
TIGHTENING ALMOST NORMAL SURFACES

SAUL SCHLEIMER

Abstract. We present a specialized version of Haken’s normaliza-
tion procedure. Our main theorem states that there is a compres-
sion body canonically associated to a given transversely oriented
almost normal surface. Several applications are given.

1. Introduction

Haken’s normalization procedure [5] takes an arbitrary surface S

inside a triangulated three-manifold and, after a sequence of isotopies
and compressions, produces a normal surface — a surface which is
essentially rectilinear with respect to the triangulation. This process is
key in many of the algorithmic results in three-manifold topology such
as; deciding if a surface is incompressible [4] and deciding if a manifold
is irreducible [16], atoroidal [12], or Haken [9].
However, a certain amount of information is lost in this process.

For example, we cannot expect S and its normalization to cobound a
product region or even a compression body or, indeed, to be disjoint.
This is not a problem while considering incompressible surfaces, but is
a serious obstacle to dealing with Heegaard splittings.
If we restrict our attention to almost normal surfaces and keep care-

ful track of the normalization isotopies then these complexities are
removed. Theorem 3.3 shows that our procedure yields a compression
body. The compression body has S as one boundary component while
the other boundaries form the normal surface which is “as close as
possible” to S. This is made precise in Section 3.
As a first application we obtain a new proof of Lemma 1 from [15]

which is restated here as Lemma 3.4. Stocking’s lemma states that
any almost normal surface which is incompressible to one side is in
fact isotopic to a normal surface on that side. This lemma gives the
induction step in Stocking’s proof that all strongly irreducible Heegaard
splittings are isotopic to a normal or almost normal surface.
Our second application, Theorem 4.1, is a description of the one-

skeleton of efficiently triangulated three-spheres. In Thin position and
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bridge number for knots in the 3-sphere [17], Thompson proved that a
knot which does not contain a planar meridional incompressible sur-
face in its complement has the property that any thin position realizes
bridge position for the knot. Bachman [1] and Heath and Kobayashi [6]
have made further progress along these lines.
Theorem 4.1 states that, in any zero-efficient, one-vertex triangula-

tion of S3, thin position of the one-skeleton is also bridge position. This
gives an algorithm to find the bridge number of such one-skeleta. Note
that Thompson’s proof in [17] does not apply directly in this context.
This is due to the presence of normal spheres near the vertices of the
triangulation.
Theorem 3.3 has further uses. For example, it gives an algorithm to

decide if a closed three-manifold is homeomorphic to a surface bundle
over the circle. See the author’s thesis [14] as well as [?]. In fact,
the methods of this paper may be used to show that the recognition
problem for S3, as well as the recognition of surface bundles, lies in the
complexity class NP. We plan on developing these ideas in a future
paper. Also, suitably generalized, our technology has applications to
the study of distances of Heegaard splittings, as defined by Hempel [7].
(Again, see [14].)
Section 2 provides a brief synopsis of normal surface theory. Section 3

gives the definitions necessary to precisely state our main theorem and
quickly proves Stocking’s lemma as a corollary. Section 4 is devoted
to defining the concepts of thin and bridge position for one-skeleta
and stating our second application. The tightening map is defined in
Section 5. A collection of lemmata in Section 6 carefully analyzes the
intersection of this isotopy with the two-skeleton. Finally, Section 7
proves the main theorem and Theorem 4.1.
I would like to thank Andrew Casson for his invaluable advice and

Danny Calegari for reading an early version of this paper.

2. Surfaces, in pieces

Throughout this paper M 3 will denote a compact three-manifold.
This section develops a few rudiments of normal surface theory. For a
more complete treatment see [16] or [13].

2.1. Normal surfaces. Fix T , a triangulation of M . This triangula-
tion is not assumed to be simplical. Let t be a tetrahedron of T and
let f be a triangular face of t.
A normal arc of f is an arc, properly embedded in f , with its end-

points in distinct edges of f . A normal curve in ∂t is a simple closed
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Figure 1. Normal disks

Figure 2. Almost normal pieces

curve, embedded in ∂t, which is transverse to the edges of t and whose
intersection with each face of t is a collection of normal arcs.
The length of a normal curve is the number of normal arcs it contains.

A normal curve is short if its length is four or less. Otherwise it is long.
Each normal curve bounds a disk in t. Such disks with boundary of

length three are normal triangles and those with boundary of length
four are normal quadrilaterals or “normal quads.” These normal disks
are illustrated in Figure 1. A surface S properly embedded in M is
normal if it intersects each tetrahedron in a collection of normal disks.

2.2. Almost normal surfaces. In order to capture certain behaviors
it is necessary to expand the allowable intersections of S with a single
tetrahedron beyond normal disks. The almost normal pieces shown in
Figure 2 are one of three almost normal octagons and one of twenty-
five almost normal annuli. The tubes of the almost normal annuli are
required to be unknotted. (See [13].)
A surface properly embedded inM is almost normal if it intersects all

tetrahedra but one in normal disks, and it meets the exceptional tetra-
hedron in exactly one almost normal piece and possibly some normal
disks.
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Figure 3. Non-normal curves

2.3. Non-normal surfaces. Let S be a surface properly embedded
in a triangulated three-manifold M . Assuming that S is transverse to
the skeleta of M we will characterize some of the ways S can fail to be
normal. Denote the i-skeleton of (M,T ) by T i.

Definition. The weight, w(S), of a surface S ⊂ M is the number of
points in S ∩ T 1.

A simple curve of S in a triangle f ∈ T 2 is a properly embedded
closed curve in interior(f), the interior of f . Also, a bent arc is a
properly embedded arc with both of its endpoints contained in a single
edge of f . Both of these are drawn in Figure 3.

Definition. An embedded disk D is a surgery disk for S if D∩S = ∂D,
D ⊂ T 2 or D ∩ T 2 = ∅, and D ∩ T 1 = ∅.

We may surger S along D: Remove a small neighborhood of ∂D
from S and cap off the boundaries thus created with disjoint, parallel
copies of D. Note that we do not require ∂D to be essential in S. A
simple curve of S is innermost if it is the boundary of a surgery disk
embedded in a triangle of T 2.

Definition. An embedded disk D is a tightening disk for S if ∂D =
α ∪ β where α and β are closed intervals, D ∩ S = α, D ⊂ T 2 or
D ∩ T 2 = β, D ∩ T 1 = β, and β does not meet T 0.

There is a tightening isotopy of S across D: Push α along the disk D,
via ambient isotopy of S supported in a small neighborhood of D, until
we have moved α past β. This procedure reduces w(S) by exactly two.
A bent arc of S is outermost if it lies on the boundary of a tightening
disk embedded in a triangle of T 2.
Suppose S contains an almost normal octagon. There are two tight-

ening disks on opposite sides of the octagon both giving tightening iso-
topies of S to a possibly non-normal surface of lesser weight. (See [16].)
These are the exceptional tightening disks. If S contains an almost nor-
mal annulus then the tube is parallel to at least one edge of the contain-
ing tetrahedron. For every such edge there is an exceptional tightening
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disk. Also, the disk which surgers the almost normal annulus will be
called the exceptional surgery disk.

2.4. Common notions. Given a triangulated manifold (M,T ) there
is a standard notion of equivalence:

Definition. An isotopy H :M × I →M is a normal isotopy if, for all
s ∈ I and for every simplex σ in T , Hs(σ) = σ.

Two submanifolds of M are normally isotopic, or simply equivalent,
if there is a normal isotopy taking one to the other.
Let S ⊂M be a transversely oriented surface. In Figures 5 and 6 the

transverse orientation is indicated by arrows pointing in the appropriate
direction. The side of S pointed towards is below S while the opposite
side is above. When S is thickened to obtain a product neighborhood
S × I →M then S × 1 is above S ∼= S × 0.

3. Canonical Compression Bodies

This section defines the notions required to state Theorem 3.3 and
its first corollary.

3.1. Triangulations. Fix (M,T ), a closed triangulated three-manifold.

Definition. T is 0-efficient or simply, efficient if every normal two-
sphere is a vertex link; that is, every normal sphere contains only normal
triangles. See [10].

Remark 3.1. Note that the only orientable prime three-manifolds
which do not admit such triangulations are RP3 and S2 × S1. This
is due to Jaco and Rubinstein [10] and may also be found in unpub-
lished work of Casson’s. Jaco and Sedgwick [11] have further shown
that all other lens spaces (including S3) admit infinitely many efficient
triangulations.

Remark 3.2. As shown in Lemma 3.6 if M is a closed, efficiently tri-
angulated three-manifold with more than one vertex then M is home-
omorphic to the three-sphere. Jaco and Segdwick [11] have given an
argument to prove that an efficient triangulation of S3 has at most two
vertices; Ben Berton has given an infinite collection of such triangula-
tions of S3 [8].

3.2. Compression bodies. Let S ⊂ M be a closed transversely ori-
ented surface. A compression body based above S is a three-dimensional
submanifold of M obtained by thickening S and then attaching thick-
ened disks to S × 1. If the disks are attached to S × 0 then the com-
pression body is based under S. Note that our compression bodies may
have two-sphere boundary components. See [2].
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Let VS be the set of all compression bodies V based over S such that
∂−V = ∂V − (S×0) is normal. (Given our conventions, ∂+V = S×0.)
If we only consider elements of VS up to normal isotopy then there is
a natural partial order on the set VS. Namely, V ≤ V ′ if V ⊂ V ′,
perhaps after a normal isotopy. Note that the product neighborhood
S × I is only an element of VS when S itself is normal.

Theorem 3.3. Let S ⊂ M be a transversely oriented almost normal
surface. Then the partially ordered set VS has a unique minimal ele-
ment.

This is proved in Section 7.

3.3. Stocking’s Lemma. We can now prove:

Lemma 3.4. Let S ⊂M be a two-sided, almost normal surface which
is incompressible on one side.
(∗) Assume that M is efficiently triangulated and S is not a sphere.
Then there is an embedding F : S × I → M with the following

properties:

(1) F(S × 0) = S.
(2) F(S × 1) is normal.
(3) F(S × I) is on the incompressible side of S.

Proof. Choose the transverse orientation on S so that it points towards
the incompressible side. Let V be the unique minimal element supplied
by Theorem 3.3. We have ∂−V = {S ′ together with a collection of
normal spheres}, where S ′ is homeomorphic to S and, by efficiency, all
of the normal spheres are vertex links. It follows that there is at most
one copy of each vertex link.
We may cap off these spheres (if they occur) with regular neigh-

borhoods of the relevant vertices. Note that these neighborhoods do
not intersect S ′ because S ′ is a not a sphere and thus contains normal
quads. Call the capped off compression body V ′. V ′ admits the desired
product structure by the incompressibility of S and we are done. ¤

Remark 3.5. The technical assumption (∗) in the lemma may be
replaced by the following: M is irreducible and S is not contained in a
three-ball which is embedded in M .

At this point we can also show that most efficient triangulations have
exactly one vertex.

Lemma 3.6. Suppose that (M,T ) is an efficiently triangulated closed
three-manifold. If |T 0| > 1 then M is homeomorphic to S3.

Proof. As M is connected, so is T 1. Suppose that x and y are distinct
vertices of T 0 which are connected by an edge, e ∈ T 1. Let Sx and
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Sy be vertex links about x and y, respectively. Let t be a tetrahedron
adjacent to e. Connect Sx to Sy by an unknotted tube which is parallel
to e inside of t. Call the almost normal two-sphere obtained S.
By Theorem 3.3, there is a pair of canonical compression bodies, V

and W , based below and above S. Each of these is homeomorphic to
a three-ball, perhaps with a collection of smaller three-balls removed.
The boundary of V ∪W is a collection of vertex links. It follows that
M ∼= S3. ¤

Remark 3.7. This gives a version of Lemma 2 in [16].

4. Products and Positions

In this section we give definitions for thin and bridge position of
one-skeleta and state Theorem 4.1. Let C be a disjoint union of three-
dimensional submanifolds of M , called the cores of M . Let S ⊂M be
a properly embedded surface.

Definition. A product structure F on (M,C) is a homeomorphism
F : S × I →M − C.

We will refer to Fr = F(S × r) as a level of the product structure.
For the rest of this section only we assume that M = S3 and that

M is given with a one-vertex triangulation. Let BV be a regular neigh-
borhood of this vertex. Let BW be a small ball in the interior of some
tetrahedron. Let F be a product structure on (M,BV ∪ BW ) with
F(S × 0) = ∂BV .
Following [16] we will adapt Gabai’s notion of thin position (see [3])

to our situation.

Definition. F is transverse to T 1 if the following conditions hold:

(1) All but finitely many levels of F are transverse to T 1.
(2) Each nontransverse level Fci

, i ∈ {1, . . . , n}, has exactly one
singular intersection with T 1.

All nontransverse intersections look like local maxima or minima.
The open submanifold obtained by taking the union of all levels be-
tween a maximum immediately above and a minimum immediately
below is called a thick region. Similarly a thin region is contained be-
tween a minimum above and a maximum below. See Figure 4.
The set {ci ∈ [0, 1] | Fci

is not transverse to T 1} are the critical
points. Chose now a collection of points in the interval, R′ ⊂ I, such
that for each adjacent pair of critical points there is exactly one point
of R′ between them. Let R = R′ ∪ {0}.
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Figure 4. Thick and thin regions

Definition. The width of a transverse F is

w(F) =
∑

r∈R

w(Fr).

Definition. F realizes thin position for T 1 if F is transverse to T 1 and
w(F) ≤ w(F ′) for all product structures F ′ on (S3, BV ∪ BW ) which
are transverse to T 1.

Definition. F realizes bridge position for T 1 if F is transverse to T 1

and contains no thin region.

Our second corollary of Theorem 3.3 is:

Theorem 4.1. Suppose that T is an efficient triangulation of S3. Then
any thin F realizes bridge position.

This consequence is somewhat delicate. A proof is given at the end
of Section 7.

5. How to tighten a surface

This section presents our main tool, the tightening map.
Suppose that S is a transversely orientable almost normal surface

with respect to some triangulation of M . We wish to isotope S off of
itself while reducing the weight of S as efficiently as possible. The next
section closely studies the track of this isotopy.
As S has at most one exceptional surgery disk choose a transverse

orientation for S which points towards an exceptional tightening disk,
D.
Construct an isotopy F : S × I →M as follows:

(1) Thicken S to obtain F0 : S×I →M . Note that F0(S×0) = S.
Abuse notation and set F0 = F0(S × 1). F0 is almost normal,
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transversely oriented, and has an exceptional tightening disk,
D0 = D− image(F0), which does not intersect the image of F0.
Here image(F0) is the image of F0.

(2) Do a small normal isotopy of F0 in the transverse direction
while tightening F0 along D0. This extends F0 to F1, with
F1 = F1(S × 1). F1 inherits a transverse orientation from F0.

(3) Let i ∈ {1, 2, 3, . . .}. If Fi has no outermost bent arc with
transverse orientation pointing towards a tightening disk then
the construction is complete. Otherwise extend Fi to Fi+1 by
doing a small normal isotopy of Fi in the transverse direction
while tightening Fi across Di, the ith tightening disk. This
produces Fi+1 together with its induced transverse orientation.

Remark 5.1. As w(Fi+1) = w(Fi)− 2 this process terminates.

Let Fn be the last surface produced.

Definition. The map Fn : S × I →M is called a tightening map.

By construction Fn(S× 0) = S. We may assume that each Fi in the
construction is represented by some ti ∈ I, i.e. Fn(S × ti) = Fi and
tn = 1. Thus Fi = Fn|[0, ti]. To simplify notation, let F = Fn.

6. Tracking an isotopy

In this section we analyze how F intersects the skeleta of the trian-
gulation. Let S ⊂M , F , Fi, and Fi be as defined in Section 5.
Figures 5 and 6 display a few of the possible types of intersection,

image(Fi) ∩ T 2, were Fi an embedding. Lemma 6.1 below shows that
this collection is complete up to symmetry. Note that the arcs bounding
the types receive a transverse orientation from the surface they lie in.
Arcs of S are always pointed towards while arcs of Fi are pointed away
from by the transverse orientation. The two types with a normal arc
of Fi are called critical. Those with a bent arc are called temporary
while the rest are called terminal.
During the tightening procedure, the critical types are combined in

various ways while a temporary type always results in a terminal type
which is stable. Note also that there is a second critical rectangle which
“points upward.” The non-critical types may be foliated by the levels
of Fi in multiple ways, depending on the ordering of the tightening
isotopies.

Lemma 6.1. The maps Fi : S×I →M are embeddings. Furthermore,
for every f ∈ T 2 the connected components of image(Fi)∩ f are given,
up to symmetry, by Figures 5 and 6.
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Critical Temporary

Terminal Terminal

Figure 5. The Rectangles

Critical Temporary

Terminal Terminal

Figure 6. The Hexagons

Proof. Proceed by induction: Both claims hold trivially for i = 0, as
all components of image(F0) ∩ f are critical rectangles.
Suppose both claims hold at i = k. We now verify the first claim

for i = k + 1: Suppose that α ⊂ Fk is the bent arc on the boundary
of Dk ⊂ f ∈ T 2, the next tightening disk in the sequence. Suppose
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that interior(Dk) meets image(Fk). By the second induction hypothesis
there is a component, s, of f ∩ image(Fk) which meets interior(Dk) and
appears among the types listed in Figures 5 and 6. Observe that each
type meets at least two edges of f while α meets only one. It follows
that the interior of s must meet α. Thus Fk was not an embedding, a
contradiction.
It follows that Dk ∩ image(Fk) = α. Since the k + 1th stage of the

isotopy is supported in a small neighborhood of Fk ∪Dk it follows that
Fk+1 is an embedding.
Now, the transverse orientation on Fk gives rise to a transverse ori-

entation on Fk+1. To verify the second claim list the possible cases:

(1) Two critical rectangles may be combined to produce a tempo-
rary rectangle, a terminal rectangle with a hole, or a critical
hexagon.

(2) Three critical rectangles may be combined to produce a tempo-
rary hexagon or a terminal hexagon with a hole.

(3) A critical rectangle and critical hexagon may be combined to
produce a temporary hexagon or a terminal hexagon with a
hole.

(4) A temporary type can lead to either terminal type.

This completes the induction step. ¤

Remark 6.2. By maximality of F , the surface Fn = F(S × 1) has
no outermost bent arcs with outward orientation. A bent arc with
inward orientation would violate the second induction hypothesis. So
Fn contains no bent arcs. Fn may contain simple curves, but the sec-
ond induction hypotheses shows that all of these are innermost with
transverse orientation pointing toward the bounded surgery disk.

Given that F is an embedding, in the sequel image(Fi) is denoted by
Fi. Replacing S in Lemma 6.1 by a disjoint union of S with a collection
of normal surfaces gives:

Corollary 6.3. If S ′ is any normal surface in M which does not in-
tersect S then F ∩ S ′ = ∅, perhaps after a normal isotopy.

Note that F naturally imposes a product structure on (M,M −F).
This allows us to examine the intersection of F with the one-skeleton.

Lemma 6.4. T 1∩F meets the nontransverse levels of F only in max-
ima.

Proof. Lemma 6.1 shows that F gives a foliation of image(F) ⊂ M .
Every bent arc of every Fi is outermost and has a transverse orientation
pointing toward its tightening disk. It follows that all nontransverse
levels occur at maxima of the one-skeleton with respect to F . ¤
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Let t be any tetrahedron in the given triangulation of M .

Lemma 6.5. For all i, t−Fi is a disjoint collection of balls.

Proof. Again we use induction. Our induction hypothesis is as follows:
t − Fi is a disjoint collection of balls, unless i = 0 and t contains the
almost normal annulus of S.
Let B be a component of t − Fk. There are two cases to consider.

Either B is cut by an exceptional tightening disk or it is not. Assume
the latter. After the k + 1th stage of the isotopy B ∩ Fk+1 is a regular
neighborhood (in B) of a collection of disjoint arcs and disks in ∂B.
Hence B −Fk+1 is still a ball.
If B is adjacent to the almost normal piece of F0 then let D0 be the

exceptional tightening disk. Set Bε = B −D0. Each component of Bε

is a ball, and the argument of the above paragraph shows that they
persist in the complement of F1. ¤

A similar induction argument proves:

Lemma 6.6. For all i, t ∩ Fi is a disjoint collection of handlebodies.

This lemma is not used in what follows and its proof is accordingly
left to the interested reader. Recall that ∂Fi = S ∪ Fi. A trivial
corollary of Lemma 6.5 is:

Corollary 6.7. For all i, the connected components of t∩Fi are planar.

The connected components of t ∩ Fn warrant closer attention:

Lemma 6.8. Each component of t∩Fn has at most one normal curve
boundary component. This normal curve must be short.

Proof. Let t ∈ T 3 be a tetrahedron. Let P be a connected component
of t∩Fn. By Lemma 6.1 ∂P is a collection of simple curves and normal
curves. Let α be any normal curve in ∂P . Let {αj} be the normal arcs
of α.

Claim 6.9. α has length 3 or 4.

Each αj lies on a critical rectangle or hexagon lying in ∂t. If no αj is
on a hexagon, then α is normally isotopic to a normal curve β ⊂ S. The
first step of the tightening procedure prevents β from being a boundary
of the almost normal piece of S. It follows that α must be short.
Otherwise α1, say, is on the boundary of a critical hexagon h ⊂ f .

Let β be a normal curve of S incident on h and let β1 ⊂ β be one
of the normal arcs in ∂h. Let e be the edge of f which α1 does not
meet. This edge is partitioned into three pieces; eh ⊂ h, e′, and e′′. We
may assume that β1 separates eh from e′. Note that a normal curve of
length ≤ 8 has no parallel normal arcs in a single face. Thus β meets e′
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exactly once, at a endpoint of e′. Since α and β do not cross it follows
that β separates α from e′ in ∂t.
Similarly, α is separated from e′′. Thus α does not meet e at all. It

follows that α is short. (Assign to each normal arc type in ∂t a variable,
vi. This counts the number of times the i

th arc type is present in α.
Deduce an equation of the form vi + vj = vk + vl for each of the six
edges of the tetrahedron t. Since α misses e four of the vi’s must be
zero. A bit of linear algebra gives the desired conclusion.)

Claim 6.10. P , the component of Fn ∩ t in question, has at most one
boundary component which is a normal curve.

Suppose that P has two such: α and β. Let A be the annulus
cobounded by α and β in ∂t. Suppose the transverse orientation Fn

induces on α points away from A. There are several cases, depending
on the length of α and the types of skeletal faces to which α is adjacent.

(1) Suppose α has length three:
(a) If α meets only critical rectangles then a normal triangle

of S separates α and β.
(b) If α meets one critical hexagon then the almost normal oc-

tagon and the exceptional tightening disk together separate
α and β.

(c) If α meets two critical hexagons then either a normal tri-
angle or normal quad of S separates α and β.

(d) If α meets only critical hexagons then a normal triangle of
S separates α and β.

(2) Suppose α has length four:
(a) If α meets only critical rectangles then a normal quad of S

separates α and β.
(b) If α meets one critical hexagon then S could not have been

an almost normal surface.
(c) If α meets two critical hexagons then a normal triangle of

S separates α and β.

In all cases except 1(b) and 2(b), observe that S∩P 6= ∅ and thus S∩
Fn 6= ∅. This contradicts the fact that F is an embedding (Lemma 6.1.)
In case 1(b), P must intersect either S or the exceptional tightening
disk whereas in case 2(b) S could not have been almost normal. Both
are impossible.
We deduce that the transverse orientation which Fn gives α must

point toward A. Let γ be an arc which runs along P from α to β.
Let α′ be a push-off of α along A, towards β. This push-off bounds
a disk in one of the components of t − F , by Lemma 6.5. This disk
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does not intersect P ⊂ Fn ⊂ F and hence fails to intersect γ. This is
a contradiction. ¤

Remark 6.11. By Lemma 6.1 all simple curves of Fi are innermost.
It follows that the “tubes” analyzed in Lemma 6.8 do not run through
each other. Furthermore, Lemma 6.6 implies that these tubes are un-
knotted, but this fact is not needed in the sequel.

We have a corollary which is easy to deduce from Lemma 6.5, Lemma 6.8,
and Corollary 6.7:

Corollary 6.12. The surface obtained by surgering all simple curves
of Fn is a disjoint collection of two-spheres and normal surfaces. The
former are disjoint from T 2

7. Proof of the Main Theorem

This section gives proofs for the main theorem (Theorem 3.3) and
Theorem 4.1.

Proof. (of Theorem 3.3) Suppose that the surgery disk of the almost
normal annulus is above S. Form V by thickening S and attaching
a thickened copy of the exceptional surgery disk. If V ′ is another
compression body in VS then ∂−V

′ is disjoint from S and hence disjoint
from ∂+V . Thus V is the desired minimal element.
Suppose that there is an exceptional tightening disk above S. Form

the tightening map F . Surger Fn along all of its simple curves using
thickened surgery disks. By Lemma 6.1 and Lemma 6.8, this cuts Fn

into surfaces which are either normal or contained in a single tetrahe-
dron. The latter are all spheres by Corollary 6.7 so we may cap them
off with balls.
By Corollary 6.3 the compression body thus obtained is the desired

minimal element. ¤

Let S be a separating almost normal surface containing an almost
normal octagon. There are two exceptional tightening disks, one above
and one below S. These allow us to construct a pair of product struc-
tures, F+ and F−. These intersect only at S by Lemma 6.1 and Corol-
lary 6.3. Let FS = F+ ∪ F−.

Lemma 7.1. Let T be an efficient, one-vertex triangulation of M .
Suppose that M contains S, an almost normal two-sphere with excep-
tional piece an octagon. Then M = S3 and FS is isotopic (rel T

1) to
a product structure realizing bridge position for T 1.

Proof. By Theorem 3.3, form the minimal compression bodies below
and above S. Call these V and W respectively. By construction V and
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W are homeomorphic to three-balls with a collection of disjoint open
three-balls removed from their interior. The boundary components of V
and W (not equal to S) are normal two-spheres. Because T is efficient
and has one vertex deduce that ∂V = S ∪ ∂BV , where BV is a regular
neighborhood of the vertex, and ∂W = S. Thus M = BV ∪V ∪W and
M ∼= S3.
Remove the last ball which was added to W during W ’s construc-

tion. Now both V and W are homeomorphic to S2 × I and both are
alterations of F± only off of a regular neighborhood of the one-skeleton.
It follows that FS is isotopic to V ∪W via an isotopy fixing T 1. By
Lemma 6.4, T 1 must be in bridge position with respect to FS and we
are done. ¤

Proof. (of Theorem 4.1) Suppose that T is an efficient, one-vertex tri-
angulation of S3. Let F be a product structure on (S3, BV ∪BW ) where
BV is a regular neighborhood of the unique vertex and BW is a small
ball inside some tetrahedron. Assume that F realizes thin position
of T 1 ∩ (M − (BV ∪ BW )). Suppose there exists a minimum at level
Fb, b ∈ I immediately above a maximum at level Fa, a ∈ I. That is,
F|[a, b] is a thin region.
By Claims 4.1 – 4.5 of Thompson’s paper [16] there is a level F in

the lowest thick region of F which contains (after surgering F along
simple curves and possibly other surgery disks each contained in the
interior of a tetrahedron) a connected component which is an almost
normal sphere S. Since none of the surgery disks meet the one-skeleton
we have w(S) ≤ w(F ).
Now we must estimate the width of F . Suppose that the number of

edges in the one-skeleton is k. The weight of F0 = ∂BV is 2k. Recalling
that there is a minimum above F , we have:

w(F) ≥ (w(F ) + (w(F )− 2) + . . .+ 2k) + ((w(F )− 2) + . . .+ 2) + 4

The +4 in the above sum is contributed when the weight increases at
the critical level Fb.
Now consider FS. By Lemma 7.1, FS can be isotoped (rel T

1) until
it realizes bridge position for the one-skeleton. The width of FS is:

w(FS) = (w(S) + (w(S)− 2) + . . .+ 2k) + ((w(S)− 2) + . . .+ 2)

Recalling that w(S) ≤ w(F ) this gives a contradiction to the assumed
thinness of F . ¤

Remark 7.2. It follows from this that there is an algorithm to com-
pute the bridge number of the one-skeleton of a one-vertex, efficient
triangulation T of S3. By the Theorem 4.1, minimal bridge position
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is thin. Every such may be isotoped relative to T 1 so that the thick
region contains an almost normal S2. By Lemma 5 of Thompson’s pa-
per [16], all almost normal (with octagon) two-spheres of least weight
are fundamental.
Thus to find the bridge number of the one-skeleton we need only list

the fundamental almost normal two-spheres and pick one with smallest
weight. One-half of this weight is the bridge number.
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