
COVERS AND THE CURVE COMPLEX

KASRA RAFI AND SAUL SCHLEIMER

Abstract. A finite-sheeted covering between surfaces induces a
quasi-isometric embedding of the associated curve complexes.

1. Introduction

Suppose that Σ is a compact connected orientable surface. A simple
closed curve α ⊂ Σ is essential if α does not bound a disk in Σ. The
curve α is non-peripheral if α is not boundary parallel.

Definition 1.1 (Harvey [Har81]). The complex of curves C(Σ) has
isotopy classes of essential, non-peripheral curves as its vertices. A
collection of k + 1 vertices spans a k–simplex if every pair of vertices
has disjoint representatives.

The definition is slightly altered when S is an annulus, a once-holed
torus or a four-holed sphere; in the latter two cases the Farey graph
serves as C(S). The complex for the annulus is defined below.

We follow Masur and Minsky [MM99], [MM00] in studying the ge-
ometry of the curve complex up to quasi-isometry. However, the curve
complex is locally infinite. It follows that many quasi-isometry invari-
ants, in particular those measuring growth, are of questionable utility.

We concentrate on a different family of invariants: the metrically
natural subspaces. Note that all of the well-known subspaces of the
curve complex, such as the complex of separating curves, the disk com-
plex of a handlebody and so on, are not quasi-isometrically embedded
and so do not give invariants in any obvious way.

This paper discusses the first non-trivial examples of one curve com-
plex being quasi-isometrically embedded is another. These arise in two
ways: by puncturing a closed surface and from covering maps.
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2. Statements

It will be enough to study only the one-skeleton of C(Σ), for which we
use the same notation. This is because the one-skeleton and the entire
complex are quasi-isometric. Give all edges of C(Σ) length one and
denote distance between vertices by dΣ(·, ·). We begin with a simple
example.

Puncturing. Let S be the closed surface of genus g ≥ 2 and Σ be the
surface of genus g with one puncture. The following lemma is inspired
by Lemma 3.6 of Harer’s paper [Har86].

Theorem 2.1. C(S) embeds isometrically into C(Σ).

As we shall see, there are many such embeddings.

Proof of Theorem 2.1. Pick a hyperbolic metric on S. By the Baire
category theorem, the union of geodesic representatives of simple closed
curves does not cover S. (In fact, this union has Hausdorff dimension
one. See Birman and Series [BS85].) Let ∗ be a point in the complement
and identify Σ with Sr{∗}. A vertex of C(S) is then taken to its
geodesic representative, which gives an essential curve in Sr{∗}, which
is identified with a curve in Σ, and which lies in a vertex of C(Σ). This
defines an embedding Π: C(S) → C(Σ) which depends on the choice
of metric, point and identification. Let P : C(Σ) → C(S) be the map
obtained by filling the point ∗. Note that P ◦ Π is the identity map.

We observe, for a, b ∈ C(S) and α = Π(a), β = Π(b) that

dS(a, b) = dΣ(α, β).

This is because P and Π send disjoint curves to disjoint curves. There-
fore, if L ⊂ C(S) is a geodesic connecting a and b, then Π(L) is a path
in C(Σ) of the same length connecting α to β. Conversely, if Λ ⊂ C(Σ)
is a geodesic connecting α to β, then P (Λ) is a path in C(S) of the
same length connecting a to b. ¤

We now turn to the main topic.

Coverings. Let Σ and S be compact connected orientable surfaces
and let P : Σ→ S be a covering map. This defines a relation, written
as Π: C(S) → C(Σ), as follows: Suppose that b ∈ C(S) and β ∈ C(Σ).
Then b is related to β if and only if β is a component of P−1(b), the
preimage of b.

A bit of notation: if A,B, c are non-negative real numbers with c ≥ 1
and if A ≤ cB + c, then we write A ≺c B. If A ≺c B and B ≺c A,
then we write A ³c B. Our goal is:
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Theorem 7.1. The covering relation Π: C(S) → C(Σ) is a quasi-
isometric embedding. That is, if P (α) = a and P (β) = b, for α, β ∈
C(Σ) and a, b ∈ C(S), then

dΣ(α, β) ³Q dS(a, b),

where the constant Q depends only on the topology of S and the degree
of the covering map.

Remark 2.2. Note that Q does not depend directly on the topology of
Σ. When S is an annulus, the degree of covering is not determined by
the topology of Σ. Conversely, when S is not an annulus, the topology
of Σ can be bounded in terms of the topology of S and the degree of
the covering.

Remark 2.3. The constant Q goes to infinity with the degree of the
covering. This is because any pair of distinct curves a, b ⊂ S are made
disjoint in some cover. In fact a cover of degree at most 2d−1, where
d = dS(a, b), will suffice [Hem01, Lemma 2.3].

Remark 2.4. When Σ is the orientation double cover of a nonori-
entable S, Theorem 7.1 is due to Masur-Schleimer [MS07].

Suppose that S is not a once-holed torus or four-holed sphere. Then
the inequality dΣ(α, β) ≤ dS(a, b) follows immediately; this is because
disjoint curves in S have disjoint preimages in Σ. (If S is one of the
special surfaces mentioned above and the degree of the covering is d,
then we instead have dΣ(α, β) ≤ (2 log2(2d) + 2) · dS(a, b). See [Sch,
Lemma 1.21].)

The opposite inequality is harder to obtain and occupies the rest of
the paper.

3. Subsurface projection

Suppose that Σ is a compact connected orientable surface. A sub-
surface Ψ is cleanly embedded if all components of ∂Ψ are essential and
whenever γ ⊂ ∂Ψ is isotopic to δ ⊂ ∂Σ then γ = δ. All subsurfaces
considered will be cleanly embedded.

From [MM99], recall the definition of the subsurface projection rela-
tion

πΨ : C(Σ)→ C(Ψ),

supposing that Ψ is not an annulus. Fix a hyperbolic metric on the
interior of Σ. Let Σ′ be the Gromov compactification of the cover of
Σ corresponding to the inclusion π1(Ψ) → π1(Σ). Thus Σ′ is homeo-
morphic to Ψ; this gives a canonical identification of C(Ψ) with C(Σ′).
For any α ∈ C(Σ) let α′ be the closure of the preimage of α in Σ′. If
every component of α′ is properly isotopic into the boundary then α
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is not related to any vertex of C(Ψ); in this case we write πΨ(α) = ∅.
Otherwise, let α′′ be an essential component of α′. Let N be a closed
regular neighborhood of α′′ ∪ ∂Σ′. Fix attention on α′′′, a boundary
component of N which is essential and non-peripheral. Then α ∈ C(Σ)
is related to α′′′ ∈ C(Ψ) and we write πΨ(α) = α′′′.

If Ψ is an annulus, then the definition of C(Ψ) is altered. Vertices are
proper isotopy classes of essential arcs in Ψ. Edges are placed between
vertices with representatives having disjoint interiors. The projection
map is defined as above, omitting the final steps involving the regular
neighborhood N .

If Ψ is a four-holed sphere or a once-holed torus then the curve
complex of Ψ is the well-known Farey graph; since all curves intersect,
edges are instead placed between curves that intersect exactly twice or
exactly once. The definition of πΨ is as in the non-annular case.

The curve α ∈ C(Σ) cuts the subsurface Ψ if πΨ(α) 6= ∅. Otherwise,
α misses Ψ. Suppose now that α, β ∈ C(Σ) both cut Ψ. Define the
projection distance to be

dΨ(α, β) = dΨ(πΨ(α), πΨ(β)).

The Bounded Geodesic Image Theorem states:

Theorem 3.1 (Masur-Minsky [MM00]). Fix a surface Σ. There is
a constant M = M(Σ) so that for any vertices α, β ∈ C(Σ), for any
geodesic Λ ⊂ C(Σ) connecting α to β and for any Ω ( Σ, if dΩ(α, β) ≥
M then there is a vertex of Λ which misses Ω. ¤

Fix α and β in C(Σ) and thresholds T0 > 0 and T1 > 0. We say that
a set J of subsurfaces Ω ( Σ, is an (T0,T1)–antichain for Σ, α and β
if J satisfies the following properties.

• If Ω,Ω′ ∈ J then Ω is not a strict subsurface of Ω′.
• If Ω ∈ J then dΩ(α, β) ≥ T0.
• For any Ψ ( Σ, either Ψ is a subsurface of some element of J

or dΨ(α, β) < T1.

Notice that there may be many different antichains for the given data
(Σ, α, β,T0,T1). One particularly nice example is when T0 = T1 = T
and J is defined to be the maxima of the set

{Ω ( Σ | dΩ(α, β) ≥ T}
as ordered by inclusion. We call this the T–antichain of maxima for
Σ, α and β. By |J | we mean the number of elements of J . We may
now state and prove:

Lemma 3.2. For every surface Σ and for every pair of sufficiently large
thresholds T0,T1, there is an accumulation constant A = A(Σ,T0,T1)
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so that, if J is an (T0,T1)–antichain for Σ, α and β then

dΣ(α, β) ≥ |J |/A.

Proof. We proceed via induction: for the Farey graph it suffices for
both thresholds to be larger than 3 and A = 1 (see [Min99]). Let C be
a constant so that: if Ω ⊂ Ψ ⊂ Σ and α′, β′ are the projections of α, β
to Ψ then

|dΩ(α, β)− dΩ(α′, β′)| ≤ C.

In the general case, we take the thresholds large enough so that:

• the theorem still applies to any strict subsurface Ψ with thresh-
olds T0 − C,T1 + C and
• T0 ≥ M(Σ); thus by Theorem 3.1 for any surface in Ω ∈ J and

any geodesic Λ in C(Σ) connecting α and β, there is a curve γ
in Λ so that γ misses Ω.

Fix such a Λ and γ. Let Ψ (and Ψ′) be the component(s) of Σrγ.

Claim. Let AΨ = A(Ψ,T0 − C,T1 + C). The number of elements of
JΨ = {Ω ∈ J | Ω ( Ψ} is at most

AΨ · (T1 + C).

By the claim it will suffice to take A(Σ,T0,T1) equal to

(AΨ + AΨ′)(T1 + C) + 3.

This is because any element of J which is disjoint from γ is either a
strict subsurface of Ψ or Ψ′, an annular neighborhood of γ, or Ψ or Ψ′

itself. Since every surface in J is disjoint from some vertex of Λ, the
theorem follows from the pigeonhole principle.

It remains to prove the claim. If Ψ is a subsurface of an element of
J there is nothing to prove. Thus we may assume that

dΨ(α, β) < T1.

Let α′ and β′ be the projections of α and β to Ψ. From the definition
of C, JΨ is a (T0 − C,T1 + C)–antichain for Ψ, α′ and β′. Thus,

T1 > dΨ(α, β) ≥ dΨ(α′, β′)− C ≥ |JΨ|/AΨ − C,

with the last inequality following by induction. Hence,

T1 + C ≥ |JΨ|/AΨ. ¤
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4. Teichmüller space

Let T (Σ) denote the Teichmüller space of Σ: the space of complete
hyperbolic metrics on the interior of Σ up to isotopy (for background,
see [Ber60] and [Gar87]).

There is a uniform upper bound on the length of the shortest closed
curve in any hyperbolic metric on Σ. For any metric σ on Σ, a curve
γ has bounded length in σ if the length of γ in σ is less than this
constant. Let e0 > 0 be a constant such that, for curves γ and δ, if γ
has bounded length in σ and δ has a length less than e0 then γ and δ
have intersection number zero.

Suppose that α and β are vertices of C(Σ). Fix metrics σ and τ in
T (Σ) so that α and β have bounded length at σ and τ respectively.
Let Γ: [tσ, tτ ]→ T (S) be a geodesic connecting σ to τ . For any curve
γ let lt(γ) be the length of its geodesic representative in the hyperbolic
metric Γ(t). The following theorems are consequences of Theorem 6.2
and Lemma 7.3 in [Raf05].

Theorem 4.1 ([Raf05]). For e0 as above there exists a threshold Tmin

such that, for a strict subsurface Ω of Σ, if dΩ(α, β) ≥ Tmin then there
is a time tΩ so that the length of each boundary component of Ω in
Γ(tΩ) is less than e0. ¤
Theorem 4.2 ([Raf05]). For every threshold T1, there is a constant e1

such that of lt(γ) ≤ e1, for some curve γ, then there exists a subsurface
Ψ disjoint from γ such that dΨ(α, β) ≥ T1. ¤

The shadow of the Teichmüller geodesic Γ to C(Σ) is the set of curves
γ, such that γ has bounded length in Γ(t) for some t ∈ [tσ, tτ ]. The
following is a consequence of the fact that the shadow is an unparame-
terized quasi-geodesic. (See Theorem 2.6 and then apply Theorem 2.3
in [MM99].)

Theorem 4.3 ([MM99]). The shadow of a Teichmüller geodesic to
C(Σ) does not backtrack and so satisfies the reverse triangle inequality.
That is, there exists a backtracking constant B = B(Σ) such that if
tσ ≤ t0 ≤ t1 ≤ t2 ≤ tτ and if γi has bounded length in Γ(ti), i = 0, 1, 2
then

dΣ(γ0, γ2) ≥ dΣ(γ0, γ1) + dΣ(γ1, γ2)− B.

We say that Γ(t) is e–thick if the shortest closed geodesic γ in Γ(t)
has a length of at least e.

Lemma 4.4. For any e > 0 there is a progress constant P > 0 so that
if tσ ≤ t0 ≤ t1 ≤ tτ , Γ(t) is e–thick at every time t ∈ [t0, t1] and if γi
has bounded length in Γ(ti), i = 0, 1, then

dΣ(γ0, γ1) ³P t1 − t0.
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Proof. As above, using Theorem 6.2 and Lemma 7.3 in [Raf05] and
the fact that Γ(t) is e–thick at every time t ∈ [t0, t1], we can conclude
that dΩ(γ0, γ1) is uniformly bounded for any strict subsurface of Ω of
Σ. The lemma is then a consequence of Theorem 1.1 and Remark 5.5
in [Raf06]. (Referring to the statement and notation of [Raf06, Theo-
rem 1.1]: Extend γi to a short marking µi. Take k large enough such
that the only non-zero term in the right hand side of [Raf06, Equation
(1)] is dΣ(µ0, µ1).) ¤

In general the geodesic Γ may stray into the thin part of T (S). We
take Γ≥e to be the set of times in the domain of Γ which are e–thick.
Notice that Γ≥e is a union of closed intervals. Let Γ(e, L) be the union
of intervals of Γ≥e which have length at least L. We use |Γ(e, L)| to
denote the sum of the lengths of the components of Γ(e, L).

Lemma 4.5. For every e there exists L0 such that if L ≥ L0, then

dΣ(α, β) ≥ |Γ(e, L)|/2P.

Proof. Pick L0 large enough so that, for L ≥ L0,

(L/2P) ≥ P + 2B.

Let Γ(e, L) be the union of intervals [ti, si], i = 1, . . . ,m. Let γi be a
curve of bounded length in Γ(ti) and δi be a curve of bounded length
in Γ(si).

By Theorem 4.3 we have

dΣ(α, β) ≥
(∑

i

dΣ(γi, δi)

)
− 2mB.

From Lemma 4.4 we deduce

dΣ(α, β) ≥
(∑

i

1

P
(si − ti)− P

)
− 2mB.

Rearranging, we find

dΣ(α, β) ≥ 1

P
|Γ(e, L)| −m(P + 2B).

Thus, as desired:

dΣ(α, β) ≥ 1

2P
|Γ(e, L)|. ¤
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5. An estimate of distance

In this section we provide the main estimate for dΣ(α, β). Let e0 be
as before. We choose thresholds T0 ≥ Tmin (see Theorem 4.1) and T1 so
that Lemma 3.2 holds. Let e1 be the constant provided in Lemma 4.4
and let e > 0 be any constant smaller than min(e0, e1). Finally, we
pick L0 such that Lemma 4.5 holds and that L0/2P > 4. Let L be any
length larger than L0.

Theorem 5.1. Let T0, T1, e and L be constants chosen as above. There
is a constant K = K(Σ,T0,T1, e, L) such that for any curves α and β,
any (T0,T1)–antichain J and any Teichmüller geodesic Γ, chosen as
above, we have:

dΣ(α, β) ³K |J |+ |Γ(e, L)|.
Proof. For K ≥ max(2P,A), the inequality

dΣ(α, β) ÂK |J |+ |Γ(e, L)|
follows from Lemmas 3.2 and 4.5. It remains to show that

dΣ(α, β) ≺K |J |+ |Γ(e, L)|.
For each Ω ∈ J , fix a time tΩ ∈ [tσ, tτ ] so that all boundary com-

ponents of Ω are e0–short in Γ(tΩ) (see Theorem 4.1). Let E be the
union:{

tΩ

∣∣∣ Ω ∈ J , tΩ 6∈ Γ(e, L)
}
∪
{
∂I
∣∣∣ I a component of Γ(e, L)

}
.

We write E = {t0, . . . , tn}, indexed so that ti < ti+1.

Claim. The number of intervals in Γ(e, L) is at most |J | + 1. Hence,
|E| ≤ 3|J |+ 1.

Proof. At some time between any consecutive intervals I and J in
Γ(e, L) some curve γ becomes e–short (and hence e1–short). Therefore,
by Theorem 4.2, γ is disjoint from a subsurface Ψ where dΨ(α, β) ≥ T1.
Since J is an (T0,T1)–antichain, Ψ is a subsurface of some element
Ω ∈ J . It follows that dΣ(γ, ∂Ω) ≤ 2. This defines a one-to-one map
from pairs of consecutive intervals to J . To see the injectivity consider
another such pair of consecutive intervals I ′ and J ′ and the correspond-
ing curve γ ′ and subsurface Ω′. By Lemma 4.4, dΣ(γ, γ′) ≥ L/2P > 4
and therefore Ω is not equal to Ω′. ¤

Let γi be a curve of bounded length in Γ(ti).

Claim.

dΣ(γi, γi+1) ≤
{

P(ti+1 − ti) + P, if [ti, ti+1] ⊂ Γ(e, L)

2B + PL + P + 2, otherwise



COVERS AND THE CURVE COMPLEX 9

Proof. The first case follows from Lemma 4.4. So suppose that the
interior of [ti, ti+1] is disjoint from the interior of Γ(e, L).

We define sets I+, I− ⊂ [ti, ti+1] as follows: A point t ∈ [ti, ti+1] lies
in I− if

• there is a curve γ which is e–short in Γ(t) and
• for some Ω ∈ J , so that dΣ(∂Ω, γ) ≤ 2, we have tΩ ≤ ti.

If instead tΩ ≥ ti+1 then we place t in I+. Finally, we place ti in I−
and ti+1 in I+.

Notice that if Ω ∈ J then tΩ does not lie in the open interval (ti, ti+1).
It follows that every e–thin point of [ti, ti+1] lies in I−, I+, or both. If
t ∈ I− and γ is the corresponding e–short curve then dΣ(γi, γ) ≤ B + 2.
This is because either t = ti and so γ and γi are in fact disjoint, or
there is a surface Ω ∈ J as above with

2 ≥ dΣ(∂Ω, γ) ≥ dΣ(γi, γ)− B,

Similarly if t ∈ I+ then dΣ(γi+1, γ) ≤ B + 2.
If I+ and I− have non-empty intersection then dΣ(γi, γi+1) ≤ 2B+ 4

by the triangle inequality.
Otherwise, there is an interval [s, s′] that is e–thick, has length less

than L such that s ∈ I− and s′ ∈ I+. Let γ and γ′ be the corresponding
short curves in Γ(s) and Γ(s′). Thus

dΣ(γi, γ) ≤ B + 2 and dΣ(γ′, γi+1) ≤ B + 2.

We also know from Lemma 4.4 that

dΣ(γ, γ′) ≤ PL + P.

This finishes the proof of our claim. ¤

It follows that

dΣ(α, β) ≤ dΣ(γ0, γ1) + . . .+ dΣ(γn−1, γn)

≤ |E|(2B + PL + P + 2) + P|Γ(e, L)|+ |E|P
≺K |J |+ |Γ(e, L)|,

for an appropriate choice of K. This proves the theorem. ¤

6. Symmetric curves and surfaces

Recall that P : Σ→ S is a covering map.

Definition 6.1. A curve α ⊂ Σ is symmetric if there is a curve a ⊂ S
so that P (α) = a. We make the same definition for a subsurface Ω ⊂ Σ
lying over a subsurface Z ⊂ S.
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For the rest of the paper, fix symmetric curves α and β. Let x, y ∈
T (S) be points in the Teichmüller space of S such that a = P (α) has
bounded length in x and b = P (β) is bounded in y. Let σ and τ be
the pullbacks of x and y respectively. Let G : [tx, ty] → T (S) be the
Teichmüller geodesic connecting x to y. Also, let tσ = tx, tτ = ty and
Γ: [tσ, tτ ]→ T (Σ) be the lift of G. The path Γ is a geodesic in T (Σ).
This is because, for t, s ∈ [tx, ty], the Teichmüller map fromG(t) toG(s)
has Beltrami coefficient k |q|/q where q is an integrable holomorphic
quadratic differential in G(t). This map lifts to a map from Γ(t) to
Γ(s) with Beltrami coefficient k |θ|/θ, where the quadratic differential
θ is the pullback of q to Γ(t). That is, the lift of the Teichmüller map
from from G(t) to G(s) is the Teichmüller map from Γ(t) to Γ(s) with
the same quasi-conformal constant. Therefore, as is well-known, the
distance in T (S) between G(t) and G(s) equals the distance in T (Σ)
between Γ(t) and Γ(s).

Proposition 6.2 (Proposition 3.7 [Raf06]). For any e, there is a con-
stant N such that the following holds. Assume that, for all t ∈ [r, s],
there is a component of ∂Ω whose length in Γ(t) is larger than e. Sup-
pose γ has bounded length in Γ(r) and δ has bounded length in Γ(s).
Then

dΩ(γ, δ) ≤ N.

Lemma 6.3. For e small enough, N as above and any subsurface Ω ⊂
Σ, if dΩ(α, β) ≥ 2N + 1, then Ω is symmetric.

Proof. Consider the first time t− and last time t+ that the boundary
of Ω is e–short. Since the boundary of Ω is short in Γ at these times,
so is its image P (∂Ω) in G at the corresponding times. Therefore, all
components of the image are simple. (This is a version of the Collar
Lemma. See Theorem 4.2.2 of [Bus92].) It follows that the boundary
of Ω is symmetric. This is because choosing e small enough will ensure
that curves in P−1(P (Ω)) have bounded length at both t− and t+. (The
length of each is at most the degree of the covering map times e.) If
any such curve γ intersects Ω we have dΩ(γ, α) ≤ N and dΩ(γ, β) ≤ N,
contradicting the assumption dΩ(α, β) ≥ 2N + 1. Thus, the subsurface
Ω is symmetric. ¤

7. The quasi-isometric embedding

We now prove the main theorem:

Theorem 7.1. The covering relation Π: C(S) → C(Σ) is a quasi-
isometric embedding. That is, if P (α) = a and P (β) = b, for α, β ∈
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C(Σ) and a, b ∈ C(S), then

dΣ(α, β) ³Q dS(a, b),

where the constant Q depends only on the topology of S and the degree
of the covering map.

Proof. As mentioned before, we only need to show that

dΣ(α, β) ÂQ dS(a, b).

Suppose that d is the degree of the covering. We prove the theorem by
induction on the complexity of S. In the case where S is an annulus,
the cover Σ is also an annulus and the distances in C(Σ) and C(S) are
equal to the intersection number plus one. But, in this case,

i(α, β) ≥ i(a, b)/d.

Therefore, the theorem is true with Q = d.
Now assume the theorem is true for all subsurfaces of S with the

quasi-isometric constant Q′. Choose the threshold T, constant e and
length L such that Theorem 5.1 holds for both the data (S,T,T, e, L)
as well as (Σ, (T/Q′) − Q′,T, e, L). We also assume that T ≥ 2N + 1.
All of the constants depend only on the topology of S and the degree
d, because these bound the topology of Σ.

Let JS be the T–antichain of maxima for S, a and b and let JΣ be
the set of preimages of elements of JS.

Claim. The set JΣ is a ((T/Q′)− Q′,T)–antichain for Σ, α and β.

We check the conditions for being an antichain. Since elements of
JS are not subsets of each other, the same holds for their preimages.
The condition dΩ(α, β) ≥ (T/Q′)−Q′ is the induction hypothesis. Now
suppose Ψ ⊂ Σ with dΨ(α, β) ≥ T. By Lemma 6.3, Ψ is symmetric.
That is, it is a preimage of a surface Y ⊂ S and

dY (a, b) ≥ dΨ(α, β) ≥ T.

This implies that Y ⊂ Z for some Z ∈ JS. Therefore, taking Ω to be
the preimage of Z, we have Ψ ⊂ Ω ∈ JΣ. This proves the claim.

Hence, there are constants K and K′ such that

dS(a, b) ³K |JS|+ |G(e, L)|,

and

dΣ(α, β) ³K′ |JΣ|+ |Γ(e, L)|.
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Note that |JS| ≤ d|JΣ| as a subsurface of S has at most d preimages.
Note also that |G(e, L)| ≤ |Γ(e, L)| because Γ(t) is at least as thick as
G(t). Therefore

dS(a, b) ≺Q dΣ(α, β),

for Q = d K K′. This finishes the proof. ¤
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