COVERS AND THE CURVE COMPLEX

KASRA RAFI AND SAUL SCHLEIMER

Abstract

A finite-sheeted covering between surfaces induces a quasi-isometric embedding of the associated curve complexes.

1. Introduction

Suppose that Σ is a compact connected orientable surface. A simple closed curve $\alpha \subset \Sigma$ is essential if α does not bound a disk in Σ. The curve α is non-peripheral if α is not boundary parallel.
Definition 1.1 (Harvey Har81). The complex of curves $\mathcal{C}(\Sigma)$ has isotopy classes of essential, non-peripheral curves as its vertices. A collection of $k+1$ vertices spans a k-simplex if every pair of vertices has disjoint representatives.

The definition is slightly altered when S is an annulus, a once-holed torus or a four-holed sphere; in the latter two cases the Farey graph serves as $\mathcal{C}(S)$. The complex for the annulus is defined below.

We follow Masur and Minsky MM99, MM00 in studying the geometry of the curve complex up to quasi-isometry. However, the curve complex is locally infinite. It follows that many quasi-isometry invariants, in particular those measuring growth, are of questionable utility.

We concentrate on a different family of invariants: the metrically natural subspaces. Note that all of the well-known subspaces of the curve complex, such as the complex of separating curves, the disk complex of a handlebody and so on, are not quasi-isometrically embedded and so do not give invariants in any obvious way.

This paper discusses the first non-trivial examples of one curve complex being quasi-isometrically embedded is another. These arise in two ways: by puncturing a closed surface and from covering maps.

Acknowledgments. We thank Jason Behrstock, Jason Manning, Dan Margalit and Mahan Mj for their comments on an early version of this paper.

[^0]
2. Statements

It will be enough to study only the one-skeleton of $\mathcal{C}(\Sigma)$, for which we use the same notation. This is because the one-skeleton and the entire complex are quasi-isometric. Give all edges of $\mathcal{C}(\Sigma)$ length one and denote distance between vertices by $d_{\Sigma}(\cdot, \cdot)$. We begin with a simple example.

Puncturing. Let S be the closed surface of genus $g \geq 2$ and Σ be the surface of genus g with one puncture. The following lemma is inspired by Lemma 3.6 of Harer's paper Har86.
Theorem 2.1. $\mathcal{C}(S)$ embeds isometrically into $\mathcal{C}(\Sigma)$.
As we shall see, there are many such embeddings.
Proof of Theorem 2.1. Pick a hyperbolic metric on S. By the Baire category theorem, the union of geodesic representatives of simple closed curves does not cover S. (In fact, this union has Hausdorff dimension one. See Birman and Series BS85.) Let $*$ be a point in the complement and identify Σ with $S \backslash\{*\}$. A vertex of $\mathcal{C}(S)$ is then taken to its geodesic representative, which gives an essential curve in $S \backslash\{*\}$, which is identified with a curve in Σ, and which lies in a vertex of $\mathcal{C}(\Sigma)$. This defines an embedding $\Pi: \mathcal{C}(S) \rightarrow \mathcal{C}(\Sigma)$ which depends on the choice of metric, point and identification. Let $P: \mathcal{C}(\Sigma) \rightarrow \mathcal{C}(S)$ be the map obtained by filling the point $*$. Note that $P \circ \Pi$ is the identity map.

We observe, for $a, b \in \mathcal{C}(S)$ and $\alpha=\Pi(a), \beta=\Pi(b)$ that

$$
d_{S}(a, b)=d_{\Sigma}(\alpha, \beta)
$$

This is because P and Π send disjoint curves to disjoint curves. Therefore, if $L \subset \mathcal{C}(S)$ is a geodesic connecting a and b, then $\Pi(L)$ is a path in $\mathcal{C}(\Sigma)$ of the same length connecting α to β. Conversely, if $\Lambda \subset \mathcal{C}(\Sigma)$ is a geodesic connecting α to β, then $P(\Lambda)$ is a path in $\mathcal{C}(S)$ of the same length connecting a to b.

We now turn to the main topic.
Coverings. Let Σ and S be compact connected orientable surfaces and let $P: \Sigma \rightarrow S$ be a covering map. This defines a relation, written as $\Pi: \mathcal{C}(S) \rightarrow \mathcal{C}(\Sigma)$, as follows: Suppose that $b \in \mathcal{C}(S)$ and $\beta \in \mathcal{C}(\Sigma)$. Then b is related to β if and only if β is a component of $P^{-1}(b)$, the preimage of b.

A bit of notation: if A, B, c are non-negative real numbers with $\mathrm{c} \geq 1$ and if $A \leq \mathrm{c} B+\mathrm{c}$, then we write $A \prec_{\mathrm{c}} B$. If $A \prec_{\mathrm{c}} B$ and $B \prec_{\mathrm{c}} A$, then we write $A \asymp_{c} B$. Our goal is:

Theorem 7.1. The covering relation $\Pi: \mathcal{C}(S) \rightarrow \mathcal{C}(\Sigma)$ is a quasiisometric embedding. That is, if $P(\alpha)=a$ and $P(\beta)=b$, for $\alpha, \beta \in$ $\mathcal{C}(\Sigma)$ and $a, b \in \mathcal{C}(S)$, then

$$
d_{\Sigma}(\alpha, \beta) \asymp_{\mathrm{Q}} d_{S}(a, b)
$$

where the constant Q depends only on the topology of S and the degree of the covering map.
Remark 2.2. Note that Q does not depend directly on the topology of Σ. When S is an annulus, the degree of covering is not determined by the topology of Σ. Conversely, when S is not an annulus, the topology of Σ can be bounded in terms of the topology of S and the degree of the covering.
Remark 2.3. The constant Q goes to infinity with the degree of the covering. This is because any pair of distinct curves $a, b \subset S$ are made disjoint in some cover. In fact a cover of degree at most 2^{d-1}, where $d=d_{S}(a, b)$, will suffice Hem01, Lemma 2.3].
Remark 2.4. When Σ is the orientation double cover of a nonorientable S, Theorem 7.1 is due to Masur-Schleimer MS07.

Suppose that S is not a once-holed torus or four-holed sphere. Then the inequality $d_{\Sigma}(\alpha, \beta) \leq d_{S}(a, b)$ follows immediately; this is because disjoint curves in S have disjoint preimages in Σ. (If S is one of the special surfaces mentioned above and the degree of the covering is d, then we instead have $d_{\Sigma}(\alpha, \beta) \leq\left(2 \log _{2}(2 \mathrm{~d})+2\right) \cdot d_{S}(a, b)$. See Sch, Lemma 1.21].)

The opposite inequality is harder to obtain and occupies the rest of the paper.

3. Subsurface projection

Suppose that Σ is a compact connected orientable surface. A subsurface Ψ is cleanly embedded if all components of $\partial \Psi$ are essential and whenever $\gamma \subset \partial \Psi$ is isotopic to $\delta \subset \partial \Sigma$ then $\gamma=\delta$. All subsurfaces considered will be cleanly embedded.

From MM99, recall the definition of the subsurface projection relation

$$
\pi_{\Psi}: \mathcal{C}(\Sigma) \rightarrow \mathcal{C}(\Psi)
$$

supposing that Ψ is not an annulus. Fix a hyperbolic metric on the interior of Σ. Let Σ^{\prime} be the Gromov compactification of the cover of Σ corresponding to the inclusion $\pi_{1}(\Psi) \rightarrow \pi_{1}(\Sigma)$. Thus Σ^{\prime} is homeomorphic to Ψ; this gives a canonical identification of $\mathcal{C}(\Psi)$ with $\mathcal{C}\left(\Sigma^{\prime}\right)$. For any $\alpha \in \mathcal{C}(\Sigma)$ let α^{\prime} be the closure of the preimage of α in Σ^{\prime}. If every component of α^{\prime} is properly isotopic into the boundary then α
is not related to any vertex of $\mathcal{C}(\Psi)$; in this case we write $\pi_{\Psi}(\alpha)=\emptyset$. Otherwise, let $\alpha^{\prime \prime}$ be an essential component of α^{\prime}. Let N be a closed regular neighborhood of $\alpha^{\prime \prime} \cup \partial \Sigma^{\prime}$. Fix attention on $\alpha^{\prime \prime \prime}$, a boundary component of N which is essential and non-peripheral. Then $\alpha \in \mathcal{C}(\Sigma)$ is related to $\alpha^{\prime \prime \prime} \in \mathcal{C}(\Psi)$ and we write $\pi_{\Psi}(\alpha)=\alpha^{\prime \prime \prime}$.

If Ψ is an annulus, then the definition of $\mathcal{C}(\Psi)$ is altered. Vertices are proper isotopy classes of essential arcs in Ψ. Edges are placed between vertices with representatives having disjoint interiors. The projection map is defined as above, omitting the final steps involving the regular neighborhood N.

If Ψ is a four-holed sphere or a once-holed torus then the curve complex of Ψ is the well-known Farey graph; since all curves intersect, edges are instead placed between curves that intersect exactly twice or exactly once. The definition of π_{Ψ} is as in the non-annular case.

The curve $\alpha \in \mathcal{C}(\Sigma)$ cuts the subsurface Ψ if $\pi_{\Psi}(\alpha) \neq \emptyset$. Otherwise, α misses Ψ. Suppose now that $\alpha, \beta \in \mathcal{C}(\Sigma)$ both cut Ψ. Define the projection distance to be

$$
d_{\Psi}(\alpha, \beta)=d_{\Psi}\left(\pi_{\Psi}(\alpha), \pi_{\Psi}(\beta)\right) .
$$

The Bounded Geodesic Image Theorem states:
Theorem 3.1 (Masur-Minsky MM00). Fix a surface Σ. There is a constant $\mathrm{M}=\mathrm{M}(\Sigma)$ so that for any vertices $\alpha, \beta \in \mathcal{C}(\Sigma)$, for any geodesic $\Lambda \subset \mathcal{C}(\Sigma)$ connecting α to β and for any $\Omega \subsetneq \Sigma$, if $d_{\Omega}(\alpha, \beta) \geq$ M then there is a vertex of Λ which misses Ω.

Fix α and β in $\mathcal{C}(\Sigma)$ and thresholds $\mathrm{T}_{0}>0$ and $\mathrm{T}_{1}>0$. We say that a set \mathcal{J} of subsurfaces $\Omega \subsetneq \Sigma$, is an $\left(\mathrm{T}_{0}, \mathrm{~T}_{1}\right)$-antichain for Σ, α and β if \mathcal{J} satisfies the following properties.

- If $\Omega, \Omega^{\prime} \in \mathcal{J}$ then Ω is not a strict subsurface of Ω^{\prime}.
- If $\Omega \in \mathcal{J}$ then $d_{\Omega}(\alpha, \beta) \geq \mathrm{T}_{0}$.
- For any $\Psi \subsetneq \Sigma$, either Ψ is a subsurface of some element of \mathcal{J} or $d_{\Psi}(\alpha, \beta)<\mathrm{T}_{1}$.
Notice that there may be many different antichains for the given data ($\Sigma, \alpha, \beta, \mathrm{T}_{0}, \mathrm{~T}_{1}$). One particularly nice example is when $\mathrm{T}_{0}=\mathrm{T}_{1}=\mathrm{T}$ and \mathcal{J} is defined to be the maxima of the set

$$
\left\{\Omega \subsetneq \Sigma \mid d_{\Omega}(\alpha, \beta) \geq \mathrm{T}\right\}
$$

as ordered by inclusion. We call this the T -antichain of maxima for Σ, α and β. By $|\mathcal{J}|$ we mean the number of elements of \mathcal{J}. We may now state and prove:
Lemma 3.2. For every surface Σ and for every pair of sufficiently large thresholds $\mathrm{T}_{0}, \mathrm{~T}_{1}$, there is an accumulation constant $\mathrm{A}=\mathrm{A}\left(\Sigma, \mathrm{T}_{0}, \mathrm{~T}_{1}\right)$
so that, if \mathcal{J} is an $\left(\mathrm{T}_{0}, \mathrm{~T}_{1}\right)$-antichain for Σ, α and β then

$$
d_{\Sigma}(\alpha, \beta) \geq|\mathcal{J}| / \mathrm{A}
$$

Proof. We proceed via induction: for the Farey graph it suffices for both thresholds to be larger than 3 and $\mathrm{A}=1$ (see [Min99). Let C be a constant so that: if $\Omega \subset \Psi \subset \Sigma$ and $\alpha^{\prime}, \beta^{\prime}$ are the projections of α, β to Ψ then

$$
\left|d_{\Omega}(\alpha, \beta)-d_{\Omega}\left(\alpha^{\prime}, \beta^{\prime}\right)\right| \leq \mathrm{C}
$$

In the general case, we take the thresholds large enough so that:

- the theorem still applies to any strict subsurface Ψ with thresholds $\mathrm{T}_{0}-\mathrm{C}, \mathrm{T}_{1}+\mathrm{C}$ and
- $\mathrm{T}_{0} \geq \mathrm{M}(\Sigma)$; thus by Theorem 3.1 for any surface in $\Omega \in \mathcal{J}$ and any geodesic Λ in $\mathcal{C}(\Sigma)$ connecting α and β, there is a curve γ in Λ so that γ misses Ω.
Fix such a Λ and γ. Let Ψ (and Ψ^{\prime}) be the component(s) of $\Sigma \backslash \gamma$.
Claim. Let $\mathrm{A}_{\Psi}=\mathrm{A}\left(\Psi, \mathrm{T}_{0}-\mathrm{C}, \mathrm{T}_{1}+\mathrm{C}\right)$. The number of elements of $\mathcal{J}_{\Psi}=\{\Omega \in \mathcal{J} \mid \Omega \subsetneq \Psi\}$ is at most

$$
\mathrm{A}_{\Psi} \cdot\left(\mathrm{T}_{1}+\mathrm{C}\right) .
$$

By the claim it will suffice to take $A\left(\Sigma, T_{0}, T_{1}\right)$ equal to

$$
\left(\mathrm{A}_{\Psi}+\mathrm{A}_{\Psi^{\prime}}\right)\left(\mathrm{T}_{1}+\mathrm{C}\right)+3
$$

This is because any element of \mathcal{J} which is disjoint from γ is either a strict subsurface of Ψ or Ψ^{\prime}, an annular neighborhood of γ, or Ψ or Ψ^{\prime} itself. Since every surface in \mathcal{J} is disjoint from some vertex of Λ, the theorem follows from the pigeonhole principle.

It remains to prove the claim. If Ψ is a subsurface of an element of \mathcal{J} there is nothing to prove. Thus we may assume that

$$
d_{\Psi}(\alpha, \beta)<\mathrm{T}_{1}
$$

Let α^{\prime} and β^{\prime} be the projections of α and β to Ψ. From the definition of $\mathrm{C}, \mathcal{J}_{\Psi}$ is a $\left(\mathrm{T}_{0}-\mathrm{C}, \mathrm{T}_{1}+\mathrm{C}\right)$-antichain for Ψ, α^{\prime} and β^{\prime}. Thus,

$$
\mathrm{T}_{1}>d_{\Psi}(\alpha, \beta) \geq d_{\Psi}\left(\alpha^{\prime}, \beta^{\prime}\right)-\mathrm{C} \geq\left|\mathcal{J}_{\Psi}\right| / \mathrm{A}_{\Psi}-\mathrm{C}
$$

with the last inequality following by induction. Hence,

$$
\mathrm{T}_{1}+\mathrm{C} \geq\left|\mathcal{J}_{\Psi}\right| / \mathrm{A}_{\Psi}
$$

4. Teichmüller space

Let $\mathcal{T}(\Sigma)$ denote the Teichmüller space of Σ : the space of complete hyperbolic metrics on the interior of Σ up to isotopy (for background, see Ber60 and Gar87).

There is a uniform upper bound on the length of the shortest closed curve in any hyperbolic metric on Σ. For any metric σ on Σ, a curve γ has bounded length in σ if the length of γ in σ is less than this constant. Let $\mathrm{e}_{0}>0$ be a constant such that, for curves γ and δ, if γ has bounded length in σ and δ has a length less than e_{0} then γ and δ have intersection number zero.

Suppose that α and β are vertices of $\mathcal{C}(\Sigma)$. Fix metrics σ and τ in $\mathcal{T}(\Sigma)$ so that α and β have bounded length at σ and τ respectively. Let $\Gamma:\left[t_{\sigma}, t_{\tau}\right] \rightarrow \mathcal{T}(S)$ be a geodesic connecting σ to τ. For any curve γ let $l_{t}(\gamma)$ be the length of its geodesic representative in the hyperbolic metric $\Gamma(t)$. The following theorems are consequences of Theorem 6.2 and Lemma 7.3 in Raf05.
Theorem 4.1 (Raf05). For e_{0} as above there exists a threshold $\mathrm{T}_{\text {min }}$ such that, for a strict subsurface Ω of Σ, if $d_{\Omega}(\alpha, \beta) \geq \mathrm{T}_{\min }$ then there is a time t_{Ω} so that the length of each boundary component of Ω in $\Gamma\left(t_{\Omega}\right)$ is less than e_{0}.
Theorem 4.2 (风af05). For every threshold T_{1}, there is a constant e_{1} such that of $l_{t}(\gamma) \leq \mathrm{e}_{1}$, for some curve γ, then there exists a subsurface Ψ disjoint from γ such that $d_{\Psi}(\alpha, \beta) \geq \mathrm{T}_{1}$.

The shadow of the Teichmüller geodesic Γ to $\mathcal{C}(\Sigma)$ is the set of curves γ, such that γ has bounded length in $\Gamma(t)$ for some $t \in\left[t_{\sigma}, t_{\tau}\right]$. The following is a consequence of the fact that the shadow is an unparameterized quasi-geodesic. (See Theorem 2.6 and then apply Theorem 2.3 in MM99.)
Theorem 4.3 ([MM99]). The shadow of a Teichmüller geodesic to $\mathcal{C}(\Sigma)$ does not backtrack and so satisfies the reverse triangle inequality. That is, there exists a backtracking constant $\mathrm{B}=\mathrm{B}(\Sigma)$ such that if $t_{\sigma} \leq t_{0} \leq t_{1} \leq t_{2} \leq t_{\tau}$ and if γ_{i} has bounded length in $\Gamma\left(t_{i}\right), i=0,1,2$ then

$$
d_{\Sigma}\left(\gamma_{0}, \gamma_{2}\right) \geq d_{\Sigma}\left(\gamma_{0}, \gamma_{1}\right)+d_{\Sigma}\left(\gamma_{1}, \gamma_{2}\right)-\mathrm{B}
$$

We say that $\Gamma(t)$ is \mathbf{e} thick if the shortest closed geodesic γ in $\Gamma(t)$ has a length of at least e.
Lemma 4.4. For any e >0 there is a progress constant $\mathrm{P}>0$ so that if $t_{\sigma} \leq t_{0} \leq t_{1} \leq t_{\tau}, \Gamma(t)$ is e -thick at every time $t \in\left[t_{0}, t_{1}\right]$ and if γ_{i} has bounded length in $\Gamma\left(t_{i}\right), i=0,1$, then

$$
d_{\Sigma}\left(\gamma_{0}, \gamma_{1}\right) \asymp \mathrm{P} t_{1}-t_{0}
$$

Proof. As above, using Theorem 6.2 and Lemma 7.3 in Raf05 and the fact that $\Gamma(t)$ is e-thick at every time $t \in\left[t_{0}, t_{1}\right]$, we can conclude that $d_{\Omega}\left(\gamma_{0}, \gamma_{1}\right)$ is uniformly bounded for any strict subsurface of Ω of Σ. The lemma is then a consequence of Theorem 1.1 and Remark 5.5 in Raf06. (Referring to the statement and notation of Raf06, Theorem 1.1]: Extend γ_{i} to a short marking μ_{i}. Take k large enough such that the only non-zero term in the right hand side of Raf06, Equation (1)] is $d_{\Sigma}\left(\mu_{0}, \mu_{1}\right)$.)

In general the geodesic Γ may stray into the thin part of $\mathcal{T}(S)$. We take $\Gamma^{\geq e}$ to be the set of times in the domain of Γ which are e-thick. Notice that $\Gamma^{\geq e}$ is a union of closed intervals. Let $\Gamma(e, L)$ be the union of intervals of $\Gamma^{\geq e}$ which have length at least L. We use $|\Gamma(e, L)|$ to denote the sum of the lengths of the components of $\Gamma(\mathrm{e}, \mathrm{L})$.
Lemma 4.5. For every e there exists L_{0} such that if $\mathrm{L} \geq \mathrm{L}_{0}$, then

$$
d_{\Sigma}(\alpha, \beta) \geq|\Gamma(\mathrm{e}, \mathrm{~L})| / 2 \mathrm{P}
$$

Proof. Pick L_{0} large enough so that, for $\mathrm{L} \geq \mathrm{L}_{0}$,

$$
(\mathrm{L} / 2 \mathrm{P}) \geq \mathrm{P}+2 \mathrm{~B} .
$$

Let $\Gamma(\mathrm{e}, \mathrm{L})$ be the union of intervals $\left[t_{i}, s_{i}\right], i=1, \ldots, m$. Let γ_{i} be a curve of bounded length in $\Gamma\left(t_{i}\right)$ and δ_{i} be a curve of bounded length in $\Gamma\left(s_{i}\right)$.

By Theorem 4.3 we have

$$
d_{\Sigma}(\alpha, \beta) \geq\left(\sum_{i} d_{\Sigma}\left(\gamma_{i}, \delta_{i}\right)\right)-2 m \mathrm{~B} .
$$

From Lemma 4.4 we deduce

$$
d_{\Sigma}(\alpha, \beta) \geq\left(\sum_{i} \frac{1}{\mathrm{P}}\left(s_{i}-t_{i}\right)-\mathrm{P}\right)-2 m \mathrm{~B} .
$$

Rearranging, we find

$$
d_{\Sigma}(\alpha, \beta) \geq \frac{1}{\mathrm{P}}|\Gamma(\mathrm{e}, \mathrm{~L})|-m(\mathrm{P}+2 \mathrm{~B}) .
$$

Thus, as desired:

$$
d_{\Sigma}(\alpha, \beta) \geq \frac{1}{2 \mathrm{P}}|\Gamma(\mathrm{e}, \mathrm{~L})|
$$

5. An estimate of distance

In this section we provide the main estimate for $d_{\Sigma}(\alpha, \beta)$. Let e_{0} be as before. We choose thresholds $\mathrm{T}_{0} \geq \mathrm{T}_{\text {min }}$ (see Theorem 4.1) and T_{1} so that Lemma 3.2 holds. Let e_{1} be the constant provided in Lemma 4.4 and let $e>0$ be any constant smaller than $\min \left(e_{0}, e_{1}\right)$. Finally, we pick L_{0} such that Lemma 4.5 holds and that $\mathrm{L}_{0} / 2 \mathrm{P}>4$. Let L be any length larger than L_{0}.
Theorem 5.1. Let $\mathrm{T}_{0}, \mathrm{~T}_{1}$, e and L be constants chosen as above. There is a constant $\mathrm{K}=\mathrm{K}\left(\Sigma, \mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{e}, \mathrm{L}\right)$ such that for any curves α and β, any $\left(\mathrm{T}_{0}, \mathrm{~T}_{1}\right)$-antichain \mathcal{J} and any Teichmüller geodesic Γ, chosen as above, we have:

$$
d_{\Sigma}(\alpha, \beta) \asymp_{\mathrm{K}}|\mathcal{J}|+|\Gamma(\mathrm{e}, \mathrm{~L})| .
$$

Proof. For $\mathrm{K} \geq \max (2 \mathrm{P}, \mathrm{A})$, the inequality

$$
d_{\Sigma}(\alpha, \beta) \succ_{\mathrm{K}}|\mathcal{J}|+|\Gamma(\mathrm{e}, \mathrm{~L})|
$$

follows from Lemmas 3.2 and 1.5. It remains to show that

$$
d_{\Sigma}(\alpha, \beta) \prec_{\mathrm{K}}|\mathcal{J}|+|\Gamma(\mathrm{e}, \mathrm{~L})| .
$$

For each $\Omega \in \mathcal{J}$, fix a time $t_{\Omega} \in\left[t_{\sigma}, t_{\tau}\right]$ so that all boundary components of Ω are e_{0}-short in $\Gamma\left(t_{\Omega}\right)$ (see Theorem 4.1). Let \mathcal{E} be the union:

$$
\left\{t_{\Omega} \mid \Omega \in \mathcal{J}, t_{\Omega} \notin \Gamma(\mathrm{e}, \mathrm{~L})\right\} \cup\{\partial I \mid I \text { a component of } \Gamma(\mathrm{e}, \mathrm{~L})\} .
$$

We write $\mathcal{E}=\left\{t_{0}, \ldots, t_{n}\right\}$, indexed so that $t_{i}<t_{i+1}$.
Claim. The number of intervals in $\Gamma(\mathrm{e}, \mathrm{L})$ is at most $|\mathcal{J}|+1$. Hence, $|\mathcal{E}| \leq 3|\mathcal{J}|+1$.

Proof. At some time between any consecutive intervals I and J in $\Gamma(\mathrm{e}, \mathrm{L})$ some curve γ becomes e-short (and hence e_{1}-short). Therefore, by Theorem 4.2, γ is disjoint from a subsurface Ψ where $d_{\Psi}(\alpha, \beta) \geq \mathrm{T}_{1}$. Since \mathcal{J} is an $\left(T_{0}, T_{1}\right)$-antichain, Ψ is a subsurface of some element $\Omega \in \mathcal{J}$. It follows that $d_{\Sigma}(\gamma, \partial \Omega) \leq 2$. This defines a one-to-one map from pairs of consecutive intervals to \mathcal{J}. To see the injectivity consider another such pair of consecutive intervals I^{\prime} and J^{\prime} and the corresponding curve γ^{\prime} and subsurface Ω^{\prime}. By Lemma 4.4, $d_{\Sigma}\left(\gamma, \gamma^{\prime}\right) \geq \mathrm{L} / 2 \mathrm{P}>4$ and therefore Ω is not equal to Ω^{\prime}.

Let γ_{i} be a curve of bounded length in $\Gamma\left(t_{i}\right)$.

Claim.

$$
d_{\Sigma}\left(\gamma_{i}, \gamma_{i+1}\right) \leq \begin{cases}\mathrm{P}\left(t_{i+1}-t_{i}\right)+\mathrm{P}, & \text { if }\left[t_{i}, t_{i+1}\right] \subset \Gamma(\mathrm{e}, \mathrm{~L}) \\ 2 \mathrm{~B}+\mathrm{PL}+\mathrm{P}+2, & \text { otherwise }\end{cases}
$$

Proof. The first case follows from Lemma 4.4. So suppose that the interior of $\left[t_{i}, t_{i+1}\right]$ is disjoint from the interior of $\Gamma(\mathrm{e}, \mathrm{L})$.

We define sets $I_{+}, I_{-} \subset\left[t_{i}, t_{i+1}\right]$ as follows: A point $t \in\left[t_{i}, t_{i+1}\right]$ lies in I_{-}if

- there is a curve γ which is e short in $\Gamma(t)$ and
- for some $\Omega \in \mathcal{J}$, so that $d_{\Sigma}(\partial \Omega, \gamma) \leq 2$, we have $t_{\Omega} \leq t_{i}$.

If instead $t_{\Omega} \geq t_{i+1}$ then we place t in I_{+}. Finally, we place t_{i} in I_{-} and t_{i+1} in I_{+}.

Notice that if $\Omega \in \mathcal{J}$ then t_{Ω} does not lie in the open interval $\left(t_{i}, t_{i+1}\right)$. It follows that every e-thin point of $\left[t_{i}, t_{i+1}\right]$ lies in I_{-}, I_{+}, or both. If $t \in I_{-}$and γ is the corresponding e-short curve then $d_{\Sigma}\left(\gamma_{i}, \gamma\right) \leq \mathrm{B}+2$. This is because either $t=t_{i}$ and so γ and γ_{i} are in fact disjoint, or there is a surface $\Omega \in \mathcal{J}$ as above with

$$
2 \geq d_{\Sigma}(\partial \Omega, \gamma) \geq d_{\Sigma}\left(\gamma_{i}, \gamma\right)-\mathbf{B},
$$

Similarly if $t \in I_{+}$then $d_{\Sigma}\left(\gamma_{i+1}, \gamma\right) \leq \mathrm{B}+2$.
If I_{+}and I_{-}have non-empty intersection then $d_{\Sigma}\left(\gamma_{i}, \gamma_{i+1}\right) \leq 2 B+4$ by the triangle inequality.

Otherwise, there is an interval $\left[s, s^{\prime}\right]$ that is e-thick, has length less than L such that $s \in I_{-}$and $s^{\prime} \in I_{+}$. Let γ and γ^{\prime} be the corresponding short curves in $\Gamma(s)$ and $\Gamma\left(s^{\prime}\right)$. Thus

$$
d_{\Sigma}\left(\gamma_{i}, \gamma\right) \leq \mathrm{B}+2 \quad \text { and } \quad d_{\Sigma}\left(\gamma^{\prime}, \gamma_{i+1}\right) \leq \mathrm{B}+2
$$

We also know from Lemma 4.4 that

$$
d_{\Sigma}\left(\gamma, \gamma^{\prime}\right) \leq \mathrm{PL}+\mathrm{P} .
$$

This finishes the proof of our claim.
It follows that

$$
\begin{aligned}
d_{\Sigma}(\alpha, \beta) & \leq d_{\Sigma}\left(\gamma_{0}, \gamma_{1}\right)+\ldots+d_{\Sigma}\left(\gamma_{n-1}, \gamma_{n}\right) \\
& \leq|\mathcal{E}|(2 \mathrm{~B}+\mathrm{PL}+\mathrm{P}+2)+\mathrm{P}|\Gamma(\mathrm{e}, \mathrm{~L})|+|\mathcal{E}| \mathrm{P} \\
& \prec_{\mathrm{K}}|\mathcal{J}|+|\Gamma(\mathrm{e}, \mathrm{~L})|,
\end{aligned}
$$

for an appropriate choice of K. This proves the theorem.

6. Symmetric curves and surfaces

Recall that $P: \Sigma \rightarrow S$ is a covering map.
Definition 6.1. A curve $\alpha \subset \Sigma$ is symmetric if there is a curve $a \subset S$ so that $P(\alpha)=a$. We make the same definition for a subsurface $\Omega \subset \Sigma$ lying over a subsurface $Z \subset S$.

For the rest of the paper, fix symmetric curves α and β. Let $x, y \in$ $\mathcal{T}(S)$ be points in the Teichmüller space of S such that $a=P(\alpha)$ has bounded length in x and $b=P(\beta)$ is bounded in y. Let σ and τ be the pullbacks of x and y respectively. Let $G:\left[t_{x}, t_{y}\right] \rightarrow \mathcal{T}(S)$ be the Teichmüller geodesic connecting x to y. Also, let $t_{\sigma}=t_{x}, t_{\tau}=t_{y}$ and $\Gamma:\left[t_{\sigma}, t_{\tau}\right] \rightarrow \mathcal{T}(\Sigma)$ be the lift of G. The path Γ is a geodesic in $\mathcal{T}(\Sigma)$. This is because, for $t, s \in\left[t_{x}, t_{y}\right]$, the Teichmüller map from $G(t)$ to $G(s)$ has Beltrami coefficient $\mathrm{k}|q| / q$ where q is an integrable holomorphic quadratic differential in $G(t)$. This map lifts to a map from $\Gamma(t)$ to $\Gamma(s)$ with Beltrami coefficient $\mathrm{k}|\theta| / \theta$, where the quadratic differential θ is the pullback of q to $\Gamma(t)$. That is, the lift of the Teichmüller map from from $G(t)$ to $G(s)$ is the Teichmüller map from $\Gamma(t)$ to $\Gamma(s)$ with the same quasi-conformal constant. Therefore, as is well-known, the distance in $\mathcal{T}(S)$ between $G(t)$ and $G(s)$ equals the distance in $\mathcal{T}(\Sigma)$ between $\Gamma(t)$ and $\Gamma(s)$.
Proposition 6.2 (Proposition 3.7 (Raf06]). For any e, there is a constant N such that the following holds. Assume that, for all $t \in[r, s]$, there is a component of $\partial \Omega$ whose length in $\Gamma(t)$ is larger than e. Suppose γ has bounded length in $\Gamma(r)$ and δ has bounded length in $\Gamma(s)$. Then

$$
d_{\Omega}(\gamma, \delta) \leq \mathrm{N}
$$

Lemma 6.3. For e small enough, N as above and any subsurface $\Omega \subset$ Σ, if $d_{\Omega}(\alpha, \beta) \geq 2 \mathrm{~N}+1$, then Ω is symmetric.

Proof. Consider the first time t^{-}and last time t^{+}that the boundary of Ω is e-short. Since the boundary of Ω is short in Γ at these times, so is its image $P(\partial \Omega)$ in G at the corresponding times. Therefore, all components of the image are simple. (This is a version of the Collar Lemma. See Theorem 4.2.2 of Bus92].) It follows that the boundary of Ω is symmetric. This is because choosing e small enough will ensure that curves in $P^{-1}(P(\Omega))$ have bounded length at both t^{-}and t^{+}. (The length of each is at most the degree of the covering map times e.) If any such curve γ intersects Ω we have $d_{\Omega}(\gamma, \alpha) \leq \mathrm{N}$ and $d_{\Omega}(\gamma, \beta) \leq \mathrm{N}$, contradicting the assumption $d_{\Omega}(\alpha, \beta) \geq 2 \mathrm{~N}+1$. Thus, the subsurface Ω is symmetric.

7. The quasi-ISOMETRIC Embedding

We now prove the main theorem:
Theorem 7.1. The covering relation $\Pi: \mathcal{C}(S) \rightarrow \mathcal{C}(\Sigma)$ is a quasiisometric embedding. That is, if $P(\alpha)=a$ and $P(\beta)=b$, for $\alpha, \beta \in$
$\mathcal{C}(\Sigma)$ and $a, b \in \mathcal{C}(S)$, then

$$
d_{\Sigma}(\alpha, \beta) \asymp_{Q} d_{S}(a, b)
$$

where the constant Q depends only on the topology of S and the degree of the covering map.

Proof. As mentioned before, we only need to show that

$$
d_{\Sigma}(\alpha, \beta) \succ_{\mathrm{Q}} d_{S}(a, b)
$$

Suppose that d is the degree of the covering. We prove the theorem by induction on the complexity of S. In the case where S is an annulus, the cover Σ is also an annulus and the distances in $\mathcal{C}(\Sigma)$ and $\mathcal{C}(S)$ are equal to the intersection number plus one. But, in this case,

$$
i(\alpha, \beta) \geq i(a, b) / \mathrm{d}
$$

Therefore, the theorem is true with $\mathrm{Q}=\mathrm{d}$.
Now assume the theorem is true for all subsurfaces of S with the quasi-isometric constant Q^{\prime}. Choose the threshold T, constant e and length L such that Theorem 5.1 holds for both the data ($S, \mathrm{~T}, \mathrm{~T}, \mathrm{e}, \mathrm{L}$) as well as $\left(\Sigma,\left(T / Q^{\prime}\right)-Q^{\prime}, T, e, L\right)$. We also assume that $T \geq 2 N+1$. All of the constants depend only on the topology of S and the degree d, because these bound the topology of Σ.

Let \mathcal{J}_{S} be the T-antichain of maxima for S, a and b and let \mathcal{J}_{Σ} be the set of preimages of elements of \mathcal{J}_{S}.

Claim. The set \mathcal{J}_{Σ} is a $\left(\left(T / Q^{\prime}\right)-Q^{\prime}, \mathrm{T}\right)$-antichain for Σ, α and β.
We check the conditions for being an antichain. Since elements of \mathcal{J}_{S} are not subsets of each other, the same holds for their preimages. The condition $d_{\Omega}(\alpha, \beta) \geq\left(T / Q^{\prime}\right)-Q^{\prime}$ is the induction hypothesis. Now suppose $\Psi \subset \Sigma$ with $d_{\Psi}(\alpha, \beta) \geq \mathrm{T}$. By Lemma 6.3, Ψ is symmetric. That is, it is a preimage of a surface $Y \subset S$ and

$$
d_{Y}(a, b) \geq d_{\Psi}(\alpha, \beta) \geq \mathrm{T} .
$$

This implies that $Y \subset Z$ for some $Z \in \mathcal{J}_{S}$. Therefore, taking Ω to be the preimage of Z, we have $\Psi \subset \Omega \in \mathcal{J}_{\Sigma}$. This proves the claim.

Hence, there are constants K and K^{\prime} such that

$$
d_{S}(a, b) \asymp \mathrm{k}\left|\mathcal{J}_{S}\right|+|G(\mathrm{e}, \mathrm{~L})|,
$$

and

$$
d_{\Sigma}(\alpha, \beta) \asymp_{\mathrm{K}^{\prime}}\left|\mathcal{J}_{\Sigma}\right|+|\Gamma(\mathrm{e}, \mathrm{~L})| .
$$

Note that $\left|\mathcal{J}_{S}\right| \leq \mathrm{d}\left|\mathcal{J}_{\Sigma}\right|$ as a subsurface of S has at most d preimages. Note also that $|G(\mathrm{e}, \mathrm{L})| \leq|\Gamma(\mathrm{e}, \mathrm{L})|$ because $\Gamma(t)$ is at least as thick as $G(t)$. Therefore

$$
d_{S}(a, b) \prec_{\mathrm{Q}} d_{\Sigma}(\alpha, \beta),
$$

for $Q=d K K^{\prime}$. This finishes the proof.

References

[Ber60] Lipman Bers. Quasiconformal mappings and Teichmüller's theorem. In Analytic functions, pages 89-119. Princeton Univ. Press, Princeton, N.J., 1960.
[BS85] Joan S. Birman and Caroline Series. Geodesics with bounded intersection number on surfaces are sparsely distributed. Topology, 24(2):217-225, 1985.
[Bus92] Peter Buser. Geometry and spectra of compact Riemann surfaces, volume 106 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1992.
[Gar87] Frederick P. Gardiner. Teichmüller theory and quadratic differentials. Pure and Applied Mathematics (New York). John Wiley \& Sons Inc., New York, 1987., A Wiley-Interscience Publication.
[Har81] Willam J. Harvey. Boundary structure of the modular group. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pages 245-251, Princeton, N.J., 1981. Princeton Univ. Press.
[Har86] John L. Harer. The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math., 84(1):157-176, 1986.
[Hem01] John Hempel. 3-manifolds as viewed from the curve complex. Topology, 40(3):631-657, 2001. arXiv:math.GT/9712220.
[Min99] Yair N. Minsky. The classification of punctured-torus groups. Ann. of Math. (2), 149(2):559-626, 1999. arXiv:math.GT/9807001
[MM99] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math., 138(1):103-149, 1999. arXiv:math.GT/9804098,
[MM00] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal., 10(4):902-974, 2000. arXiv:math.GT/9807150.
[MS07] Howard A. Masur and Saul Schleimer. The geometry of the disk complex. 2007.
[Raf05] Kasra Rafi. A characterization of short curves of a Teichmüller geodesic. Geom. Topol., 9:179-202 (electronic), 2005. arXiv:math.GT/0404227.
[Raf06] Kasra Rafi. A combinatorial model for the Teichmüller metric. To appear in Geometric and Functional Analysis, 2006. r-Xiv:math.GT/0509584.
[Sch] Saul Schleimer. Notes on the curve complex. http://math.rutgers.edu/~saulsch/Maths/notes.pdf

E-mail address: rafi@math.uconn.edu
URL: http://www.math.uconn.edu/~rafi
E-mail address: saulsch@math.rutgers.edu
URL: http://www.math.rutgers.edu/~saulsch

[^0]: Date: January 31, 2007.
 This work is in the public domain.

