦ and S• is generally unimportant, but to make defi-
nitions precise, this distinction will be made without mention.

We fix a hyperbolic metric on S. Let p : S̃ → S denote the universal covering.
The hyperbolic metric on S pulls back to one on S̃ thus making S̃ isometric to
the hyperbolic plane.

The Birman Exact Sequence [2] relates the mapping class group of S with
that of S• and π1(S, •). Namely, we have

1 → π1(S) → Mod(S•) → Mod(S) → 1
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To make this correct, we must assume, as we will, that a mapping class fixes
each of the punctures (or marked points).

The embedding of π1(S, •) into Mod(S•) = Mod(S◦) can be described as
follows. We represent an element [γ] ∈ π1(S, •), by a loop γ based at • and
we “push” • around γ. More precisely, if we write γ : [0, 1] → S with γ(0) =
γ(1) = •, then there is an isotopy ht : S → S, for t ∈ [0, 1] such that h0 = idS ,
h1(•) = •, and so that γ(t) = ht(•). The mapping class in Mod(S•) associated
to [γ] is the mapping class of h1.

An explicit construction of ht can obtained by assuming γ is a smooth im-
mersion (as we may), and flowing along a time dependent vector field supported
in the image of a tubular neighborhood of γ that pushes • along γ. As such,
we can assume that for any neighborhood of the image of γ, ht is supported in
that neighborhood.

The following result classifying those elements in π1(S, •) which represent
pseudo-Anosov mapping classes in Mod(S) is due to Kra [8] and will play an
crucial role in our proof of Theorem 1.2.

Theorem 2.1 (Kra). An element [γ] ∈ π1(S, •) is pseudo-Anosov in Mod(S◦)
if and only if the (free) homotopy class determined by [γ] fills S.

Here, a homotopy class of curves fills S if every representative of the homo-
topy class intersects every other essential curve on S.

We view π1(S) as the group of covering transformations of the universal

covering p : S̃ → S and fix this action once and for all. Given any point
•̃ of S̃, this determines an isomorphism of π1(S) with the fundamental group
π1(S, •), for • = p(•̃). When describing elements of π1(S) as homotopy classes of
loops, we will assume a fixed basepoint •̃, and hence fixed isomorphism π1(S) ∼=
π1(S, •).

2.1 Curve complexes

The curve complex of S will be denoted C(S) (and similarly for the surface S◦

or S•). The k-simplices of the simplicial complex are sets v = {v0, ..., vk} of
k + 1 distinct isotopy classes of pairwise disjoint essential simple closed curves
(here, essential means homotopically nontrivial and nonperipheral). We confuse
simplices with the multicurves they determine.

We make C(S) into a geodesic metric space by declaring each simplex to be
a regular euclidean simplex with all side lengths equal to 1—see [3]. Masur and
Minsky [9] prove that C(S) is in fact a δ-hyperbolic metric space.

The 1-skeleton C1(S) is itself a metric space (with the path metric), and
the inclusion is a quasi-isometric embedding into C(S). Because geodesics in
C1(S) between vertices have a combinatorial description simply as a sequence of
(adjacent) vertices, we can mix combinatorial and geometric arguments in the
metric space C1(S). We will therefore work with the metric on C0(S) induced
by the inclusion into C1(S), which therefore takes on only integer values.

When S has punctures, we will also have use for an enlargement of the space
C(S). We define the augmented curve complex of S, denoted Ca(S), as
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follows. The vertices of Ca(S) are isotopy classes of non-null-homotopic simple
closed curves. The set C0

a(S) thus contains C0(S) plus a finite set of peripheral
simple closed curves; since ξ(S) ≥ 4, we see that C0

a(Sg,m) \ C0(Sg,m) consists
of exactly m peripheral curves, one surrounding each puncture, and we denote
these C0

a(Sg,m) \ C0(Sg,m) = {ζ1, ..., ζm}.
A k-simplex in Ca(S) is a set v = {v0, ...., vk} of k + 1 pairwise disjoint

curves in C0
a(S) such that at most one vertex lies in C0

a(S)\C0(S). We also view
C(S) ⊂ Ca(S). We continue to confuse simplices in Ca(S) with the multicurves
they define.

When S is closed, to avoid making special cases, we define Ca(S) = C(S).
We will typically denote simplices of C(S◦) by u = {u0, ..., uk} and simplices

of Ca(S) by v = {v0, ..., vk}.
As C(S), Ca(S), and C(S◦) are metric spaces, it will at times be convenient

to have some notation for the combinatorial simplicial complex, i.e. the set of
simplices together with the partial ordering induced by the face relation. For
this, we add a subscript ∆; e.g. C∆(S) is the set of simplices of C(S) with the
partial order induced by faces.

2.2 Filling projection

The coarse metric geometry of Ca(S) is not terribly interesting (when S has
punctures). Indeed, it is quasi-isometric to a point since it has diameter two.
The reason for defining Ca(S) is the following.

First, note that since S◦ ⊂ S, any curve in S◦ can also be viewed as a curve
in S, though an essential curve in S◦ may become peripheral in S. If v is a
simplex in C(S◦), then let Π(v) denote this corresponding multicurve in C0

a(S).
We claim that this determines a simplicial map

Π : C(S◦) → Ca(S)

which we refer to as the filling projection—it is obtained by filling in the
puncture.

We must only verify that the map is well defined (it is clearly simplicial if it
is well defined). The point we must check is that at most one vertex of any given
simplex in C(S◦) becomes peripheral in S. The following lemma establishes this,
along with the basic nature of the projection Π.

Lemma 2.2. Suppose u = {u0, ..., uk} is any simplex in C(S◦). Then

|{Π(u0), ..., Π(uk)}| ≥ k

Π(ui) is peripheral for at most one i = 0, ..., k. Moreover, if there is peripheral
curve, say Π(u0), then the restriction Π|u is injective and • is contained in a
once-punctured disk bounded by u0 in S•. maybe split this

into a couple

lemmas?
If Π|u is noninjective, and Π(u0) = Π(u1), then u0 and u1 cobound an

annulus containing • in S•.
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The lemma tells us that Π is well defined, and moreover, the restriction to
a k-simplex has rank at least k − 1 (as a linear map).

Proof. Note that it suffices to prove the lemma when u = {u0, ..., uξ(S)} is a
maximal simplex since any simplex is contained in a maximal simplex. That is,
u is a pants decomposition of S◦. Let P denote the pair of pants containing the
puncture ◦, which we replace by •.

If the other two cuffs of P are curves in u, say u0 and u1, then u0 and u1

cobound an annulus containing •. Moreover, Π(u1), ..., Π(uξ(S◦)) gives a pants
decomposition for S, and hence has ξ(S) = ξ(S◦) − 1 distinct elements, as
required. Note that it also follows that no curve has become peripheral in this
case.

If one of the other two cuffs of P is a puncture, then P has just one curve cuff,
say u0, and Π(u0) is peripheral in S. That is, u0 bounds a once punctured disk
in §• containing •. In this case, Π(u1), ...., Π(uξ(S◦)) is a pants decomposition
for S, has no peripheral curves and Π(u0), ..., Π(uξ(S◦)) are all distinct vertices
of C0

a(S).

We will say that a simplex u of C(S◦) is injective if Π|u is injective and
noninjective otherwise. Furthermore, we say that an injective simplex is non-
peripheral if its Π-image is contained in C(S), and peripheral otherwise.

2.3 Fibers of Π

As Π is simplicial, it is determined by a map Π∆ : C∆(S◦) → Ca,∆(S). We
[?note/recall?] the elementary fact that for any x ∈ Ca(S), the fiber Π−1(x) is
naturally a simplicial complex affinely embedded in C(S◦). The combinatorial
simplicial complex (Π−1(x))∆ is order isomorphic to Π−1

∆ (v) where v is the
unique simplex of Ca(S) containing x in its interior, and where the partial order
is the restriction of that on C∆(S◦) [obvious, or give a proof or a ref?]. We note
that Π−1

∆ (v) is not a combinatorial simplicial subcomplex of C∆(S◦), rather just
a partially ordered set.

The action of π1(S) on (Π−1(x))∆ is equivalent to the action of π1(S) on
Π−1

∆ (v). There are only finitely many π1(S)–orbits for the action of Π−1
∆ (v).

The orbit of u ∈ Π−1
∆ (v) is determined by v = Π(u) and (1) if u is noninjective,

the vertex of v in the image of two vertices of u, or (2) if u is injective, the
component of S \ u containing the basepoint •. [obvious or give a proof?]

3 Regions

We define some specific realizations of curves and subsurfaces in S and S̃. Given
a simplex v in C(S), we let [v] denote the geodesic representative.

Lemma 3.1. There exists positive numbers {ε(v)}v∈C0(S) so that the (closed)
neighborhoods Nε(v)([v]) are homeomorphic to annuli, and which satisfy

Nε(v)([v]) ∩ Nε(v′)([v
′]) 6= ∅ ⇔ i(v, v′) 6= 0
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Give a proof. This is a hyperbolic trig exercise...

We will assume in what follows that we have chosen the numbers {ε(v)}v∈C0(S)

as given by the Lemma. Because there is a lower bound to the length of any
geodesic, an area argument implies that {ε(v)}v∈C0(S) is a bounded set of num-
bers.

For each of the peripheral curves ζ1, ..., ζm in C0
a(S), we fix a representative

horocyclic curves [ζ1], ..., [ζm] (i.e. quotients of horocycles). We do this so that
these are pairwise disjoint, and so that [ζj ] ∩ Nε(v)([v]) = ∅ for all j = 1, ..., m
and all v ∈ C0(S).

3.1 Subgroups compatible with simplices

Given a simplex v = {v0, ..., vk} of C(S), we write

N(v) = Nε(v0)([v0]) ∪ ...Nε(vk)([vk])

By Lemma 3.1, this is a union of pairwise disjoint annuli. As a special case,
note that when v is a vertex, N(v) = Nε(v)([v]).

The complementary components will also be useful, and we name them as
well. The complement of N(v) may have several components, and to keep track
of them, we can record the fundamental group of the component as a subgroup
of π1(S). However, this is only well defined up to conjugation, so we keep track
of only the conjugacy class of the fundamental group.

We define U([Γ]) to be the component of S \ N([v]) for which π1(U([Γ])) <
π1(S) is in the conjugacy class of Γ. In this setting we say that Γ is vertex
compatible with v. For reasons that will become apparent shortly, if Γ is
conjugate to a subgroup π1(N(vj)) where vj is a vertex of v we say that Γ is
edge compatible with v. can probably

get rid of U and

just work with

Û

The subsurface U([Γ]) is not locally convex, which will be the cause minor
complications later. For this reason, we also define the open subsurface Û([Γ])
to be the component of S \ [v] containing U([Γ]). Observe that Û([Γ]) is locally
convex and strong deformation retracts onto U([Γ]) (thus π1(Û ([Γ]) is also con-
jugate to Γ).

We extend these definitions to incorporate simplices in the augmented curve
complex. The horocyclic curves are the boundaries of horocyclic cusps (i.e.
quotients of horoballs) which we denote U(ζ) for each peripheral curve ζ ∈
C0

a(S).
It will be convenient to deal with all cases simultaneously, and for this reason

we make the following definitions. If v is a peripheral simplex in Ca(S) with
peripheral vertex ζ we define U([Γ]) = U(ζ) where [Γ] is the conjugacy class
of π1(U([Γ])) = π1(U(ζ)) < π1(S). In this situation, we define v and Γ to be
peripherally compatible. We further define Û([Γ]) = U([Γ]).
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If v and Γ are vertex compatible, edge compatible, or peripherally compat-
ible, then we simply say that v and Γ are compatible. We denote the set of
subgroups compatible with v by Dv and D = {Γ |Γ ∈ Dv for some v}. We give
D a partial order defined by inclusion. This is also a partial order on each Dv.

3.2 Regions in S̃

We now pull this entire picture back to S̃. Recall that we have fixed an action
of π1(S) on S̃.

Fix a simplex v = {v0, ..., vk} in C(S) and a compatible subgroup Γ < π1(S).
In the universal cover, edge compatibility of v and Γ is equivalent to saying that
Γ is the stabilizer of some component of p−1(N(v)), while vertex compatibility

says that Γ is the stabilizer of some component of S̃ \ p−1(N(v)).
If Γ is edge compatible with v then we define N(Γ) to be the component

of p−1(N(v)) stabilized by Γ. It will be convenient to also use the notation
Û(Γ) = N(Γ). We note that N(Γ)/Γ = N(v0) for some vertex v0 < v.

If Γ is vertex compatible with v, then we define U(Γ) to be the component

of S̃ \ p−1(N(v)) stabilized by Γ. We also define Û(Γ) to be the component

of S̃ \ p−1([v]) which contains U(Γ). Again, U(Γ)/Γ = U([Γ]) and Û(Γ)/Γ =
Û([Γ]).

Similarly, if v is a peripheral simplex in Ca(S) and Γ a peripherally com-
patible subgroup, we define U(Γ) = Û(Γ) to be the component of p−1(U([Γ]))
stabilized by Γ. Notice that U(Γ) is a horoball, Γ is the parabolic subgroup
stabilizing it, and U(Γ)/Γ = U([Γ]).

The next proposition follows immediately from the definitions we have given,
but we record it here for reference.

Proposition 3.2. For any Γ ∈ D, Û(Γ) is a convex set stabilized by Γ. If
Γ < Γ′, then Û(Γ) ∩ Û(Γ′) 6= ∅.

4 Trees

For any simplex v of C(S), we can obtain an action of π1(S) on a tree denoted Tv;
see [10] for a general introduction to actions on trees associated to hypersurfaces.
There are a number of ways of constructing this tree, but given our setup so
far, there is a simple and useful way of describing Tv. should rewrite

this little

section
Namely, we take a vertex for each subgroup of Dv vertex compatible with v,

and an edge for every subgroup of Dv edge compatible with v, then declare a
vertex Γ to be a vertex of Γ′ if Γ > Γ′. That is, the abstract simplicial complex
Tv,∆ is reverse-order isomorphic to Dv.

Said differently, v provides a graph of groups decomposition of π1(S) in
which the vertex stabilizers are subgroups vertex compatible with v and edge
stabilizers are groups edge compatible with v.
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5 Algebra vs. Combinatorics

In this section we give an alternative description of C(S◦) which mixes algebraic

and combinatorial information. We fix a basepoint •̃ ∈ S̃ and thus a basepoint
• = p(•̃) in S and an isomorphism π1(S, •) ∼= π1(S).

The following lemma describes the stabilizers of simplices of C(S◦) in π1(S).
The key ingredient is Kra’s Theorem 2.1. We assume that any simplex u in
C(S◦) is realized as a multicurve in S◦.

Lemma 5.1. A simplex u of C(S•) is fixed by [γ] ∈ π1(S, •) < Mod(S◦) if and
only if [γ] is represented by a loop γ which is disjoint from u.

Note that the stabilizer of a simplex u fixes the simplex pointwise since
π1(S, •) consists of pure mapping classes in Mod(S◦) as it acts trivially on
H1(S

◦)—see [7].

Proof. Suppose first that [γ] has a representative γ which is disjoint from u. As
mentioned in

�
2, for any neighborhood of γ, there is a representative h of [γ] in

Mod(S◦) supported on that neighborhood. Choosing a neighborhood disjoint
from u, we obtain a representative of h which leaves u fixed, as required.

To prove the reverse implication, we prove its contrapositive. It suffices to
assume [γ] is primitive by the purity statement above. First, choose a represen-
tative γ of [γ] which has the minimal number of self intersections. This can be
done so that the based loop actually has the minimal number of self intersec-
tions of the free homotopy class. To see this, let γt : S1 → S for t ∈ [0, 1] be the
free homotopy of some representative γ0 of [γ] (with γ0(1) = • with 1 ∈ S1) to
a loop γ1 with minimal self intersection. The path γt(1) for t ∈ [0, 1] runs from
• to some other point of S. In a similar manner as described in

�
2 we can find

an isotopy ht : S → S for t ∈ [0, 1] with h0 = idS , so that ht(•) = γt(1). Now
h−1

t ◦ γt : S1 → S is a based homotopy starting at γ0 and ending at a repre-
sentative differing from γ1 by a homeomorphism (namely, h−1

1 ). In particular,
γ = h−1

1 ◦γ1 is a representative of [γ] minimizing self intersection number in the
free homotopy class.

Let Σ be the supporting subsurface of S◦ containing γ(S1) \ {•}. Choose
a representative of u having minimal intersection with Σ. Because [γ] has no
representative disjoint from u, we see that the intersection of Σ with u is non-
empty and essential.

If γ is a simple closed loop, then Σ is a punctured annulus and [γ] ∈ Mod(S◦)
is simply a Dehn twist in one boundary component, and an inverse Dehn twist in
the other. Since u nontrivially intersects Σ, it follows that [γ]u 6= u as required.
If γ is not a simple closed loop, then note that ξ(Σ) ≥ 4 and γ is filling on Σ.
According to Kra’s Theorem 2.1, [γ] ∈ Mod(S◦) is a pseudo-Anosov mapping
class when restricted to Σ. It again follows from the fact that u nontrivially
intersects Σ that [γ](u) 6= u. This completes the proof.

Suppose now that u ∈ C(S◦) is given, and realized by some multicurve
on S•. Let V (u) be the component of the complement of u containing •.
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Because any other representative of u differs by an isotopy supported in the
complement of •, we see that the subgroup (not just the conjugacy class)
π1(V (u)) = π1(V (u), •) < π1(S, •) = π1(S) is a well defined subgroup de-
pending only on u.

Note that π1(V (u)) consists of precisely those elements of π1(S) which can
be realized disjoint from u. Thus, by Lemma 5.1 we immediately obtain

Corollary 5.2. Stabπ1(S)(u) = π1(V (u))

We next list some elementary observations about π1(V (u)).

Lemma 5.3. If u ∈ C(S◦), then

1. if u is noninjective then π1(V (u)) is edge compatible with Π(u).

2. if u is injective and nonperipheral then π1(V (u)) is vertex compatible with
Π(u).

3. if u is peripheral then π1(V (u)) is peripherally compatible with Π(u).

4. if u′ < u is a face, then π1(V (u′)) > π1(V (u)).

Proof. Let u = {u0, ..., uk} and Π(u) = v = {v0, ..., vk} with vj = Π(uj) for all
j = 0, ..., k.

To prove (1), we suppose that u is noninjective. By Lemma 3.1, by relabeling
if necessary, we assume that v0 = v1 = Π(u0) = Π(u1) ∈ C0(S) and so that
V (u) is an annulus bounded by u0 and u1 containing •. Therefore, V (u) in S is
homotopic to N(v0), and hence π1(V (u)) = π1(V (u)) is edge compatible with
v = Π(u).

For (2), we suppose that that u is injective and nonperipheral. Note that
our realization of u in S• is also a realization of v once we forget •. Since this
multicurve is isotopic to [v], we see that V (u) is homotopic to some component
of S \ [v]. It follows that π1(V (u)) is vertex compatible with v = Π(u).

In order to verify (3), we assume u is peripheral and let ζ be the peripheral
vertex of v. We again appeal to Lemma 3.1 which says that in S, V (u) is a once
punctured disk with boundary homotopic to ζ in S. As any punctured disk
neighborhood of a cusp is homotopic to any embedded horoball neighborhood,
we see that V (u) is homotopic to the horoball neighborhood bounded by [ζ].
Hence π1(V (u)) is peripherally compatible with v = Π(u).

All that remains is to prove (4). This follows from the trivial observation
that if u′ < u, then V (u′) ⊃ V (u), and hence π1(V (u′)) > π1(V (u)).

Define a partially ordered set

G = {(Γ, v) |Γ ∈ Dv}

with the partial order defined by

(Γ′, v′) � (Γ, v) ⇔ v′ < v and Γ′ > Γ
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There is an obvious order preserving π1(S) action on G by conjugation on the
first factor.

Lemma 5.3 and the fact that Π is a simplicial map implies that the map

Φ : C∆(S◦) → G

given by Φ(u) = (π1(V (u)), Π(u)) is an order preserving map. If we let Υ : G →
Ca(S) denote the projection onto the second coordinate, then by construction
Π(u) = Υ(Φ(u)).

Theorem 5.4. Φ is a π1(S)–equivariant order isomorphism.

Proof. We first prove that Φ is π1(S)–equivariant. Fix a simplex u in C(S◦) and
a realization in S•. We must prove

Claim. For any [γ] ∈ π1(S), π1(V ([γ](u))) = [γ]π1(V (u))[γ]−1.

Proof of claim. As in
�
2, given a loop γ : [0, 1] → S representing [γ], we con-

struct an isotopy ht : S → S, t ∈ [0, 1], with the property that ht(•) = γ(t).
The mapping class [h1] ∈ Mod(S◦) of h1 is the mapping class associated to
[γ] ∈ π1(S, •). Now consider an element [σ] ∈ π1(V (u), •), represented by a loop
σ : [0, 1] → V (u) ⊂ S. In the same way, we construct an isotopy kt : S → S so
that kt(•) = σ(t).

The element [γ][σ][γ]−1 ∈ [γ]π1(V (u))[γ]−1 is represented represented in
Mod(S◦) by the homeomorphism h1 ◦ k1 ◦ h−1

1 . This is isotopic to the identity
in S by h1 ◦ kt ◦ h−1

1 , for t ∈ [0, 1]. Thus h1 ◦ k1 ◦ h−1
1 represents the loop

h1(σ(t)) = h1 ◦ kt ◦ h−1
1 (•), which is contained in V ([h1](u)) = V ([γ](u)).

Therefore, [γ]π1(V (u))[γ]−1 < π1(V ([γ](u))). The same argument applied
to [γ](u) and [γ]−1 implies

[γ]−1π1(V ([γ](u)))[γ] < π1(V ([γ]−1[γ](u))) = π1(V (u))

Conjugating by [γ], we obtain π1(V ([γ](u))) < [γ]π1(V (u))[γ]−1 from which the
desired equality follows.

So, we have a π1(S)-equivariant, order preserving map. To prove that the
map is a bijection, it suffices to show that (1) Φ induces a bijection of the orbit
spaces, and (2) the stabilizer of a simplex is equal to the stabilizer of the image
of the simplex.

To prove (1), let v be a simplex in Ca(S) and Γ compatible with v. By an
isotopy of N(v), we can assume that the component of the image of N(v) or of
S \ N(v) that contains our basepoint • is conjugate to Γ. Taking ∂N(v), and
identifying components which are homotopic in S◦, we see that Φ(u) = (Γ, v).
So Φ induces a surjection on orbit spaces. To see that the map is injective, we
check that the finitely many orbits in Π−1

∆ (v) are sent to distinct orbits of G
[more details here...].
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The statement (2) follows easily from Corollary 5.2 and the fact that the
subgroups π1(V (u)) are malnormal [give a ref?].

To see that Φ is an isomorphism, we need only show that if Φ(u′) � Φ(u),
then u′ < u. If Π(u′) < Π(u) and π1(V (u′)) > π1(V (u)), then after applying a
homotopy in S◦, we have V (u′) ⊃ V (u), and it follows that u′ < u as required.

We denote the projection onto the first factor of G by

ρ : G → D

and write
η = ρ ◦ Φ : C∆(S◦) → D

Fixing v ∈ Ca(S), we have Dv = Υ−1(v) and Π−1
∆ (v) = η−1(Dv). Restricting Φ

to this last space we obtain

Corollary 5.5. Φ|Π−1

∆
(v) : Π−1

∆ (v) → Dv is a reverse-order isomorphism.

We now see that Theorem 1.1 follows: Given any v ∈ C(S), Dv is reverse-
order isomorphic to Tv,∆, and Π−1

∆ (v) is order isomorphic to (Π−1(x))∆.

The following is essentially a restatement of Proposition 3.2, appealing to
Lemma 5.3 or Theorem 5.4.

Proposition 5.6. If u′ < u is a face, then

Û(η(u′)) ∩ Û(η(u)) 6= ∅

6 Distance and piecewise geodesic paths

Consider any pair of points x, y ∈ S̃ with x ∈ U(η(ux)) and y ∈ U(η(uy)) for
some ux, uy ∈ C0(S◦). Let [u0, ..., un] denote an edge path connecting u0 = ux

to un = uy. Of particular interest to us is the case that, [u0, ..., un] is the
geodesic in C1(S◦), so that n = dC1(S◦)(ux, uy).

Proposition 6.1. There exists a path

γ : [0, 2n + 1] → S̃

connecting x to y with the property that

� γ([2j, 2j + 1]) is a geodesic segment contained in Û(η(uj)) for each j =
0, ..., n, and

� γ([2j + 1, 2j + 2]) is a geodesic segment contained in Û(η({uj , uj+1})) for
each j = 0, ..., n− 1.

Proof. According to Proposition 5.6, the sets Û(η(uj)) and Û(η({uj , uj+1})

are convex, and Û(η({uj , uj+1})) nontrivially intersects both Û(η(uj)) and

Û(η(uj+1)) for each j = 0, ..., n − 1. From these two observations, the proposi-
tion easily follows.
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7 Purely pseudo-Anosov subgroups

Let G < π1(S) be a finitely generated purely pseudo-Anosov subgroup. By
Kra’s Theorem 2.1, every element of G represents a curve in S which fills S.
Let Σ̃ denote the convex hull of the limit set of G acting on S̃ and

p0 : Σ̃ → Σ = Σ̃/G

the quotient compact hyperbolic surface with geodesic boundary. That Σ̃ is com-
pact follows from the fact that finite generation for Fuchsian groups is equivalent
to geometric finiteness (see [1]) and the fact that every element is hyperbolic

since the loop defining it fills S. The inclusion Σ̃ → S̃ induces an immersion
f : Σ → S and f∗(π1(Σ)) = G.

Σ̃ //

p0

��

S̃

p

��

Σ
f

// S

By the filling property of every conjugacy class in G, we see that if [v] is a
geodesic on S, then f−1([v]) cuts Σ into disks. Moreover, as we will see, the
family of arcs of f−1([v]) as v ranges over all of C0(S) is a precompact family.

It will be convenient to prove this statement for a slightly larger surface.
Namely, let Σ1 = N1(Σ̃)/G denote the quotient of the 1-neighborhood of Σ̃ by
G. This adds a width-1 collar to each boundary component of Σ. There is an
obvious extension of f , to Σ1 ⊃ Σ, which we still denote f : Σ1 → S. Let A
denote the set of all arcs of f−1([v]) in Σ1 as v ranges over all of C0(S).

Proposition 7.1. The family A is precompact in the space of all proper geodesic
arcs in Σ1. In particular, there are only finitely many isotopy classes in A and
there is a uniform bound on the length of any arc in A.

Proof. By the Arzela-Ascoli Theorem, it suffices to prove that there is a uniform
bound to the length of any arc in A.

Suppose to the contrary that there exists a sequence {vn} ⊂ C0(S) and
components Ln ⊂ f−1([vn]) so that `(Ln) → ∞ as n → ∞. We may also
assume that [vn] has a Hausdorff limit λ, which is a geodesic lamination on S.
Let λ′ be the maximal measurable sublamination of λ, i.e., λ′ is obtained from
λ by throwing away all non-closed isolated leaves.

Note that the Hausdorff limit of Ln is contained in f−1(λ). Because `(Ln) →
∞, it follows that there is a geodesic lamination λ0 contained in this Hausdorff
limit. The sublamination f(λ0) is a component of λ′. Let α be a (geodesic)
boundary component of the boundary of the supporting subsurface of λ0 (I think
this is the complement of what Casson-Bleiler call the “core”). The image of
this subsurface by f is the supporting subsurface for f(λ0) and as such, its
boundary is disjoint from λ′. It follows that f(α) is disjoint from λ′. This is
impossible, since every curve representing a conjugacy class of G intersects every
lamination in S, and f(α) represents a conjugacy class in G.
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Note that each component of Σ1 \ f−1([v]) is a not only a disk, but a disk
with uniformly bounded diameter: it is convex, and has uniformly bounded
circumference. This implies the same statement for the disks N1(Σ̃) \ p−1([v])

which are just the disks of p−1(Σ̃1 \ f−1([v])). Moreover, since ε(v) is uniformly
bounded over all v ∈ C0(S), we see that the diameter of any component of

N1(Σ̃) ∩ N(p−1([v])). We record this as

Corollary 7.2. There exists D > 0 so that for any nonperipheral simplex u in
C(S◦), any component of Û(η(u)) ∩ N1(Σ̃) has diameter at most D.

8 Convex cocompactness

We now fix a purely pseudo-Anosov subgroup G < π1(S) < Mod(S◦) and let

Σ̃ ⊂ N1(Σ̃) ⊂ S̃ and f : Σ1 → S be as in the previous section. We assume
that we have chosen our horoball cusps U(ζ) sufficiently small to lie outside

f(Σ1), and hence Û(Γ) ∩ N1(Σ̃) = ∅ for any Γ ∈ Dζ and any peripheral vertex
ζ ∈ C0

a(S).

Fix a vertex u ∈ C0(S◦) and x ∈ U(η(u)) ∩ Σ̃.
We could choose some generating set for G to define a metric, though we

have a natural (and useful) G-invariant metric in the q.i. class given to us.

dG(g, h) := deΣ(g(x), h(x)) = deS
(g(x), h(x))

The next theorem implies Theorem 1.2.

Theorem 8.1. The orbit map

G → G · u

given by g 7→ g(u) is a quasi-isometric embedding into C(S◦). In particular, G
is convex cocompact.

The last statement follows from the first and Theorem 1.3 of [6] or Theorem
2.9 of [5].

Proof. We must find K ≥ 1 and C ≥ 0 so that for any g ∈ G, we have

dG(1, g)

K
− C ≤ dC1(S◦)(u, g(u)) ≤ KdG(1, g) + C

Fixing a generating set {g1, ..., gr} for G, taking any C ≥ 0 and

K ≥ max

{
1,

{
dC1(S◦)(u, gi(u))

dG(1, gi)

}r

i=1

}

the required upper bound on dC1(S◦)(u, g(u)) easily follows from the triangle
inequality. We assume that the K and C we produce for the lower bound also
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satisfies these two inequalities.

We now proceed to the proof of the lower bound.
Let τ : S̃ → Σ̃ denote the closest point projection. This is well known to be give a ref

a contraction. In fact, there exists R > 0, so that if σ is any geodesic segment
outside N1(Σ̃) has length `(τ(σ)) ≤ R.

Next, suppose u′ is a simplex in C(S◦) and σ is a geodesic segment contained

in Û(η(u′)). Since Û(η(u′))∩N1(Σ̃) is convex, σ is cut into at most three geodesic

segments by this set, at most one of which is contained in Û(η(u′)) ∩N1(Σ̃). It
follows that

`(τ(σ)) ≤ 2R + D

Now suppose dC1(S◦)(u, g(u)) = n and connect u to g(u) by a geodesic edge
path [u0, ..., un]. Let

γ : [0, 2n + 1] → S̃

be a path connecting x ∈ U(η(u)) to g(x) ∈ g(U(η(u))) = U(η(g(u))) given by
Proposition 6.1. Since each geodesic segment γ([i, i + 1]) is contained in some
set of the form Û(η(u)) for some simplex u, we see that for every i = 0, ..., 2n

`(τ(γ([i, i + 1]))) ≤ 2R + D

Since γ connects x to g(x), so does τ(γ), and its length bounds the distance
from x to g(x). Therefore we obtain

dG(1, g) = deΣ(x, g(x)) ≤ `(τ(γ)) ≤ (2n + 1)(2R + D)

Isolating n = dC1(S◦)(u, g(u)) in this inequality, we obtain

dC1(S◦)(u, g(u)) = n ≥
dG(1, g)

2(2R + D)
−

1

2

Taking any K ≥ 2(2R + D) and C = 1/2, completes the proof.
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[5] Ursula Hamenstädt. Word hyperbolic extensions of surface groups.
Preprint, arXiv:math.GT/0505244.

[6] Richard P. Kent IV and Christopher J. Leininger. Shadows of
mapping class groups: capturing convex cocompactness, Preprint.
http://www.math.uiuc.edu/∼clein/papers.html.

[7] Nikolai V. Ivanov. Subgroups of Teichmüller modular groups, volume 115 of
Translations of Mathematical Monographs. American Mathematical Soci-
ety, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose
and revised by the author.

[8] Irwin Kra. On the Nielsen-Thurston-Bers type of some self-maps of Rie-
mann surfaces. Acta Math., 146(3-4):231–270, 1981.

[9] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves.
I. Hyperbolicity. Invent. Math., 138(1):103–149, 1999.

[10] Peter B. Shalen. Representations of 3-manifold groups. In Handbook of
geometric topology, pages 955–1044. North-Holland, Amsterdam, 2002.

Department of Mathematics, Brown University, Providence RI 02912
rkent@math.utexas.edu

Department of Mathematics, University of Illinois, Urbana-Champaign, IL 61801
clein@math.uiuc.edu

Department of Mathematics, Rutgers University, New Brunswick, NJ 08854
saulsch@math.rutgers.edu

15


